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Local fields

Local fields and so forth

By a local field, | mean the field of fractions K of a complete
DVR A with residue field A/7A = k.

Of course, that is a mouthful...

Two interesting origins:

o number fields

e algebraic curves
First recall: A is a DVR means that A is a local, commutative
ring which is a principal ideal domain
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Local fields from number fields

First, suppose Q C F is a finite ext; i.e. F is a number field.

For each prime number p, the field Q is the field of fractions
of the discrete valuation ring Z

The integral closure of Z(,,) in F has finitely many non-zero
prime ideals; the localization A of this integral closure at each
of these prime ideals yields a discrete valuation subring of F.

Now the completion

-~

A=IlmA/m"A
—

of A is a complete DVR, where mA is a chosen a maximal
ideal of A.

And the field of fractions F, of A'is a local field.
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Local fields from number fields

@ In particular, Q, is the field of fractions of the completion Z,
of Z(p)

Proposition

Q, C Fx is a finite extension, k = A/ A ~ A/w A and [k : Fp)
divides [Fr : Qp].
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“Mixed characteristic” local fields

@ The local fields F; arising from number fields just discussed
are of characteristic zero, and their “residue fields” have
characteristic p > 0 — “mixed characteristic”.

@ More generally, to a field k of characteristic p > 0, one can
functorially associate the ring A = W(k) of Witt vectors;

W (k) is a complete DVR with residue field k and field of
fractions of characteristic 0.
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Local fields from algebraic curves

o Let k be a field and let X be an absolutely irreducible smooth
algebraic curve over k.

@ The “closed points” P of X are in one-to-one correspondence
with the k-valuation subrings Ap of the field of rational
functions F = k(X) on X.

® E.g. k[t](¢—,) is the valuation ring of the field of rational
functions k(t) on P! determined by a € k.

e If m € Ap is a uniformizer, the completion ;17: of Ap
identifies with ([7] where ¢ = Ap/mAp is the residue field of
Ap, so £ D k is a finite extension.

@ The field of fractions Fp of ;l; is a local field of equal
characteristic, and F, ~ ¢((7)).
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Ramification

Let (V) JF1 C F>» be a finite extension of local fields, with rings
of integers A; C F1 and Ay C Fo. Write ky, ko for the respective
residue fields.

o A is the integral closure of Ay in F»
@ The extension (©) is unramified if ki C ko is separable and if

mT1A> = mAs.
e If k; C ky is separable, we have [F; : F1] = [k : k1] - e where
7T1.A2 = 775./42.

@ “ramified” means e > 1.
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Ramification

Example: totally ramified extensions

e Q, C Qu(/p) and k((t2)) C k((t)) are totally ramified
(e =2).

Proposition

For each finite separable extension k C £, there is a unique
unramified extension F C F' for which A’ has residue field /.

Example: Unramified extensions

e If k C ¢ is a separable extension, k((t)) C ¢((t)) is the
corresponding unique unramfied extension

o If p#2 Qp C Qp(i) is unramified. Of course,
[Qp(7) : Qp] =2 if p=3 (mod 4) while Qp(I) =Qpif p=1
(mod 4).
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Reductive groups over Local fields

Tori in reductive groups

o If G is a reductive group over a field F, then G has a
subgroup T which is a maximal torus.

@ This means: after possibly extending scalars to a finite
separable extension of F, T becomes a split torus — i.e.
T~ G, x--- x G, where G, = GL; is the “multiplicative
group” of F, so e.g. Gp(F) = F*

@ Maximal tori play an important role governing the structure of
G — for example, if F is separably closed, all F-maximal tori
are conjugate under G(F).

@ A reductive group is split over F if it has a split maximal
torus over F.
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Split reductive groups

@ split reductive groups are classified by some combinatorial
information — “root datum”; roughly, their Dynkin diagram.

e partial list: GL(V),Sp(V),0(V), Gy, Fa, ...

@ Compare with: classification of compact Lie groups, or of
semisimple complex Lie algebras

@ important fact, (Chevalley): for any root datum, there is a
group scheme G (smooth, affine, and of finite type) over Z
with the property that V fields F, the linear algebraic group
Gr is a split reductive group over F with the given root
datum.

@ In particular, if K is a local field with integers A, and if G is a
split reductive group over K, G has a “reductive model over
A: i.e. there is a group scheme G over A for which G = Gk
and for which Gy is a reductive group over k “with the same
root datum as G".
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Ramification and splitting

Let G be a reductive group over the local field F.

Proposition

If G has a reductive model G over A, then Gx: is split for some
unramified extension F C F'.

@ Indeed, the reductive k-group Gy has a splitting field

@ i.e. after a finite separable extension ¢ of k, Gy becomes split
reductive

@ a Hensel-type argument shows that one can "lift" a split max
torus to G.

@ Then G splits over the corresponding unramified extension of
F.
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Example: a classical split reductive group

Let V be a 2d dimensional K-vector space, and let 5 be a
non-degenerate alternating form on V.

@ [ gives an involution X — X* on R = Endk(V) by the
formula B(Xv,w) = (v, X*w) for v,w € V.

@ The gp G =Sp(V) =Sp(V, ) is given by the functor
(%) G(A)={gcRn|g g"=1}

@ G is a split reduc gp with Dynkin diagram of type Cj.

@ maximal tori of G are determined by *x-stable maximal étale
subalgebras £ of R.

o If E and F are max'l isotropic subsp s.t. V = E @ F, choose a
basis e1, ..., eq for E and the dual basis fi,...,fy for F. The
étale subalgebra & = (Ej;, Fi;) C R spanned by the
corresponding idempotent matrices dets a maxl split torus.
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Example: a classical split reductive group

@ G =Sp(V) is determined by the “algebra with involution”
(R, %)

@ To get a reductive model G, choose a full A-lattice £ C V for
which the A-subalgebra R = End4(£) C R satisfies R = R*.

@ The model G is determined by the functor given by the
analogue of (&): i.e. for all A-algebras A

() GN)={gcRrlg-g" =1}
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Models

@ important theorem: a real Lie group H has a unique
conjugacy class of maximal compact subgroup.

@ Consider a split reductive algebraic group G over a local field
K with reductive model G over A.

o If the residue field k is finite, G(A) is a maximal compact
subgroup of the topological group G(K).
@ (Well, note at least that G(A) = IiLn G(A/m"A) is profinite,

hence compact.)
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Models

@ But there are in general non-conjugate maximal compact
subgroups of G(K).

@ Work —especially of F. Bruhat and J. Tits— shows: the
maximal compact subgroups of G(K) arise (essentially) from
groups P(A) for certain A-models P of G — the parahoric
group schemes.

@ These parahoric include the reductive models, but in general
there are non-reductive parahoric group schemes.



Reductive groups over Local fields

Example: non-reductive models for split reductive groups

Let G = GL(V) for a finite dimensional K-vector space V.

@ Choose a full A-lattice £ in V.

@ And choose a second lattice M with 7£ C M C L (so
L C M C Lis a “lattice flag").

o Identify G with the “diagonal subgroup”
AG C G x G=GL(V) x GL(V).
e note: GL(L) x GL(M) is reduc model for G x G.

@ The “schematic closure” P of G = AG in GL(L) x GL(M) is
a model for G which in some sense is “the stabilizer of the
chosen lattice flag”.

@ The linear algebraic k-group Py has reductive quotient
GL(L/M) x GL(M/7L) and is not reductive.
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Example: ramified splitting field

Example: supppose the resid. char p of k is # 2. Consider
quasi-split unitary gp G = SU(V) with dimy, V = 2d splitting over
a totally ramif quad ext K C L.

e L is a splitting field for G, and G has no reductive model over
A.
@ suitable Ay -lattice £ in V leads to model P of G such that:

@ M= L/m.L is a k-vector space of dim 2d with a symplectic
form and there is an exact seq

0— W — Py —Sp(M)—1

where W is the | codim 1 Sp(M)-submodule of A?M.
@ Py does have a Levi factor

e but HY(Sp(M), W) #0if d =0 (mod p). So in general Py
has non-conjugate Levi factors.
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Main result

Structure of parahoric group schemes

Let G reductive over local field K, s'pose G splits over unramified
extension of K. Let P a parahoric gp scheme / A with Px = G.
Even when k is perhaps imperfect, notice:

The unipotent radical of Py is defined and split over k ( “Condition
(R) holds for Py").
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Main result

Theorem (McNinch 2018)
There is a reductive subgroup scheme M C P such that

(a) Mx is a reductive subgroup of G containing a maximal split
torus of G, and

(b) My is a Levi factor of Py

Remark

In fact, the groups M = Mx that occur are the “groups of type
C(w)" of the next slide.

Remark

| first proved in (McNinch 2010) that Py has a Levi factor (at least
when k is perfect) — but without the existence of M — and that
any two Levi factors are “geometrically conjugate”.
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Reductive subgroups of G containing a maximal torus

Let G be a split reduc over F with split max torus T.
@ reductive subgps of G containing T admit a combinatorial
description, essentially due to (Borel and Siebenthal 1949).
@ The nodes « of the “extended Dynkin diagram” attached to
G label certain root subgroups U, ~ G, with respect to T.
@ For a proper subset A of the nodes of the extended Dynkin
diagram, one can form M = (T, U, | o € A).

@ The M formed in this way are the reduc subgps of type C(u)
— M is the connected centralizer in G of the image of a
homomorphism p, — T.

If V=V, L V,isan “orthogonal sum” of symplectic spaces, then
Sp(V1) x Sp(V2) is a subgroup of Sp(V/) of type C(u).
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Ramified unitary group, again

As before, let G = SU(V) a quasi-split unitary group splitting over
a totally ramified quadratic extension K C L.

@ We saw that G has a parahoric group scheme P such that a
Levi factor of Py is the split symplectic group over k.

@ It follows that P can not have a reductive subgroup scheme
M as described in the preceding theorem. (because G has no
reductive subgroup containing a maximal torus which is
isomorphic to a symplectic group).
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Tame ramification

Suppose that G splits over a tamely ramified extension of K and
let P be a parahoric for G.
Following a suggestion of Gopal Prasad, | proved:

Theorem (McNinch 2014)

If k is perfect and if k denotes an algebraic closure, then Py has a
Levi factor.

RENEILS

| A

| don't know whether the Levi factor of the Theorem “descends”
to a Levi factor of Py. See (McNinch 2013) for some partial
results on descent — e.g. if Py acquires a Levi factor over a galois
extension k C ¢ with [ : k] relatively prime to the characteristic,
then Py has a Levi factor.
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