Linear actions and Levi factors

George McNinch

Tufts University

2025-10-19

Levi factors	1
Notation and assumptions	. 2
Levi factors	. 3
The special fiber of parahoric group scheme	. 4
Examples of non-existence of Levi factors	. 5
Descent of Levi factors	. 6
Cohomology and Descent	11
Linear filtrations	16
Bibliography	21

Notation and assumptions

- k: arbitrary field, G: linear algebraic group over k
- we insist on the following assumption:
 - (\clubsuit) : the unipotent radical $U=R_u(G)$ of G is defined and split over k.
- thus G determines a strictly exact sequence of linear algebraic k-groups

$$(\P): 1 \to U \to G \xrightarrow{\pi} M \to 1$$

where M = G/U is reductive.

• notice that G acts on U by conjugation, while e.g. M acts on the center Z(U) but in general M does not act on U.

• A Levi factor of G is a k-subgroup L such that $\pi_{|L}:L\to M$ is an isomorphism.

• If k has char. 0, G always has a Levi factor.

This is a result of Mostow.

For the rest of the talk, suppose that k has char. p > 0.

- If M is reductive and $P \subset M$ a parabolic subgroup, P has a Levi factor.
- When k is imperfect, we are avoiding some substantial issues:
 - $ightharpoonup R_u(G)$ may fail to be defined over k (this is related to the existence of pseudoreductive groups).
 - even when defined over k, $R_u(G)$ could in general fail to be k-split.

The special fiber of parahoric group scheme

- Suppose K is a local field the field of fractions of a complete DVR \mathcal{A} .
- suppose that G is a reductive algebraic group over K.
- The parahoric group schemes attached to G are certain smooth affine group scheme \mathcal{P} over \mathcal{A} the ring of integers of K for which $\mathcal{P}_K = G$.
- If $k = \mathcal{A}/\pi\mathcal{A}$ is the residue field of \mathcal{A} , the k-group \mathcal{P}_k is in general not reductive.
- If G splits over a tamely ramified extension of K, then \mathcal{P}_k has a Levi factor. see (McNinch 2014a) and (McNinch 2020).

Examples of non-existence of Levi factors

• Let V be a linear representation of the reductive k-group V and let

$$\alpha \in H^2(M,V)$$
.

Then α determines a SES

$$0 \to V \to G_{\alpha} \to M \to 1$$

which is split if and only if $\alpha = 0$.

In particular, G_{α} has no Levi factor if $\alpha \neq 0$.

• since k has positive characteristic, there are many representations with non-vanishing H^2 . So there are many linear algebraic groups having no Levi factor.

Levi factors	. 1
Descent of Levi factors	6
The problem	. 7
Failure of Descent	. 8
Cohomology and Descent	11
Linear filtrations	16
Bibliography	21

- Let ℓ be a finite separable field extension of k. And let G linear algebraic group over k as before (so we continue to assume U is defined and split over k.)
- Question: if G_{ℓ} has a Levi factor ("over ℓ "), does G have a Levi factor ("over k")?
- partial answer:

Theorem (McNinch 2013): Suppose that ℓ is Galois over k with

$$\gcd(p, [\ell : k]) = 1.$$

If G_{ℓ} has a Levi factor, then G has a Levi factor.

- suppose $p \neq 2$
- Let *H* be the extension

$$0 \to \mathbb{G}_a \to H \to \mathbb{G}_a \times \mathbb{G}_a \to 0$$

defined by the cocycle $(v, w) \mapsto \beta(v, w)^p - \beta(v, w)$ where $\beta : \mathbb{G}_a \times \mathbb{G}_a \to \mathbb{G}_a$ is a non-degenerate alternating form.

• for $t \in k$ let

$$V_t = \langle (t,0), (0,1) \rangle \subseteq (\mathbb{G}_a \times \mathbb{G}_a)(k)$$

so that

$$V_t \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}.$$

consider the extension

$$0 \to \mathbb{G}_a \to \mu_t \to V_t \to 0$$

determined by the alternating form β .

• setting $E_t = \mu_t \times_{\mathbb{G}_a} H$ we find an extension

$$1 \to H \to E_t \to V_t \to 0$$

• this extension is split if and only if the polynomial

$$F(T) = T^p - T - t \in k[T]$$

is reducible over k.

- See (McNinch 2025) for details.
- And see (McNinch 2013) for a similar construction with H replaced by a commutative connected unipotent group of dimension 2 and exponent p^2 .
- On the other hand, with notations as before, I'm unaware of an example of a connected linear algebraic group H over a field such that H_{ℓ} has a Levi factor but H itself does not.

Levi factors	1
Descent of Levi factors	6
Cohomology and Descent	11
Non-abelian cohomology	12
Semidirect products	13
Result	14
sketch of proof	15
Linear filtrations	16
Bibliography	21

• if U is an M-group a 1-cocycle on M with values in U is a morphism $f:M\to U$ satisfying

$$f(xy) = f(x) \cdot {}^x f(y).$$

• The 1-coycles f,g are cohomologous – written $f\sim g$ – if there is $u\in U(k)$ such that

$$f(x) = u^{-1} \cdot g(x) \cdot {}^x u$$

Write

$$H^1(M,U) = 1$$
-cocycles / \sim

for the resulting first cohomology set.

- Let $1 \to U \to G \xrightarrow{\pi} M \to 1$ be an extension.
- Write $\operatorname{Sect}\left(G \overset{\pi}{\to} M\right)$ for the U(k)-orbits of homoms $M \to G$ which are sections to π . Thus $\operatorname{Sect}\left(G \overset{\pi}{\to} M\right)$ is the set of equiv classes for the relation

$$s \sim s' \Leftrightarrow \exists u \in U(k) \text{ s.t. } s = us'u^{-1}$$

Proposition: If there is a homomorphism which is a section $s_0:M\to G$ to π , there is a bijection

$$H^1(G,M) \simeq \operatorname{Sect}(G \xrightarrow{\pi} m).$$

• of course, if $\operatorname{Sect} \left(G \stackrel{\pi}{\to} M \right)$ is non-empty, then G is the semidirect product of M and U.

Theorem ((McNinch 2025)): Let ℓ a finite separable extension of k, and assume the following:

- a. G_{ℓ} has a Levi factor
- b. $U_{\ell}^{M_{\ell}} = 1$.
- c. $H^1(M_{\ell}, U_{\ell}) = 1$.

Then G has a Levi factor.

• The proof of the Theorem uses both the non-abelian cohomology set $H^1(M_\ell,U_\ell)=1$ and the Galois cohomology set $H^1(k,U)$.

since U is connected and split unipotent, $H^1(k, U)$ is trivial.

- in giving the proof, may suppose ℓ is Galois over k; write $\Gamma = \operatorname{Gal}(\ell/k)$.
- Let $s_0: M_\ell \to G_\ell$ a fixed section and $\gamma \in \Gamma$.

Since $H^1(M_\ell, U_\ell) = 1$, we know that

$${}^{\gamma}s_0 = u_{\gamma}^{-1} \cdot s_0 \cdot u_{\gamma}$$

for some $u_{\gamma} \in U(\ell)$.

- Now argue using hypothesis b that $\gamma\mapsto u_\gamma$ is a Galois 1-cocycle. Since $H^1(k,U)$ is trivial, there is $u\in U(k)$ such that $\gamma u=u\cdot u_\gamma$.
- Then $s=u\cdot s_0\cdot u^{-1}$ is a section with ${}^\gamma s=s$ for each $\gamma\in\Gamma.$ Thus s is defined over k as requiried.

Levi factors
Descent of Levi factors
Cohomology and Descent
Linear filtrations
Definitions
Application
Existence of linear filtrations
Biblio
Bibliography

Definition: Let U be a vector group on which G acts. We say that the action of G on U is linear provided that there is a G-equivariant isom $U \stackrel{\sim}{\to} \operatorname{Lie}(U)$ for the adjoint action of G on $\operatorname{Lie}(U)$.

Definition: A filtration

$$1 = U_0 \subset U_1 \subset \ldots \subset U_{n-1} \subset U_n = U$$

by G-invariant closed subgroups U_i of U is a central linear filtration provided that for each i, U_{i+1}/U_i is a vector group with linear action of G which is central in U/U_i .

Application

Theorem ((McNinch 2025)): Assume that U has a central linear filtration for the action of G and suppose the following:

- a. G_{ℓ} has a Levi decomposition (over ℓ),
- b. the group scheme $\left(U_{i+1}/U_i\right)^M$ is trivial for i=0,...,m-1, and
- c. $H^1(M, U_{i+1}/U_i) = 0$ for i = 0,, m-1. Then G has a Levi decomposition.

Theorem ((McNinch 2014b)): If G is connected and $U = R_{u(G)}$ is defined and split over k, there is a central linear filtration of U for the action of G.

- There are examples of vector groups U which are M groups for which the action is not linear.
- For these examples, Lie(U) is not a simple G-module.
- Let $\mathcal{A}(U)=\mathrm{Hom}(U,\mathbb{G}_a).$ In these examples, $\mathcal{A}(U)$ is not completely reducible as M-representation.

Existence of linear filtrations

Theorem ((McNinch 2014b)): Assume G is connected and that U is a G-group. If Lie(U) is a simple representation for G^0 then $\mathcal{A}(U)$ is completely reducible and the action of G on U is linear.

Bibliography

- McNinch, George. 2013. "On the Descent of Levi Factors". *Archiv Der Mathematik* 100 (1): 7–24. https://doi.org/10.1007/s00013-012-0467-y.
- McNinch, George. 2014a. "Levi Factors of the Special Fiber of a Parahoric Group Scheme and Tame Ramification". *Algebras and Representation Theory* 17 (2): 469–79. https://doi.org/10.1007/s10468-013-9404-4.
- McNinch, George. 2014b. "Linearity for Actions on Vector Groups". *Journal of Algebra* 397:666–88. https://doi.org/10.1016/j.jalgebra.2013.08.030.
- McNinch, George. 2020. "Reductive Subgroup Schemes of a Parahoric Group Scheme". *Transformation Groups* 25 (1): 217–49. https://doi.org/10.1007/s00031-018-9508-3.

McNinch, George. 2025. "Levi Decompositions and Nonabelian Cohomology". *Pacific Journal of Mathematics* 336:379–97.