Reductive groups over local fields

George McNinch

Department of Mathematics Tufts University Medford Massachusetts USA

March 2019

2 Reductive groups over Local fields

2 Reductive groups over Local fields

3 Main result

Local fields and so forth

- By a *local field*, I mean the field of fractions K of a complete DVR A with residue field $A/\pi A = k$.
- Of course, that is a mouthful...
- Two interesting origins:
 - number fields
 - algebraic curves
- \bullet First recall: ${\cal A}$ is a DVR means that ${\cal A}$ is a local, commutative ring which is a principal ideal domain

Local fields from number fields

- First, suppose $Q \subset \mathcal{F}$ is a finite ext; i.e. \mathcal{F} is a number field.
- For each prime number *p*, the field **Q** is the field of fractions of the discrete valuation ring **Z**_(*p*)
- The integral closure of Z_(p) in *F* has finitely many non-zero prime ideals; the localization *A* of this integral closure at each of these prime ideals yields a discrete valuation subring of *F*.
- Now the completion

$$\widehat{\mathcal{A}} = \lim_{\leftarrow} \mathcal{A}/\pi^n \mathcal{A}$$

of \mathcal{A} is a complete DVR, where $\pi \mathcal{A}$ is a chosen a maximal ideal of \mathcal{A} .

• And the field of fractions \mathcal{F}_{π} of $\widehat{\mathcal{A}}$ is a local field.

Local fields from number fields

In particular, Q_p is the field of fractions of the completion Z_p of Z_(p).

Proposition

 $\mathbf{Q}_{p} \subset \mathcal{F}_{\pi}$ is a finite extension, $\mathbf{k} = \mathcal{A}/\pi \mathcal{A} \simeq \widehat{\mathcal{A}}/\pi \widehat{\mathcal{A}}$ and $[\mathbf{k} : \mathbf{F}_{p}]$ divides $[\mathcal{F}_{\pi} : \mathbf{Q}_{p}]$.

"Mixed characteristic" local fields

- The local fields \mathcal{F}_{π} arising from number fields just discussed are of characteristic zero, and their "residue fields" have characteristic p > 0 "mixed characteristic".
- More generally, to a field k of characteristic p > 0, one can functorially associate the ring A = W(k) of Witt vectors; W(k) is a complete DVR with residue field k and field of fractions of characteristic 0.

Local fields from algebraic curves

- Let k be a field and let X be an absolutely irreducible smooth algebraic curve over k.
- The "closed points" P of X are in one-to-one correspondence with the k-valuation subrings A_P of the field of rational functions F = k(X) on X.
- E.g. k[t]_(t-a) is the valuation ring of the field of rational functions k(t) on P¹ determined by a ∈ k.
- If π ∈ A_P is a uniformizer, the completion Â_P of A_P identifies with ℓ[[π]] where ℓ = A_P/πA_P is the residue field of A_P, so ℓ ⊃ k is a finite extension.
- The field of fractions *F_P* of *A_p* is a local field of equal characteristic, and *F_p* ≃ ℓ((*π*)).

Ramification

Let (\heartsuit) $\mathcal{F}_1 \subset \mathcal{F}_2$ be a finite extension of local fields, with rings of integers $\mathcal{A}_1 \subset \mathcal{F}_1$ and $\mathcal{A}_2 \subset \mathcal{F}_2$. Write k_1, k_2 for the respective residue fields.

- \mathcal{A}_2 is the integral closure of \mathcal{A}_1 in \mathcal{F}_2
- The extension (\heartsuit) is *unramified* if $k_1 \subset k_2$ is separable and if $\pi_1 \mathcal{A}_2 = \pi_2 \mathcal{A}_2$.
- If $k_1 \subset k_2$ is separable, we have $[\mathcal{F}_2 : \mathcal{F}_1] = [k_2 : k_1] \cdot e$ where $\pi_1 \mathcal{A}_2 = \pi_2^e \mathcal{A}_2$.
- "ramified" means e > 1.

Ramification

Example: totally ramified extensions

•
$$\mathbf{Q}_p \subset \mathbf{Q}_p(\sqrt{p})$$
 and $k((t^2)) \subset k((t))$ are totally ramified $(e = 2)$.

Proposition

For each finite separable extension $k \subset \ell$, there is a unique unramified extension $\mathcal{F} \subset \mathcal{F}'$ for which \mathcal{A}' has residue field ℓ .

Example: Unramified extensions

- If k ⊂ l is a separable extension, k((t)) ⊂ l((t)) is the corresponding unique unramfied extension
- If $p \neq 2$ $\mathbf{Q}_p \subset \mathbf{Q}_p(i)$ is unramified. Of course, $[\mathbf{Q}_p(i) : \mathbf{Q}_p] = 2$ if $p \equiv 3 \pmod{4}$ while $\mathbf{Q}_p(i) = \mathbf{Q}_p$ if $p \equiv 1 \pmod{4}$.

loca	tie	lds

Outline

2 Reductive groups over Local fields

3 Main result

Tori in reductive groups

- If G is a reductive group over a field \mathcal{F} , then G has a subgroup \mathcal{T} which is a maximal torus.
- This means: after possibly extending scalars to a finite separable extension of *F*, *T* becomes a *split torus* − i.e.
 T ≃ **G**_m × ··· × **G**_m where **G**_m = GL₁ is the "multiplicative group" of *F*, so e.g. **G**_m(*F*) = *F*[×]
- Maximal tori play an important role governing the structure of G for example, if F is separably closed, all F-maximal tori are conjugate under G(F).
- A reductive group is *split* over \mathcal{F} if it has a split maximal torus over \mathcal{F} .

Split reductive groups

- split reductive groups are classified by some combinatorial information – "root datum"; roughly, their Dynkin diagram.
- partial list: GL(V), Sp(V), O(V), G₂, F₄, ...
- Compare with: classification of compact Lie groups, or of semisimple complex Lie algebras
- important fact, (Chevalley): for any root datum, there is a group scheme G (smooth, affine, and of finite type) over Z with the property that ∀ fields F, the linear algebraic group G_F is a split reductive group over F with the given root datum.
- In particular, if K is a local field with integers A, and if G is a split reductive group over K, G has a "reductive model over A: i.e. there is a group scheme G over A for which G = G_K and for which G_k is a reductive group over k "with the same root datum as G".

Ramification and splitting

Let G be a reductive group over the local field \mathcal{F} .

Proposition

If G has a reductive model \mathcal{G} over \mathcal{A} , then $G_{\mathcal{F}'}$ is split for some unramified extension $\mathcal{F} \subset \mathcal{F}'$.

- \bullet Indeed, the reductive $k\text{-group}\ \mathcal{G}_k$ has a splitting field
- \bullet i.e. after a finite separable extension ℓ of $k,~\mathcal{G}_\ell$ becomes split reductive
- \bullet a Hensel-type argument shows that one can "lift" a split max torus to $\mathcal{G}.$
- Then G splits over the corresponding unramified extension of \mathcal{F} .

Example: a classical split reductive group

Let V be a 2d dimensional K-vector space, and let β be a non-degenerate alternating form on V.

- β gives an involution $X \mapsto X^*$ on $R = \text{End}_{K}(V)$ by the formula $\beta(Xv, w) = \beta(v, X^*w)$ for $v, w \in V$.
- The gp $G = \text{Sp}(V) = \text{Sp}(V, \beta)$ is given by the functor (\clubsuit) $G(\Lambda) = \{g \in R_{\Lambda} \mid g \cdot g^* = 1\}.$
- G is a split reduc gp with Dynkin diagram of type C_d .
- maximal tori of *G* are determined by *-stable maximal étale subalgebras \mathcal{E} of *R*.
- If *E* and *F* are max'l isotropic subsp s.t. $V = E \oplus F$, choose a basis e_1, \ldots, e_d for *E* and the dual basis f_1, \ldots, f_d for *F*. The étale subalgebra $\mathcal{E} = \langle E_{ii}, F_{ii} \rangle \subset R$ spanned by the corresponding idempotent matrices dets a maxl split torus.

Example: a classical split reductive group

- G = Sp(V) is determined by the "algebra with involution" (R,*)
- To get a reductive model G, choose a full A-lattice L ⊂ V for which the A-subalgebra R = End_A(L) ⊂ R satisfies R = R^{*}.
- The model G is determined by the functor given by the analogue of (♣): i.e. for all A-algebras Λ

$$(\clubsuit) \quad \mathcal{G}(\Lambda) = \{g \in \mathcal{R}_{\Lambda} \mid g \cdot g^* = 1\}$$

Models

- important theorem: a real Lie group *H* has a unique conjugacy class of maximal compact subgroup.
- Consider a split reductive algebraic group *G* over a local field K with reductive model *G* over *A*.
- If the residue field k is finite, G(A) is a maximal compact subgroup of the topological group G(K).
- (Well, note at least that G(A) = lim G(A/πⁿA) is profinite, hence compact.)

Models

- But there are in general non-conjugate maximal compact subgroups of *G*(K).
- Work –especially of F. Bruhat and J. Tits– shows: the maximal compact subgroups of G(K) arise (essentially) from groups P(A) for certain A-models P of G the parahoric group schemes.
- These parahoric include the reductive models, but in general there are non-reductive parahoric group schemes.

Example: non-reductive models for split reductive groups

Let G = GL(V) for a finite dimensional K-vector space V.

- Choose a full \mathcal{A} -lattice \mathcal{L} in V.
- And choose a second lattice \mathcal{M} with $\pi \mathcal{L} \subset \mathcal{M} \subset \mathcal{L}$ (so $\pi \mathcal{L} \subset \mathcal{M} \subset \mathcal{L}$ is a "lattice flag").
- Identify G with the "diagonal subgroup" $\Delta G \subset G \times G = GL(V) \times GL(V).$
- note: $GL(\mathcal{L}) \times GL(\mathcal{M})$ is reduc model for $G \times G$.
- The "schematic closure" *P* of *G* = Δ*G* in GL(*L*) × GL(*M*) is a model for *G* which in some sense is "the stabilizer of the chosen lattice flag".
- The linear algebraic k-group \mathcal{P}_k has reductive quotient $\operatorname{GL}(\mathcal{L}/\mathcal{M}) \times \operatorname{GL}(\mathcal{M}/\pi\mathcal{L})$ and is not reductive.

Example: ramified splitting field

Example: suppose the resid. char p of k is $\neq 2$. Consider quasi-split unitary gp G = SU(V) with dim_L V = 2d splitting over a totally ramif quad ext $K \subset L$.

- L is a splitting field for G, and G has no reductive model over \mathcal{A} .
- \bullet suitable $\mathcal{A}_{\mathrm{L}}\text{-}\mathsf{lattice}\ \mathcal{L}$ in V leads to model \mathcal{P} of G such that:
- $M = \mathcal{L}/\pi_{\rm L}\mathcal{L}$ is a *k*-vector space of dim 2*d* with a symplectic form and there is an exact seq

$$0 \rightarrow W \rightarrow \mathcal{P}_k \rightarrow \mathsf{Sp}(M) \rightarrow 1$$

where W is the ! codim 1 Sp(M)-submodule of $\bigwedge^2 M$.

- $\bullet \ \mathcal{P}_k$ does have a Levi factor
- but H¹(Sp(M), W) ≠ 0 if d ≡ 0 (mod p). So in general P_k has non-conjugate Levi factors.

Loca	fields

2 Reductive groups over Local fields

Structure of parahoric group schemes

Let G reductive over local field K, s'pose G splits over unramified extension of K. Let \mathcal{P} a parahoric gp scheme / \mathcal{A} with $\mathcal{P}_{K} = G$. Even when k is perhaps imperfect, notice:

Remark

The unipotent radical of \mathcal{P}_k is defined and split over k ("Condition (R) holds for \mathcal{P}_k ").

Main result

Theorem (McNinch 2018)

There is a reductive subgroup scheme $\mathcal{M} \subset \mathcal{P}$ such that

(a) \mathcal{M}_{K} is a reductive subgroup of G containing a maximal split torus of G, and

(b) \mathcal{M}_k is a Levi factor of \mathcal{P}_k

Remark

In fact, the groups $M = \mathcal{M}_{\mathrm{K}}$ that occur are the "groups of type $\mathcal{C}(\mu)$ " of the next slide.

Remark

I first proved in (McNinch 2010) that \mathcal{P}_k has a Levi factor (at least when k is perfect) – but without the existence of \mathcal{M} – and that any two Levi factors are "geometrically conjugate".

Reductive subgroups of G containing a maximal torus

Let G be a split reduc over \mathcal{F} with split max torus T.

- reductive subgps of G containing T admit a combinatorial description, essentially due to (Borel and Siebenthal 1949).
- The nodes α of the "extended Dynkin diagram" attached to *G* label certain *root subgroups* $U_{\alpha} \simeq \mathbf{G}_{a}$ with respect to *T*.
- For a proper subset Δ of the nodes of the extended Dynkin diagram, one can form M = ⟨T, U_α | α ∈ Δ⟩.
- The *M* formed in this way are the reduc subgps of type C(μ)
 M is the connected centralizer in *G* of the image of a homomorphism μ_n → *T*.

Example

If $V = V_1 \perp V_2$ is an "orthogonal sum" of symplectic spaces, then Sp $(V_1) \times$ Sp (V_2) is a subgroup of Sp(V) of type $C(\mu)$.

Ramified unitary group, again

As before, let G = SU(V) a quasi-split unitary group splitting over a totally ramified quadratic extension $K \subset L$.

- We saw that G has a parahoric group scheme \mathcal{P} such that a Levi factor of \mathcal{P}_k is the split symplectic group over k.
- It follows that \mathcal{P} can not have a reductive subgroup scheme \mathcal{M} as described in the preceding theorem. (because G has no reductive subgroup containing a maximal torus which is isomorphic to a symplectic group).

Tame ramification

Suppose that G splits over a tamely ramified extension of K and let ${\cal P}$ be a parahoric for G.

Following a suggestion of Gopal Prasad, I proved:

Theorem (McNinch 2014)

If k is perfect and if \overline{k} denotes an algebraic closure, then $\mathcal{P}_{\overline{k}}$ has a Levi factor.

Remark

I don't know whether the Levi factor of the Theorem "descends" to a Levi factor of $\mathcal{P}_k.$ See (McNinch 2013) for some partial results on descent – e.g. if \mathcal{P}_k acquires a Levi factor over a galois extension $k \subset \ell$ with $[\ell:k]$ relatively prime to the characteristic, then \mathcal{P}_k has a Levi factor.

Bibliography

- Borel, A. and J. de Siebenthal (1949). "Les sous-groupes fermés de rang maximum des groupes de Lie clos". In: *Comment. Math. Helv.* 23, pp. 200–221.
- McNinch, George (2010). "Levi decompositions of a linear algebraic group". In: Transform. Groups 15.4, pp. 937–964.
- (2013). "On the descent of Levi factors". In: Arch. Math. (Basel) 100.1, pp. 7–24.
- (2014). "Levi factors of the special fiber of a parahoric group scheme and tame ramification". In: *Algebr. Represent. Theory* 17.2, pp. 469–479.
- (2018). "Reductive subgroup schemes of a parahoric group scheme". In: *Transf. Groups* to appear.