Group cohomology and Levi decompositions of linear groups

George McNinch

Department of Mathematics Tufts University Medford Massachusetts USA

March 2019

2 Levi factors

3 Groups with no Levi factor and cohomology

Outline

2 Levi factors

3 Groups with no Levi factor and cohomology

4 Dimensional criteria

Linear algebraic groups

Let \mathcal{F} be a field.

- Basic example of a linear algebraic group: The general linear group GL_n may be viewed as the open subvariety of the affine space $\mathbf{A}^{n^2} = Mat_n$ of $n \times n$ matrices, defined by the non-vanishing of det. In particular, GL_n is an affine variety.
- An algebraic group G over \mathcal{F} is a "group object in the category of \mathcal{F} -varieties".
- In more down-to-earth terms: the variety G should be a group, and multiplication G × G → G and inversion G → G should be morphisms of varieties.
- Algebraic groups include for example such "non-linear" groups as elliptic curves over \mathcal{F} . But a **linear algebraic group** is an algebraic group which is an *affine variety*.

Linear algebraic groups

- basic result: G is a linear algebraic group iff it is a closed subgroup of GL_n for some n ≥ 1.
- For any algebraic group G, one can consider the group of rational points G(F), and more general the group of points G(Λ) for any commutative F-algebra Λ.
- From this point-of-view, an algebraic group G is a *functor* from the category of commutative \mathcal{F} -algebras to the category of groups.
- according to Hilbert's nullstellensatz, if *F* is algebraically closed, the *F*-algebraic group *G* is determined by knowledge of the subgroup *G*(*F*) ⊂ GL_n(*F*) (for suitable *n*).
- In general, the linear algebraic group is determined by its coordinate algebra F[G].
- For an extension field *F* ⊂ *F*₁, get a linear algebraic group *G*_{*F*₁} by base change i.e. by using *F*[*G*] ⊗_{*F*} *F*₁.

Linear algebraic groups: examples

Examples

- If A is a finite dimensional \mathcal{F} -algebra, the group of units $G = A^{\times}$ "is" a linear algebraic group via the rule $G(\Lambda) = (A \otimes_{\mathcal{F}} \Lambda)^{\times}$.
- If A = End_𝔅(V) for a finite dimensional 𝔅-vector space V, we just recover GL(V) = GL_n with n = dim V.
- If W is a subspace of V, consider the algebra B = {X ∈ End_F(V) | XW ⊂ W}, and let P = B[×] be the group of units.
- *P* is the stabilizer in GL(V) of the point [W] for its action on the Grassmann variety $Gr_d(V)$ where $d = \dim W$, and in fact the projective variety $Gr_d(V)$ is isomorphic to GL(V)/P.

The Lie algebra

- The Lie algebra of an algebraic group is the tangent space Lie(G) = T₁(G) at the identity; it is a linear space over F.
- Consider the algebra $\mathcal{F}[\epsilon]$ of *dual numbers*, where $\epsilon^2 = 0$.
- The natural mapping $\mathcal{F}[\epsilon] \to \mathcal{F}$ with $\epsilon \mapsto 0$ determines a mapping $\pi : G(\mathcal{F}[\epsilon]) \to G(\mathcal{F})$, and one can identify Lie(G) as the kernel.
- (it remains to explain how to find the Lie bracket...)

Example:

Any element $g \in GL_n(\mathcal{F}[\epsilon])$ in ker π has the form $I_n + \epsilon X$ for $X \in Mat_n(\mathcal{F})$, so $Lie(GL_n) = \mathfrak{gl}_n = Mat_n$.

Unipotent radicals – by example

Example: stabilizer of a subspace

Let again P be the stabilizer in GL(V) of the point [W] for a sub-space $W \subset V$.

• Consider the subgroup of P defined by $R = \{X \in P \mid X_{|W} = 1_W \text{ and } Xv \equiv v \pmod{W} \quad \forall v\}$

• As a group of matrices, we can describe R as follows:

$$R = \left\{ egin{pmatrix} I_d & A \ 0 & I_{n-d} \end{pmatrix} \mid A \in \mathsf{Mat}_{d,n-d}
ight\}.$$

every elt u of R has property: $u - 1_V$ is nilpotent. So R is "upper triangular with 1's on the diagonal." This is what is meant by a *unipotent subgroup*.

• *R* is a connected, normal subgroup of *P* of dimension d(n-d), and $P/R \simeq GL(W) \times GL(V/W)$.

Reductive groups

A linear algebraic group G is **reductive** provided that $G_{\overline{F}}$ has no normal connected unipotent subgroups of positive dimension, where \overline{F} is an alg closure.

Some reductive/non-reductive examples:

- The group G = GL(V) is reductive.
- non-reduc: group P of previous example has unipotent radical R and reductive quotient $P/R \simeq GL(W) \times GL(V/W)$.
- reductive: symplectic group $Sp(V, \beta)$ where β is non-degenerate alternating form on V
- reductive: special orthogonal group SO(V, β) where β is non-degenerate symmetric form on V when F has char. different from 2.

Outline

2 Levi factors

3 Groups with no Levi factor and cohomology

Levi factors

- The unipotent radical R_F of G_F is the maximal connected normal unipotent subgroup of G.
- If \mathcal{F} is perfect, the following condition holds: **(R)** there is always an \mathcal{F} -subgroup $R \subset G$ for which $R_{\mathcal{F}}$ is the unipotent radical of $G_{\overline{\mathcal{F}}}$.
- When (\mathbf{R}) holds; we say R is the unipotent radical of G.
- If (R) holds for G, an *F*-subgroup M ⊂ G is a Levi factor if the quotient mapping π : G → G/R induces an isomorphism π_{|M} : M → G/R.
- Of course, $G \simeq R \rtimes M$ is then a semidirect product

Remark

We ignore in this talk the possibility that $R_{\overline{F}}$ may fail to be defined over \mathcal{F} . For more on consequences of this (and more...!) see the text (Conrad, Gabber, and Prasad 2015).

Levi factors in char. 0

If char. of \mathcal{F} is 0, G has a Levi factor. Indeed:

- First apply Levi's theorem to the finite dimensional Lie algebra *g* = Lie(*G*) to find a semisimple Lie subalgebra m ⊂ g such that g = m ⊕ r where r is the radical of g.
- Now, [m, m] = m, so that m is an algebraic Lie subalgebra see (Borel 1991).
- This condition means that there is a closed connected subgroup $M \subset G$ with $Lie(M) = \mathfrak{m}$; evidently, M is semisimple.
- Choosing a maximal torus T_0 of M and a maximal torus T of G containing T_0 , one finds that $\langle M, T \rangle = M.T$ is a reductive subgroup of G which is a complement to the unipotent radical R.
- **Moral:** "the Lie algebra is a pretty good approx. to *G* in char. 0"

Outline

2 Levi factors

3 Groups with no Levi factor and cohomology

4 Dimensional criteria

Groups with no Levi factor – via Witt vectors

When ${\mathcal F}$ has pos char, \exists linear groups with no Levi factor.

- Let W = Witt vectors with residue field $W/pW = \mathcal{F}$.
- Can view $W_2 = W/p^2 W$ as a "ring variety" over ${\cal F}$
- As a \mathcal{F} variety, $W_2 \simeq \mathbf{A}^2$. Moreover, $W_2(\mathbf{F}_p) = \mathbf{Z}/p^2\mathbf{Z}$.
- In fact, viewing W₂ as a functor, can consider e.g. the functor G(Λ) = GL_n(W₂(Λ)). This rule defines a linear algebraic group over F of dimension 2n².
- If *n* > 1, have non-split exact sequence:

$$0 \to \mathsf{Lie}(\mathsf{GL}_n)^{[1]} \to \, G \to \mathsf{GL}_n \to 1$$

 unip rad is the vector group R = Lie(GL_n)^[1]; exponent indicates that action of G/R on R is "Frobenius twisted".

Cohomology

- Consider a linear representation V of G given by homomorphism of alg groups $G \rightarrow GL(V)$
 - The Hochschild cohomology groups H[●](G, V) are the derived functor(s) of the fixed point functor W → H⁰(G, W) = W^G on the category of G-modules.
 - can compute/describe using cocycles Z[●](G, V) which are regular functions ∏[●] G → V.
 - So for example the 2-cocycle Z²(G, V) are certain regular functions G × G → V satisfying an appropriate condition.

Cohomology and group extensions

Consider an exact sequence

$$(\clubsuit) \quad 0 \to V \to E \xrightarrow{\pi} G \to 1$$

where E and G are linear algebraic groups and V is a linear representation of G viewed as a "vector group" – in particular, a unipotent algebraic group.

- Result of Rosenlicht implies since V is split unipotent that π has a section: there is a regular function $\sigma : G \to E$ with $\pi \circ \sigma = 1_G$.
- the assignment (x, y) → σ(xy)⁻¹σ(x)σ(y) determines a regular 2 cocycle α_E : G × G → V
- $\alpha_E \in Z^2(G, V)$ yields well-def class $[\alpha_E] \in H^2(G, V)$.
- The sequence (\clubsuit) is split iff $[\alpha_E] = 0$.

More groups with no Levi factor

The preceding cohomology point-of-view leads to a construction of groups with no Levi factor:

- suppose *M* is a reduc gp, *V* an *M*-module and $\alpha \in Z^2(M, V)$.
- use α to define an extension group ${\it G}_{\alpha}$

$$0
ightarrow V
ightarrow G_lpha
ightarrow M
ightarrow 1$$

Theorem

 G_{α} has a Levi factor if and only if $0 = [\alpha] \in H^2(M, V)$.

• Thus to construct groups without Levi factors, you should seek out linear representations V of a reductive group M for which $H^2(M, V) \neq 0$.

Conjugacy of Levi factors

Suppose that G is a linear algebraic group, that V is a linear representation of G, and that

$$(\diamondsuit) \quad 0 \to V \to E \to G \to 1$$

is an exact sequence.

- (◊) determines a class [α] ∈ H²(G, V) whose vanishing controls the splitting
- Assume (◊) is split and fix section σ : G → E which is homom of alg gps.
- $G_1 = \text{image of } \sigma(G) \text{ is a complement to } V \text{ in } E$.

Theorem

Suppose that $[\alpha] = 0$. If $H^1(G, V) = 0$, any two complements to V in E are conjugate by an element of $G(\mathcal{F})$.

Outline

1 Linear algebraic groups

2 Levi factors

3 Groups with no Levi factor and cohomology

4 Dimensional criteria

Linear actions on vector groups

If U is a vector group on which G acts, one says that the action is linear if there is a G-equivariant isomorphism of algebraic groups $U \simeq \text{Lie}(U)$.

Assume that (\mathbf{R}) holds for the linear algebraic group G with unipotent radical R. Suppose that R is *split unipotent*.

Theorem (McNinch 2014; D. Stewart if $\mathcal{F} = \overline{\mathcal{F}}$)

If G is connected, then R has a G-invariant filtration for which the successive quotients are vector groups with linear G-action.

Consequence:

Corollary

With G as above, assume $H^2(G, L) = 0$ for each composition factor L of Lie(R) as G-module. Then G has a Levi factor.

"Dimensional criteria"

Again assume G satisfies (R). Let M be reduc quotient G/R of G, and assume M is *split reductive*. (Any reduc group is split if \mathcal{F} is alg. closed).

Corollary (McNinch 2010)

Suppose that dim $R \le p$ and that ch Lie $(R) = \sum_{i=1}^{d} ch(\nabla_i)$ for some "standard M-modules" $\nabla_i = H^0(\lambda_i) = H^0(M/B, \mathcal{L}_i)$. Then G has a Levi factor.

Indeed, use result (Jantzen 1997): any *M*-module *V* with dim $V \le p$ is semisimple. Thus the *M*-comp factors of Lie(*R*) are the ∇_i which are therefore simple, and then $H^2(M, \nabla_i) = 0$ for each *i*.

Another perspective

Consider group schemes \mathcal{G} , \mathcal{M} and \mathcal{R} each smooth and of finite type over \boldsymbol{Z} .

- S'pose: *M* is split reductive /Z − i.e. *M_F* is split reduc ∀ fields *F*.
- and that \mathcal{R} is unipotent i.e. $\mathcal{R}_{\mathcal{F}}$ is unip $\forall \mathcal{F}$.
- Finally suppose that there are homomorphisms R → G → M such that on base change to each field F we get an exact sequence:

$$1 \rightarrow \mathcal{R}_{\mathcal{F}} \rightarrow \mathcal{G}_{\mathcal{F}} \rightarrow \mathcal{M}_{\mathcal{F}} \rightarrow 1.$$

Proposition

There is a finite list of primes $S = \{p_1, \ldots, p_r\}$ with the following property: if the characteristic of the field \mathcal{F} is not in S, then $\mathcal{G}_{\mathcal{F}}$ has a Levi factor.

"Trailer" for the subsequent lecture

- My interest in Levi factors initially arose while considering some linear algebraic groups that appear in the study of "reductive groups over local fields".
- The second talk will describe the groups I mean, and it will describe an existence theorem for Levi factors in that context.

Bibliography

- Borel, Armand (1991). Linear algebraic groups. 2nd ed. Vol. 126. Graduate Texts in Mathematics. Springer-Verlag, New York, p. 288.
 - Conrad, Brian, Ofer Gabber, and Gopal Prasad (2015). Pseudo-reductive groups. 2nd. Vol. 26. New Mathematical Monographs. Cambridge University Press, Cambridge, p. 665.
- Jantzen, Jens Carsten (1997). "Low-dimensional representations of reductive groups are semisimple". In: Algebraic groups and Lie groups. Vol. 9. Austral. Math. Soc. Lect. Ser. Cambridge Univ. Press, Cambridge, pp. 255–266.
- McNinch, George (2010). "Levi decompositions of a linear algebraic group". In: *Transform. Groups* 15.4, pp. 937–964.
- (2014). "Linearity for actions on vector groups". In: J. Algebra 397, pp. 666–688.