Group cohomology and Levi decompositions of linear groups

George McNinch

Department of Mathematics Tufts University Medford Massachusetts USA

March 2019

[Levi factors](#page-9-0)

[Groups with no Levi factor and cohomology](#page-12-0)

Outline

2 [Levi factors](#page-9-0)

3 [Groups with no Levi factor and cohomology](#page-12-0)

[Dimensional criteria](#page-18-0)

Linear algebraic groups

Let F be a field.

- Basic example of a linear algebraic group: The general linear group GL_n may be viewed as the open subvariety of the affine space $\textbf{A}^{n^2} = \mathsf{Mat}_n$ of $n \times n$ matrices, defined by the non-vanishing of det. In particular, GL_n is an affine variety.
- An algebraic group G over F is a "group object in the category of F -varieties".
- \bullet In more down-to-earth terms: the variety G should be a group, and multiplication $G \times G \rightarrow G$ and inversion $G \rightarrow G$ should be morphisms of varieties.
- Algebraic groups include for example such "non-linear" groups as elliptic curves over \mathcal{F} . But a **linear algebraic group** is an algebraic group which is an *affine variety*.

Linear algebraic groups

- basic result: G is a linear algebraic group iff it is a closed subgroup of GL_n for some $n \geq 1$.
- \bullet For any algebraic group G, one can consider the group of rational points $G(\mathcal{F})$, and more general the group of points $G(\Lambda)$ for any commutative F-algebra Λ .
- \bullet From this point-of-view, an algebraic group G is a functor from the category of commutative \mathcal{F} -algebras to the category of groups.
- according to Hilbert's nullstellensatz, if $\mathcal F$ is algebraically closed, the F -algebraic group G is determined by knowledge of the subgroup $G(\mathcal{F}) \subset GL_n(\mathcal{F})$ (for suitable *n*).
- In general, the linear algebraic group is determined by its coordinate algebra $\mathcal{F}[G]$.
- \bullet For an extension field $\mathcal{F} \subset \mathcal{F}_1$, get a linear algebraic group $G_{\mathcal{F}_1}$ by base change - i.e. by using $\mathcal{F}[G] \otimes_{\mathcal{F}} \mathcal{F}_1$.

Linear algebraic groups: examples

Examples

- If A is a finite dimensional \mathcal{F} -algebra, the group of units $G = A^{\times}$ "is" a linear algebraic group via the rule $G(\Lambda) = (A \otimes_{\mathcal{F}} \Lambda)^{\times}.$
- If $A = \text{End}_{\mathcal{F}}(V)$ for a finite dimensional F-vector space V, we just recover $GL(V) = GL_n$ with $n = dim V$.
- \bullet If W is a subspace of V, consider the algebra $B = \{X \in \mathsf{End}_{\mathcal{F}}(V) \mid XW \subset W\}$, and let $P = B^{\times}$ be the group of units.
- \bullet P is the stabilizer in GL(V) of the point $[W]$ for its action on the Grassmann variety $Gr_d(V)$ where $d = \dim W$, and in fact the projective variety $Gr_d(V)$ is isomorphic to $GL(V)/P$.

The Lie algebra

- The Lie algebra of an algebraic group is the tangent space Lie(G) = $T_1(G)$ at the identity; it is a linear space over F.
- Consider the algebra $\mathcal{F}[\epsilon]$ of dual numbers, where $\epsilon^2=0$.
- The natural mapping $\mathcal{F}[\epsilon] \to \mathcal{F}$ with $\epsilon \mapsto 0$ determines a mapping $\pi : G(\mathcal{F}[\epsilon]) \to G(\mathcal{F})$, and one can identify Lie(G) as the kernel.
- (it remains to explain how to find the Lie bracket...)

Example:

Any element $g \in GL_n(\mathcal{F}[\epsilon])$ in ker π has the form $I_n + \epsilon X$ for $X \in \text{Mat}_n(\mathcal{F})$, so Lie $(\text{GL}_n) = \mathfrak{gl}_n = \text{Mat}_n$.

Unipotent radicals – by example

Example: stabilizer of a subspace

Let again P be the stabilizer in $GL(V)$ of the point $[W]$ for a sub-space $W \subset V$.

• Consider the subgroup of P defined by $R = \{X \in P \mid X_{|W} = 1_W \text{ and } X_V \equiv v \pmod{W} \quad \forall v\}$

• As a group of matrices, we can describe R as follows:

$$
R = \left\{ \begin{pmatrix} I_d & A \\ 0 & I_{n-d} \end{pmatrix} \mid A \in \mathsf{Mat}_{d,n-d} \right\}.
$$

every elt u of R has property: $u - 1_V$ is nilpotent. So R is "upper triangular with 1's on the diagonal." This is what is meant by a *unipotent subgroup*.

 \bullet R is a connected, normal subgroup of P of dimension $d(n-d)$, and $P/R \simeq GL(W) \times GL(V/W)$.

Reductive groups

A linear algebraic group G is ${\sf reductive}$ provided that $G_{\overline{\mathcal{F}}}$ has no normal connected unipotent subgroups of positive dimension, where $\overline{\mathcal{F}}$ is an alg closure.

Some reductive/non-reductive examples:

- The group $G = GL(V)$ is reductive.
- non-reduc: group P of previous example has *unipotent radical* R and reductive quotient $P/R \simeq GL(W) \times GL(V/W)$.
- reductive: symplectic group $Sp(V, \beta)$ where β is non-degenerate alternating form on V
- reductive: special orthogonal group $SO(V, \beta)$ where β is non-degenerate symmetric form on V when $\mathcal F$ has char. different from 2.

Outline

1 [Linear algebraic groups](#page-2-0)

2 [Levi factors](#page-9-0)

3 [Groups with no Levi factor and cohomology](#page-12-0)

[Dimensional criteria](#page-18-0)

Levi factors

- The unipotent radical $R_{\overline{\mathcal{F}}}$ of $G_{\overline{\mathcal{F}}}$ is the maximal connected normal unipotent subgroup of G.
- If F is perfect, the following condition holds: (R) there is always an F-subgroup $R \subset G$ for which $R_{\mathcal{F}}$ is the unipotent radical of $\mathsf{G}_{\overline{\mathcal{F}}}$.
- When (R) holds; we say R is the unipotent radical of G.
- If (R) holds for G, an F-subgroup $M \subset G$ is a Levi factor if the quotient mapping $\pi : G \to G/R$ induces an isomorphism $\pi_{|M}: M \to G/R$.
- Of course, $G \simeq R \rtimes M$ is then a semidirect product

Remark

We ignore in this talk the possibility that $R_{\overline{\mathcal{F}}}$ may fail to be defined over $\mathcal F$. For more on consequences of this (and more...!) see the text (Conrad, Gabber, and Prasad [2015\)](#page-23-1).

Levi factors in char. 0

If char. of F is 0, G has a Levi factor. Indeed:

- First apply Levi's theorem to the finite dimensional Lie algebra $\mathfrak{g} = \text{Lie}(G)$ to find a semisimple Lie subalgebra $\mathfrak{m} \subset \mathfrak{g}$ such that $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{r}$ where \mathfrak{r} is the radical of \mathfrak{g} .
- Now, $[m, m] = m$, so that m is an algebraic Lie subalgebra see (Borel [1991\)](#page-23-2).
- This condition means that there is a closed connected subgroup $M \subset G$ with $\text{Lie}(M) = \mathfrak{m}$; evidently, M is semisimple.
- Choosing a maximal torus T_0 of M and a maximal torus T of G containing T_0 , one finds that $\langle M,T\rangle = M.T$ is a reductive subgroup of G which is a complement to the unipotent radical R.
- Moral: "the Lie algebra is a pretty good approx. to G in char. 0"

Outline

2 [Levi factors](#page-9-0)

3 [Groups with no Levi factor and cohomology](#page-12-0)

[Dimensional criteria](#page-18-0)

Groups with no Levi factor – via Witt vectors

When $\mathcal F$ has pos char, \exists linear groups with no Levi factor.

- Let $W = W$ itt vectors with residue field $W/pW = F$.
- Can view $W_2 = W/p^2W$ as a "ring variety" over ${\cal F}$
- As a ${\cal F}$ variety, $W_2\simeq {\sf A}^2$. Moreover, $W_2({\sf F}_p)={\sf Z}/p^2{\sf Z}.$
- \bullet In fact, viewing W_2 as a functor, can consider e.g. the functor $G(\Lambda) = GL_n(W_2(\Lambda))$. This rule defines a linear algebraic group over $\mathcal F$ of dimension $2n^2$.
- If $n > 1$, have non-split exact sequence:

$$
0\to \mathsf{Lie}(\mathsf{GL}_n)^{[1]}\to \mathsf{G}\to \mathsf{GL}_n\to 1
$$

unip rad is the vector group $R=\mathsf{Lie}(\mathsf{GL}_n)^{[1]}$; exponent indicates that action of G/R on R is "Frobenius twisted".

Cohomology

- Consider a linear representation V of G given by homomorphism of alg groups $G \rightarrow GL(V)$
	- The Hochschild cohomology groups $H^{\bullet}(G, V)$ are the derived functor(s) of the fixed point functor $W \mapsto H^0(G, W) = W^G$ on the category of G-modules.
	- can compute/describe using cocycles $Z^{\bullet}(G, V)$ which are regular functions $\prod^{\bullet} G \rightarrow V$.
	- So for example the 2-cocycle $Z^2(G, V)$ are certain regular functions $G \times G \rightarrow V$ satisfying an appropriate condition.

Cohomology and group extensions

Consider an exact sequence

$$
(\clubsuit) \quad 0 \to V \to E \xrightarrow{\pi} G \to 1
$$

where E and G are linear algebraic groups and V is a linear representation of G viewed as a "vector group" – in particular, a unipotent algebraic group.

- Result of Rosenlicht implies since V is split unipotent that π has a section: there is a regular function $\sigma : G \to E$ with $\pi \circ \sigma = 1_G$.
- the assignment $(x,y)\mapsto \sigma(xy)^{-1}\sigma(x)\sigma(y)$ determines a regular 2 cocycle $\alpha_F : G \times G \rightarrow V$
- $\alpha_E\in\mathsf{Z}^2(\mathsf{G},\mathsf{V})$ yields well-def class $[\alpha_E]\in H^2(\mathsf{G},\mathsf{V}).$
- The sequence $($. is split iff $[\alpha_F] = 0$.

More groups with no Levi factor

The preceding cohomology point-of-view leads to a construction of groups with no Levi factor:

- suppose M is a reduc gp, V an M -module and $\alpha \in Z^2(M,V).$
- use α to define an extension group G_{α}

$$
0\to V\to \mathsf{G}_\alpha\to M\to 1
$$

Theorem

 G_{α} has a Levi factor if and only if $0 = [\alpha] \in H^2(M, V)$.

Thus to construct groups without Levi factors, you should seek out linear representations V of a reductive group M for which $H^2(M, V) \neq 0$.

Conjugacy of Levi factors

Suppose that G is a linear algebraic group, that V is a linear representation of G, and that

$$
(\diamondsuit)\quad 0\to V\to E\to G\to 1
$$

is an exact sequence.

- (\diamondsuit) determines a class $[\alpha]\in H^2(\mathit{G},\mathit{V})$ whose vanishing controls the splitting
- Assume (\diamondsuit) is split and fix section $\sigma : G \to E$ which is homom of alg gps.
- G_1 = image of $\sigma(G)$ is a complement to V in E.

Theorem

Suppose that $[\alpha] = 0$. If $H^1(G, V) = 0$, any two complements to V in E are conjugate by an element of $G(\mathcal{F})$.

Outline

[Linear algebraic groups](#page-2-0)

[Levi factors](#page-9-0)

[Groups with no Levi factor and cohomology](#page-12-0)

Linear actions on vector groups

If U is a vector group on which G acts, one says that the action is linear if there is a G-equivariant isomorphism of algebraic groups $U \simeq$ Lie(U).

Assume that (R) holds for the linear algebraic group G with unipotent radical R . Suppose that R is split unipotent.

Theorem (McNinch [2014;](#page-23-3) D. Stewart if $\mathcal{F}=\overline{\mathcal{F}}$)

If G is connected, then R has a G-invariant filtration for which the successive quotients are vector groups with linear G-action.

Consequence:

Corollary

With G as above, assume $H^2(G, L) = 0$ for each composition factor L of $Lie(R)$ as G-module. Then G has a Levi factor.

"Dimensional criteria"

Again assume G satisfies (R) . Let M be reduc quotient G/R of G, and assume M is split reductive. (Any reduc group is split if F is alg. closed).

Corollary (McNinch [2010\)](#page-23-4)

Suppose that $\dim R \leq p$ *and that ch* $\text{Lie}(R) = \sum_{i=1}^{d} \text{ch}(\nabla_i)$ *for* some "standard M-modules" $\nabla_i = H^0(\lambda_i) = H^0(M/B, \mathcal{L}_i)$. Then G has a Levi factor.

Indeed, use result (Jantzen [1997\)](#page-23-5): any M-module V with $\dim V \leq p$ is semisimple. Thus the M-comp factors of Lie(R) are the ∇_i which are therefore simple, and then $H^2(M,\nabla_i)=0$ for each i.

Another perspective

Consider group schemes \mathcal{G}, \mathcal{M} and \mathcal{R} each smooth and of finite type over Z.

- S'pose: M is split reductive Z i.e. $\mathcal{M}_{\mathcal{F}}$ is split reduc \forall fields F.
- and that R is unipotent i.e. \mathcal{R}_F is unip \forall F.
- \bullet Finally suppose that there are homomorphisms $\mathcal{R} \to \mathcal{G} \to \mathcal{M}$ such that on base change to each field $\mathcal F$ we get an exact sequence:

$$
1 \to \mathcal{R}_{\mathcal{F}} \to \mathcal{G}_{\mathcal{F}} \to \mathcal{M}_{\mathcal{F}} \to 1.
$$

Proposition

There is a finite list of primes $S = \{p_1, \ldots, p_r\}$ with the following property: if the characteristic of the field F is not in S, then $\mathcal{G}_\mathcal{F}$ has a Levi factor.

"Trailer" for the subsequent lecture

- My interest in Levi factors initially arose while considering some linear algebraic groups that appear in the study of "reductive groups over local fields".
- The second talk will describe the groups I mean, and it will describe an existence theorem for Levi factors in that context.

Bibliography

譶

- 螶 Borel, Armand (1991). Linear algebraic groups. 2nd ed. Vol. 126. Graduate Texts in Mathematics. Springer-Verlag, New York, p. 288.
- \equiv Conrad, Brian, Ofer Gabber, and Gopal Prasad (2015). Pseudo-reductive groups. 2nd. Vol. 26. New Mathematical Monographs. Cambridge University Press, Cambridge, p. 665.
- F. Jantzen, Jens Carsten (1997). "Low-dimensional representations of reductive groups are semisimple". In: Algebraic groups and Lie groups. Vol. 9. Austral. Math. Soc. Lect. Ser. Cambridge Univ. Press, Cambridge, pp. 255–266.
- S. McNinch, George (2010). "Levi decompositions of a linear algebraic group". In: Transform. Groups 15.4, pp. 937–964.
	- $-$ (2014). "Linearity for actions on vector groups". In: J. Algebra 397, pp. 666–688.