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Introduction

I This talk will describe some applications of “comparison
results” for centralizers of nilpotent elements in the Lie
algebra of a linear algebraic group.

I Part of the results described appear in the joint paper
mcninch16:MR3477055 in Proc. AMS with Donna
Testerman (EPFL).

I The second part describes an improved version of a result
from mcninch08:MR2423832; it will appear in
mcninch16:nilpotent-orbits-over-local-field.
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Standard reductive groups

We want to define a notion of standard reductive groups over a
field F :

I Semisimple groups in “very good” characteristic are standard,
and tori are standard.

I If G is standard and H is separably isogenous to G , then H is
also standard.

I If G1 and G2 are standard, so is G1 × G2.

I If D ⊂ G is a diagonalizable subgroup scheme and if G is
standard, then also C o

G (D) is standard.

I In particular: GLn is standard for all n ≥ 1.

I If G is standard and if L is a Levi factor of a parabolic of G ,
then L is standard.

I Not standard: symplectic or orthogonal groups in char. 2.
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Standard reductive groups: properties

Suppose that G is a standard reductive group over the field F .

Theorem

(a) The center Z of G (as a group scheme) is smooth over F .

(b) The centralizers CG (X ) and CG (x) are smooth over F for
every X ∈ Lie(G ) and every x ∈ G (F).

(c) There is a G -invariant nondegenerate bilinear form on Lie(G ).

(d) There is a G -equivariant isomorphism – a Springer
isomorphism – ϕ : U → N where U ⊂ G is the unipotent
variety and N ⊂ G is the nilpotent variety.

Theorem (mcninch09:MR2497582)

For X ∈ Lie(G ) and x ∈ G (F), Z (CG (X )) and Z (CG (x)) are
smooth over F .
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Nilpotent elements for a standard reductive group over a
field

I Let G a “standard” reductive alg gp over the field F .

I Let X ∈ Lie(G ) nilpotent. A cocharacter φ : Gm → G is
associated to X if X ∈ Lie(G )(φ; 2) and if φ takes values in
(M,M) where M = CG (S) for a maximal torus S ⊂ CG (X ).

Theorem
(a) There are cocharacters associated to X (“defined over F”).
(b) Any two cocharacters associated to X are conjugate by an element

of U(F) where U = RuCG (X ).
(c) Each cocharacter φ associated to X determines the same parabolic

subgroup P = P(φ). In fact,

Lie(P) =
∑
i≥0

Lie(G )(φ; i).
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Nilpotent elements: associated cocharacters

Let X nilpotent and let φ be a cocharacter associated to X .

I If F has characteristic 0, let (Y ,H,X ) be an sl2-triple
containing X . Then up to conjugacy by U(F), Lie(G )(φ; i) is
the i-eigenspace of ad(H).

I For general F , we have the following result:

Theorem (mcninch05:MR2142248)

If X [p] = 0 there is a unique F-homomorphism ψ : SL2,F → G

such that dψ(E ) = X and ψS = φ, where E =

(
0 1
0 0

)
and where

S ' Gm is the diagonal torus of SL2.
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Even nilpotent elements

G is a standard reductive group over F and X ∈ Lie(G ) nilpotent.

I Let φ be a cocharacter associated to X .

I X is even if Lie(G )(φ; i) 6= 0 =⇒ i ∈ 2Z.

I If X is even, then dimCG (X ) = dimM where M = CG (φ) is a
Levi factor of P = P(φ).
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Main result

Theorem (mcninch16:MR3477055)

If X is even, dimZ (CG (X )) ≥ dimZ (M). [Where Z (−) means
“the center of -”].

I In fact, Lawther-Testerman already proved that equality holds
(for G semisimple). Their methods were “case-by-case”.

I The argument I’ll describe here is more direct.

I Reason for interest: let the unipotent u correspond to X via a
Springer isomorphism. In char. p > 0, one has in general no
well-behaved exponential map, but one might still hope to
embed u in a “nice” abelian connected subgroup.
Z (CG (X ))0 = Z (CG (u))0 is a starting point.
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Reductions

I One knows that

Lie(Z (CG (X ))) = z(Lie(CG (X ))Ad(B) = z(cg(X )) ∩ gAd(B)

where B = CCG (X )(φ).

I In particular, to prove the main result, it is enough to argue
that dim z(cg(X )) ∩ gAd(B) ≥ dim z(Lie(M)).

I (This reduction requires to know: the center of the standard
reductive group M is smooth!)

I Let A = k[T ] ⊂ K = k(T ). For simplicity of exposition, we
note here if the char. of k is 0, a proof of the Theorem can be
given by studying the center of the centralizer of X + TH in
Lie(G )⊗k A. We now sketch some of this argument.
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Modules over a Dedekind domain

I Let A be a Dedekind domain – e.g. a principal ideal domain.

I For a maximal ideal m ⊂ A and an A-module N, write
k(m) = A/m, and N(m) = N/mN = N ⊗A k(m),

I let K be the field of fractions of A and write NK = N ⊗A K .

I Let M be a fin. gen A-module. Then M = M0 ⊕Mtor where
Mtor is torsion and M0 is projective.
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Homomorphisms (notation)

I Let φ : M → N be an A-module homom where M and N are
f.g. projective A-modules.

I let P = ker φ and Q = coker φ.

I write Q = Q0 ⊕ Qtor as before.

I M/P is torsion free and thus projective, so for any max’l ideal
m, we may view P(m) as a subspace of M(m).

I Write φ(m) : M(m)→ N(m) for φ⊗ 1k(m).
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Fibers of a kernel
Recall φ : M → N, P = ker φ, and Q = coker φ.

Theorem

(a) P(m) ⊂ ker φ(m), with equality ⇐⇒ Qtor ⊗ k(m) = 0.

(b) P(m) = ker φ(m) for all but finitely many m.

I Pf of (a) uses the following fact: for a finitely generated
A-module M

(♣) Tor1A(M, k(m)) ' Mtor ⊗ k(m)

.

I For (b), one just notes that Qtor has finite length.

I If one knows that dimk(m) ker φ(m) is equal to a constant d
for all m in some infinite set Γ of prime ideals, then
d = dimK ker φ(K ).
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Fibers of the center of an A-Lie algebra

I Let L be a Lie algebra over A which is f.g. projective as
A-module.

I Let Z = {X ∈ L | [X , L] = 0} be the center of L.

Theorem

(a) L/Z is torsion free.

(b) dimk(m) Z (m) is constant.

(c) For each maximal m ⊂ A, Z (m) ⊂ z(L(m)), and equality holds
for all but finitely many m.

I Here z(L(m)) means the center of the k(m)-Lie algebra L(m).

I The result essentially follows from the result for kernels.
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Center example

I Let A = k[T ] for alg. closed k, and identify maximal ideals of
A with elements in k .

I let L = Ae + Af , with e and f an A-basis where [e, f ] = T · f .

I Now Z (L) = 0, and z(L(t)) = 0 for t 6= 0.

I But L(0) is abelian, i.e z(L(0)) = L(0).
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Center of the centralizer

Return to the setting of even nilpotent X ∈ g.

I Write D = cgA(X + T · H).

I Write Z for the center of the A-Lie algebra D.

I And write H = gB ⊗ A ⊂ L.

I Ultimately, must argue that

(Z ∩ H)(1) ⊂ z(cg(X )) ∩ gB

while for almost all t 6= 1,

(Z ∩ H)(t) = Z (t) = cg(X + tH).

I This implies the “main result”.
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Reductive group schemes

I Let A be a complete discrete valuation ring with field of
fractions K and residue field k.

I Let G be a reductive A-group scheme with connected fibers
GK and Gk.

I The fibers GK and Gk are reductive linear algebraic groups.
The group scheme G is affine, smooth, and of finite type over
G.

I Since G is smooth over A, Lie(G) is a projective (hence free)
A-module of finite rank.

I If X ∈ Lie(G) and if XK is nilpotent in Lie(GK), then also Xk

is nilpotent, and we say that X is a nilpotent section.
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Balanced sections

I Consider a G-module L which is free of finite rank as
A-module.

I Given X ∈ L, one can form the scheme theoretic stabilizer
C = StabG(X ). Then C is a group scheme over A, and we
have

CK = StabGK
(XK) and Ck = StabGk

(Xk).

I We say that X is balanced for the action of G if CK is smooth
over K, if Ck is smooth over k, and if dimCK = dimCk.
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Recognizing balanced sections

Proposition (mcninch16:nilpotent-orbits-over-local-field)

Let X ∈ L. Write g = Lie(G), and assume the following:

(a) the GK orbit of XK is smooth – i.e.
dim StabGK

(XK) = dimK cgK(XK), and

(b) dimK cgK(XK) = dimk cgk(Xk).

Then X is balanced for the action of G.

I The main points are: (i) dimCK ≥ dimCk by Chevalley’s
upper semicontinuity theorem, and (ii) smoothness on the
generic fiber implies that dimCK coincides with the dimension
of the stabilizer of xK in gK.
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Balanced nilpotent sections

I Now suppose that the fibers GK and Gk are standard reductive
groups, that L = Lie(G) is the adjoint G-module, and let
X ∈ Lie(G).

I Then the centralizer in GK of XK and the centralizer in Gk of
Xk are automatically smooth, so X is balanced if and only if
the Lie algebraic centralizers on the fibers have the same
dimension.
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Existence and conjugacy of balanced nilpotent sections.

Theorem (mcninch16:nilpotent-orbits-over-local-field)

Let X0 ∈ Lie(Gk) nilpotent.

(a) There is a balanced, nilpotent section X ∈ Lie(G) s.t. that
Xk ∈ Lie(Gk) coincides with X0.

(b) There is an A-homom φ : Gm → G s.t. X ∈ Lie(G)(φ; 2), φk
is a cochar assoc with Xk and φK is a cochar assoc with XK.

(c) Let X ,X ′ ∈ Lie(G) be balanced nilpotent sections with
Xk = X ′

k = X0. Then there is an element g ∈ G(A) such that
X ′ = Ad(g)X .

I The “Bala-Carter data” of XK and Xk are “the same”.
I Using results of mcninch16:reductive-subgroup-schemes,

the result is extended in
mcninch16:nilpotent-orbits-over-local-field to so-called
parahoric group schemes (under some further assumptions).



Comparing centralizers

Balanced nilpotent sections

SL2 over A

Theorem
Let X ∈ Lie(G) be a balanced nilpotent section and let
φ : Gm → G be an A-homomorphism such that φF is a
cocharacter associated to XF for F ∈ {k,K}. If (Xk)[p] = 0, there
is a unique A-homomorphism

Φ : SL2/A →M

such that dΦ(E ) = X , and Φ|S = φ, where

E =

(
0 1
0 0

)
∈ Lie(SL2,A) and S ' Gm,A is the diag torus of SL2.
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Smoothness

Theorem (Brian Conrad)

Let H be a group scheme of finite type over A for which the fibers
HK and Hk are each smooth of the same dimension. Then there is
a locally closed subgroup scheme M⊂ H such that:

(a) M is smooth, affine, and of finite type over A,

(b) MK = (HK)0 and Mk = (Hk)0.

Corollary

If X ∈ Lie(G) is balanced section, there is a locally closed subgroup
scheme M⊂ C = CG(X ) such that:

I M is smooth, affine and of finite type over A, and

I MK = C 0
GK

(XK) and Mk = C 0
Gk

(Xk)
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Smoothness, continued

I In mcninch08:MR2423832, it was claimed that C = CG(X )
is smooth when X is balanced, but the argument is incorrect
(it fails to justify why C is flat over A).

I Results on the previous slide essentially fix the problem for the
identity component C 0.

I However, with knowing the smoothness of the “full centralizer
group scheme” C , the given arguments for
mcninch08:MR2423832 are incorrect. That theorem
concerns a comparison of the component groups CK/C

0
K and

Ck/C
0
k . I don’t know whether the conclusion of the Theorem

is correct.
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The reductive quotient of a nilpotent centralizer

Theorem (Theorem A of mcninch08:MR2423832 )

Let X ∈ Lie(G) a balanced nilpotent section. The geom root
datum of the reduc quotient of the conn centralizer C 0

GK
(XK) is the

same as the geom root datum of the reduc quotient of C 0
Gk

(Xk).

I This proof can be found in
mcninch16:nilpotent-orbits-over-local-field.

I In fact, let φ : Gm → G be an A-homom s.t. φK is a cochar
assoc to XK and φk is a cochar assoc to Xk.

I And let M⊂ C be the smooth locally closed subgp scheme of
the Corollary above.

I Then the centralizer L = CM(φ) is a reductive subgroup
scheme of M for which LK is a Levi factor of C 0

GK
(XK) and

Lk is a Levi factor of C 0
Gk

(Xk).
I Now use: M splits over some unramified extension of A.
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