
Local fields Reductive groups over Local fields Main result References

Reductive groups over local fields

George McNinch

Department of Mathematics
Tufts University

Medford Massachusetts USA

March 2019



Local fields Reductive groups over Local fields Main result References

Contents

1 Local fields

2 Reductive groups over Local fields

3 Main result



Local fields Reductive groups over Local fields Main result References

Outline

1 Local fields

2 Reductive groups over Local fields

3 Main result



Local fields Reductive groups over Local fields Main result References

Local fields and so forth

By a local field, I mean the field of fractions K of a complete
DVR A with residue field A/πA = k.

Of course, that is a mouthful...

Two interesting origins:

number fields
algebraic curves

First recall: A is a DVR means that A is a local, commutative
ring which is a principal ideal domain
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Local fields from number fields

First, suppose Q ⊂ F is a finite ext; i.e. F is a number field.

For each prime number p, the field Q is the field of fractions
of the discrete valuation ring Z(p)

The integral closure of Z(p) in F has finitely many non-zero
prime ideals; the localization A of this integral closure at each
of these prime ideals yields a discrete valuation subring of F .

Now the completion

Â = lim
←
A/πnA

of A is a complete DVR, where πA is a chosen a maximal
ideal of A.

And the field of fractions Fπ of Â is a local field.
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Local fields from number fields

In particular, Qp is the field of fractions of the completion Zp

of Z(p).

Proposition

Qp ⊂ Fπ is a finite extension, k = A/πA ' Â/πÂ and [k : Fp]
divides [Fπ : Qp].
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“Mixed characteristic” local fields

The local fields Fπ arising from number fields just discussed
are of characteristic zero, and their “residue fields” have
characteristic p > 0 – “mixed characteristic”.

More generally, to a field k of characteristic p > 0, one can
functorially associate the ring A = W (k) of Witt vectors;
W (k) is a complete DVR with residue field k and field of
fractions of characteristic 0.
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Local fields from algebraic curves

Let k be a field and let X be an absolutely irreducible smooth
algebraic curve over k.

The “closed points” P of X are in one-to-one correspondence
with the k-valuation subrings AP of the field of rational
functions F = k(X ) on X .

E.g. k[t](t−a) is the valuation ring of the field of rational
functions k(t) on P1 determined by a ∈ k .

If π ∈ AP is a uniformizer, the completion ÂP of AP

identifies with `[[π]] where ` = AP/πAP is the residue field of
AP , so ` ⊃ k is a finite extension.

The field of fractions FP of Âp is a local field of equal
characteristic, and Fp ' `((π)).



Local fields Reductive groups over Local fields Main result References

Ramification

Let (♥) F1 ⊂ F2 be a finite extension of local fields, with rings
of integers A1 ⊂ F1 and A2 ⊂ F2. Write k1, k2 for the respective
residue fields.

A2 is the integral closure of A1 in F2

The extension (♥) is unramified if k1 ⊂ k2 is separable and if
π1A2 = π2A2.

If k1 ⊂ k2 is separable, we have [F2 : F1] = [k2 : k1] · e where
π1A2 = πe2A2.

“ramified” means e > 1.
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Ramification

Example: totally ramified extensions

Qp ⊂ Qp(
√
p) and k((t2)) ⊂ k((t)) are totally ramified

(e = 2).

Proposition

For each finite separable extension k ⊂ `, there is a unique
unramified extension F ⊂ F ′ for which A′ has residue field `.

Example: Unramified extensions

If k ⊂ ` is a separable extension, k((t)) ⊂ `((t)) is the
corresponding unique unramfied extension

If p 6= 2 Qp ⊂ Qp(i) is unramified. Of course,
[Qp(i) : Qp] = 2 if p ≡ 3 (mod 4) while Qp(i) = Qp if p ≡ 1
(mod 4).
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Tori in reductive groups

If G is a reductive group over a field F , then G has a
subgroup T which is a maximal torus.

This means: after possibly extending scalars to a finite
separable extension of F , T becomes a split torus – i.e.
T ' Gm × · · · × Gm where Gm = GL1 is the “multiplicative
group” of F , so e.g. Gm(F) = F×

Maximal tori play an important role governing the structure of
G – for example, if F is separably closed, all F-maximal tori
are conjugate under G (F).

A reductive group is split over F if it has a split maximal
torus over F .
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Split reductive groups

split reductive groups are classified by some combinatorial
information – “root datum”; roughly, their Dynkin diagram.

partial list: GL(V ), Sp(V ),O(V ),G2,F4, ...

Compare with: classification of compact Lie groups, or of
semisimple complex Lie algebras

important fact, (Chevalley): for any root datum, there is a
group scheme G (smooth, affine, and of finite type) over Z
with the property that ∀ fields F , the linear algebraic group
GF is a split reductive group over F with the given root
datum.

In particular, if K is a local field with integers A, and if G is a
split reductive group over K, G has a “reductive model over
A: i.e. there is a group scheme G over A for which G = GK
and for which Gk is a reductive group over k “with the same
root datum as G”.
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Ramification and splitting

Let G be a reductive group over the local field F .

Proposition

If G has a reductive model G over A, then GF ′ is split for some
unramified extension F ⊂ F ′.

Indeed, the reductive k-group Gk has a splitting field

i.e. after a finite separable extension ` of k, G` becomes split
reductive

a Hensel-type argument shows that one can “lift” a split max
torus to G.

Then G splits over the corresponding unramified extension of
F .
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Example: a classical split reductive group

Let V be a 2d dimensional K-vector space, and let β be a
non-degenerate alternating form on V .

β gives an involution X 7→ X ∗ on R = EndK(V ) by the
formula β(Xv ,w) = β(v ,X ∗w) for v ,w ∈ V .

The gp G = Sp(V ) = Sp(V , β) is given by the functor
(♣) G (Λ) = {g ∈ RΛ | g · g∗ = 1}.
G is a split reduc gp with Dynkin diagram of type Cd .

maximal tori of G are determined by ∗-stable maximal étale
subalgebras E of R.

If E and F are max’l isotropic subsp s.t. V = E ⊕ F , choose a
basis e1, . . . , ed for E and the dual basis f1, . . . , fd for F . The
étale subalgebra E = 〈Eii ,Fii 〉 ⊂ R spanned by the
corresponding idempotent matrices dets a maxl split torus.
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Example: a classical split reductive group

G = Sp(V ) is determined by the “algebra with involution”
(R, ∗)
To get a reductive model G, choose a full A-lattice L ⊂ V for
which the A-subalgebra R = EndA(L) ⊂ R satisfies R = R∗.
The model G is determined by the functor given by the
analogue of (♣): i.e. for all A-algebras Λ

(♣) G(Λ) = {g ∈ RΛ | g · g∗ = 1}
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Models

important theorem: a real Lie group H has a unique
conjugacy class of maximal compact subgroup.

Consider a split reductive algebraic group G over a local field
K with reductive model G over A.

If the residue field k is finite, G(A) is a maximal compact
subgroup of the topological group G (K).

(Well, note at least that G(A) = lim
←
G(A/πnA) is profinite,

hence compact.)
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Models

But there are in general non-conjugate maximal compact
subgroups of G (K).

Work –especially of F. Bruhat and J. Tits– shows: the
maximal compact subgroups of G (K) arise (essentially) from
groups P(A) for certain A-models P of G – the parahoric
group schemes.

These parahoric include the reductive models, but in general
there are non-reductive parahoric group schemes.
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Example: non-reductive models for split reductive groups

Let G = GL(V ) for a finite dimensional K-vector space V .

Choose a full A-lattice L in V .

And choose a second lattice M with πL ⊂M ⊂ L (so
πL ⊂M ⊂ L is a “lattice flag”).

Identify G with the “diagonal subgroup”
∆G ⊂ G × G = GL(V )× GL(V ).

note: GL(L)× GL(M) is reduc model for G × G .

The “schematic closure” P of G = ∆G in GL(L)× GL(M) is
a model for G which in some sense is “the stabilizer of the
chosen lattice flag”.

The linear algebraic k-group Pk has reductive quotient
GL(L/M)× GL(M/πL) and is not reductive.
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Example: ramified splitting field

Example: supppose the resid. char p of k is 6= 2. Consider
quasi-split unitary gp G = SU(V ) with dimL V = 2d splitting over
a totally ramif quad ext K ⊂ L.

L is a splitting field for G , and G has no reductive model over
A.

suitable AL-lattice L in V leads to model P of G such that:

M = L/πLL is a k-vector space of dim 2d with a symplectic
form and there is an exact seq

0→W → Pk → Sp(M)→ 1

where W is the ! codim 1 Sp(M)-submodule of
∧2M.

Pk does have a Levi factor

but H1(Sp(M),W ) 6= 0 if d ≡ 0 (mod p). So in general Pk
has non-conjugate Levi factors.
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Structure of parahoric group schemes

Let G reductive over local field K, s’pose G splits over unramified
extension of K. Let P a parahoric gp scheme / A with PK = G .
Even when k is perhaps imperfect, notice:

Remark

The unipotent radical of Pk is defined and split over k (“Condition
(R) holds for Pk”).
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Main result

Theorem (McNinch 2018)

There is a reductive subgroup scheme M⊂ P such that

(a) MK is a reductive subgroup of G containing a maximal split
torus of G , and

(b) Mk is a Levi factor of Pk

Remark

In fact, the groups M =MK that occur are the “groups of type
C (µ)” of the next slide.

Remark

I first proved in (McNinch 2010) that Pk has a Levi factor (at least
when k is perfect) – but without the existence of M – and that
any two Levi factors are “geometrically conjugate”.
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Reductive subgroups of G containing a maximal torus

Let G be a split reduc over F with split max torus T .

reductive subgps of G containing T admit a combinatorial
description, essentially due to (Borel and Siebenthal 1949).

The nodes α of the “extended Dynkin diagram” attached to
G label certain root subgroups Uα ' Ga with respect to T .

For a proper subset ∆ of the nodes of the extended Dynkin
diagram, one can form M = 〈T ,Uα | α ∈ ∆〉.
The M formed in this way are the reduc subgps of type C (µ)
– M is the connected centralizer in G of the image of a
homomorphism µn → T .

Example

If V = V1 ⊥ V2 is an “orthogonal sum” of symplectic spaces, then
Sp(V1)× Sp(V2) is a subgroup of Sp(V ) of type C (µ).
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Ramified unitary group, again

As before, let G = SU(V ) a quasi-split unitary group splitting over
a totally ramified quadratic extension K ⊂ L.

We saw that G has a parahoric group scheme P such that a
Levi factor of Pk is the split symplectic group over k.

It follows that P can not have a reductive subgroup scheme
M as described in the preceding theorem. (because G has no
reductive subgroup containing a maximal torus which is
isomorphic to a symplectic group).
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Tame ramification

Suppose that G splits over a tamely ramified extension of K and
let P be a parahoric for G .
Following a suggestion of Gopal Prasad, I proved:

Theorem (McNinch 2014)

If k is perfect and if k denotes an algebraic closure, then Pk has a
Levi factor.

Remark

I don’t know whether the Levi factor of the Theorem “descends”
to a Levi factor of Pk. See (McNinch 2013) for some partial
results on descent – e.g. if Pk acquires a Levi factor over a galois
extension k ⊂ ` with [` : k] relatively prime to the characteristic,
then Pk has a Levi factor.
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