Centralizers of nilpotent elements

George McNinch

Department of Mathematics Tufts University

Special session at Bowdoin - September 2016

Contents

Overview

The center of the centralizer of an even nilpotent element

Balanced nilpotent sections

Outline

Overview

The center of the centralizer of an even nilpotent element

Balanced nilpotent sections

Introduction

- This talk will describe some applications of "comparison results" for centralizers of nilpotent elements in the Lie algebra of a linear algebraic group.
- Part of the results described appear in the joint paper mcninch16:MR3477055 in Proc. AMS with Donna Testerman (EPFL).
- The second part describes an improved version of a result from mcninch08:MR2423832; it will appear in mcninch16:nilpotent-orbits-over-local-field.

Standard reductive groups

We want to define a notion of *standard* reductive groups over a field \mathcal{F} :

- Semisimple groups in "very good" characteristic are standard, and tori are standard.
- ▶ If G is standard and H is *separably isogenous* to G, then H is also standard.
- If G_1 and G_2 are standard, so is $G_1 \times G_2$.
- If D ⊂ G is a diagonalizable subgroup scheme and if G is standard, then also C^o_G(D) is standard.
- ▶ In particular: GL_n is standard for all $n \ge 1$.
- If G is standard and if L is a Levi factor of a parabolic of G, then L is standard.
- ▶ Not standard: symplectic or orthogonal groups in char. 2.

Standard reductive groups: properties

Suppose that G is a standard reductive group over the field \mathcal{F} . Theorem

- (a) The center Z of G (as a group scheme) is smooth over \mathcal{F} .
- (b) The centralizers C_G(X) and C_G(x) are smooth over F for every X ∈ Lie(G) and every x ∈ G(F).
- (c) There is a G-invariant nondegenerate bilinear form on Lie(G).
- (d) There is a *G*-equivariant isomorphism a Springer isomorphism $\varphi : \mathcal{U} \to \mathcal{N}$ where $\mathcal{U} \subset G$ is the unipotent variety and $\mathcal{N} \subset G$ is the nilpotent variety.

Theorem (mcninch09:MR2497582)

For $X \in \text{Lie}(G)$ and $x \in G(\mathcal{F})$, $Z(C_G(X))$ and $Z(C_G(x))$ are smooth over \mathcal{F} .

Nilpotent elements for a standard reductive group over a field

- Let G a "standard" reductive alg gp over the field \mathcal{F} .
- Let X ∈ Lie(G) nilpotent. A cocharacter φ : G_m → G is associated to X if X ∈ Lie(G)(φ; 2) and if φ takes values in (M, M) where M = C_G(S) for a maximal torus S ⊂ C_G(X).

Theorem

- (a) There are cocharacters associated to X ("defined over \mathcal{F} ").
- (b) Any two cocharacters associated to X are conjugate by an element of $U(\mathcal{F})$ where $U = R_u C_G(X)$.
- (c) Each cocharacter ϕ associated to X determines the same parabolic subgroup $P = P(\phi)$. In fact,

$$\operatorname{Lie}(P) = \sum_{i \ge 0} \operatorname{Lie}(G)(\phi; i).$$

Nilpotent elements: associated cocharacters

Let X nilpotent and let ϕ be a cocharacter associated to X.

- If F has characteristic 0, let (Y, H, X) be an sl₂-triple containing X. Then up to conjugacy by U(F), Lie(G)(φ; i) is the *i*-eigenspace of ad(H).
- For general \mathcal{F} , we have the following result:

Theorem (mcninch05:MR2142248) If $X^{[p]} = 0$ there is a unique \mathcal{F} -homomorphism $\psi : SL_{2,\mathcal{F}} \to G$ such that $d\psi(E) = X$ and $\psi_S = \phi$, where $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and where $S \simeq \mathbf{G}_m$ is the diagonal torus of SL_2 .

Let The center of the centralizer of an even nilpotent element

Outline

Overview

The center of the centralizer of an even nilpotent element

Balanced nilpotent sections

L The center of the centralizer of an even nilpotent element

Even nilpotent elements

G is a standard reductive group over \mathcal{F} and $X \in \text{Lie}(G)$ nilpotent.

- Let ϕ be a cocharacter associated to X.
- ► X is even if $\text{Lie}(G)(\phi; i) \neq 0 \implies i \in 2\mathbb{Z}$.
- If X is even, then dim C_G(X) = dim M where M = C_G(φ) is a Levi factor of P = P(φ).

- The center of the centralizer of an even nilpotent element

Main result

Theorem (mcninch16:MR3477055)

If X is even, dim $Z(C_G(X)) \ge \dim Z(M)$. [Where Z(-) means "the center of -"].

- In fact, Lawther-Testerman already proved that equality holds (for G semisimple). Their methods were "case-by-case".
- The argument I'll describe here is more direct.
- Reason for interest: let the unipotent u correspond to X via a Springer isomorphism. In char. p > 0, one has in general no well-behaved exponential map, but one might still hope to embed u in a "nice" abelian connected subgroup. Z(C_G(X))⁰ = Z(C_G(u))⁰ is a starting point.

- The center of the centralizer of an even nilpotent element

Reductions

One knows that

$$\mathsf{Lie}(Z(C_G(X))) = \mathfrak{z}(\mathsf{Lie}(C_G(X))^{\mathsf{Ad}(B)} = \mathfrak{z}(\mathfrak{c}_{\mathfrak{g}}(X)) \cap \mathfrak{g}^{\mathsf{Ad}(B)}$$

where $B = C_{C_G(X)}(\phi)$.

- In particular, to prove the main result, it is enough to argue that dim 𝔅(𝔅𝔅(𝔅)) ∩ 𝔅^{Ad(𝔅)} ≥ dim 𝔅(Lie(𝑘)).
- (This reduction requires to know: the center of the standard reductive group *M* is smooth!)
- Let A = k[T] ⊂ K = k(T). For simplicity of exposition, we note here if the char. of k is 0, a proof of the Theorem can be given by studying the center of the centralizer of X + TH in Lie(G) ⊗_k A. We now sketch some of this argument.

- The center of the centralizer of an even nilpotent element

Modules over a Dedekind domain

- Let A be a Dedekind domain e.g. a principal ideal domain.
- For a maximal ideal m ⊂ A and an A-module N, write k(m) = A/m, and N(m) = N/mN = N ⊗_A k(m),
- ▶ let *K* be the field of fractions of *A* and write $N_K = N \otimes_A K$.
- ▶ Let *M* be a fin. gen *A*-module. Then $M = M_0 \oplus M_{tor}$ where M_{tor} is torsion and M_0 is projective.

L The center of the centralizer of an even nilpotent element

Homomorphisms (notation)

- Let φ : M → N be an A-module homom where M and N are f.g. projective A-modules.
- let $P = \ker \phi$ and $Q = \operatorname{coker} \phi$.
- write $Q = Q_0 \oplus Q_{tor}$ as before.
- M/P is torsion free and thus projective, so for any max'l ideal m, we may view P(m) as a subspace of M(m).
- Write $\phi(\mathfrak{m}) : M(\mathfrak{m}) \to N(\mathfrak{m})$ for $\phi \otimes 1_{k(\mathfrak{m})}$.

L The center of the centralizer of an even nilpotent element

Fibers of a kernel

Recall $\phi : M \to N$, $P = \ker \phi$, and $Q = \operatorname{coker} \phi$.

Theorem

(a)
$$P(\mathfrak{m}) \subset \ker \phi(\mathfrak{m})$$
, with equality $\iff Q_{tor} \otimes k(\mathfrak{m}) = 0$.

(b) $P(\mathfrak{m}) = \ker \phi(\mathfrak{m})$ for all but finitely many \mathfrak{m} .

 Pf of (a) uses the following fact: for a finitely generated A-module M

$$(\clubsuit) \quad \operatorname{Tor}^1_{\mathcal{A}}(M, k(\mathfrak{m})) \simeq M_{\operatorname{tor}} \otimes k(\mathfrak{m})$$

- ▶ For (b), one just notes that Q_{tor} has *finite length*.
- If one knows that dim_{k(m)} ker φ(m) is equal to a constant d for all m in some infinite set Γ of prime ideals, then d = dim_K ker φ(K).

L The center of the centralizer of an even nilpotent element

Fibers of the center of an A-Lie algebra

- Let L be a Lie algebra over A which is f.g. projective as A-module.
- Let $Z = \{X \in L \mid [X, L] = 0\}$ be the center of L.

Theorem

- (a) L/Z is torsion free.
- (b) $\dim_{k(\mathfrak{m})} Z(\mathfrak{m})$ is constant.
- (c) For each maximal m ⊂ A, Z(m) ⊂ 3(L(m)), and equality holds for all but finitely many m.
 - Here $\mathfrak{z}(L(\mathfrak{m}))$ means the center of the $k(\mathfrak{m})$ -Lie algebra $L(\mathfrak{m})$.
 - The result essentially follows from the result for kernels.

L The center of the centralizer of an even nilpotent element

Center example

- Let A = k[T] for alg. closed k, and identify maximal ideals of A with elements in k.
- let L = Ae + Af, with e and f an A-basis where $[e, f] = T \cdot f$.
- Now Z(L) = 0, and $\mathfrak{z}(L(t)) = 0$ for $t \neq 0$.
- But L(0) is abelian, i.e $\mathfrak{z}(L(0)) = L(0)$.

L The center of the centralizer of an even nilpotent element

Center of the centralizer

Return to the setting of even nilpotent $X \in \mathfrak{g}$.

• Write
$$D = \mathfrak{c}_{\mathfrak{g}_A}(X + T \cdot H)$$
.

▶ Write Z for the center of the A-Lie algebra D.

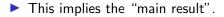
• And write
$$H = \mathfrak{g}^B \otimes A \subset L$$
.

Ultimately, must argue that

$$(Z\cap H)(1)\subset \mathfrak{z}(\mathfrak{c}_\mathfrak{g}(X))\cap \mathfrak{g}^B$$

while for almost all $t \neq 1$,

$$(Z \cap H)(t) = Z(t) = \mathfrak{c}_{\mathfrak{g}}(X + tH).$$



Outline

Overview

The center of the centralizer of an even nilpotent element

Balanced nilpotent sections

Reductive group schemes

- Let A be a complete discrete valuation ring with field of fractions K and residue field k.
- ► Let G be a reductive A-group scheme with connected fibers G_K and G_k.
- The fibers G_K and G_k are reductive linear algebraic groups. The group scheme G is affine, smooth, and of finite type over G.
- Since G is smooth over A, Lie(G) is a projective (hence free) A-module of finite rank.
- If X ∈ Lie(G) and if X_K is nilpotent in Lie(G_K), then also X_k is nilpotent, and we say that X is a *nilpotent section*.

Balanced sections

- Consider a *G*-module *L* which is free of finite rank as *A*-module.
- ► Given X ∈ L, one can form the scheme theoretic stabilizer C = Stab_G(X). Then C is a group scheme over A, and we have

$$\mathcal{C}_{\mathrm{K}} = \mathsf{Stab}_{\mathcal{G}_{\mathrm{K}}}(X_{\mathrm{K}}) \quad \mathsf{and} \quad \mathcal{C}_{\mathrm{k}} = \mathsf{Stab}_{\mathcal{G}_{\mathrm{k}}}(X_{\mathrm{k}}).$$

▶ We say that X is *balanced* for the action of G if C_K is smooth over K, if C_k is smooth over k, and if dim C_K = dim C_k.

Recognizing balanced sections

 $\begin{array}{l} \mbox{Proposition (mcninch16:nilpotent-orbits-over-local-field)}\\ Let \ X \in \mathcal{L}. \ Write \ \mathfrak{g} = \mbox{Lie}(\mathcal{G}), \ and \ assume \ the \ following:\\ (a) \ the \ \mathcal{G}_{\rm K} \ orbit \ of \ X_{\rm K} \ is \ smooth - i.e.\\ \ dim \ {\rm Stab}_{\mathcal{G}_{\rm K}}(X_{\rm K}) = \ dim_{\rm K} \ \mathfrak{c}_{\mathfrak{g}_{\rm K}}(X_{\rm K}), \ and\\ (b) \ dim_{\rm K} \ \mathfrak{c}_{\mathfrak{g}_{\rm K}}(X_{\rm K}) = \ dim_{\rm k} \ \mathfrak{c}_{\mathfrak{g}_{\rm k}}(X_{\rm K}).\\ Then \ X \ is \ balanced \ for \ the \ action \ of \ \mathcal{G}. \end{array}$

► The main points are: (i) dim C_K ≥ dim C_k by Chevalley's upper semicontinuity theorem, and (ii) smoothness on the generic fiber implies that dim C_K coincides with the dimension of the stabilizer of x_K in g_K.

Balanced nilpotent sections

- Now suppose that the fibers G_K and G_k are standard reductive groups, that L = Lie(G) is the adjoint G-module, and let X ∈ Lie(G).
- Then the centralizer in G_K of X_K and the centralizer in G_k of X_k are automatically smooth, so X is balanced if and only if the Lie algebraic centralizers on the fibers have the same dimension.

Existence and conjugacy of balanced nilpotent sections. Theorem (mcninch16:nilpotent-orbits-over-local-field) Let $X_0 \in \text{Lie}(\mathcal{G}_k)$ nilpotent.

- (a) There is a balanced, nilpotent section $X \in \text{Lie}(\mathcal{G})$ s.t. that $X_k \in \text{Lie}(\mathcal{G}_k)$ coincides with X_0 .
- (b) There is an \mathcal{A} -homom $\phi : \mathbf{G}_m \to \mathcal{G}$ s.t. $X \in \text{Lie}(\mathcal{G})(\phi; 2), \phi_k$ is a cochar assoc with X_k and ϕ_K is a cochar assoc with X_K .
- (c) Let $X, X' \in \text{Lie}(\mathcal{G})$ be balanced nilpotent sections with $X_k = X'_k = X_0$. Then there is an element $g \in \mathcal{G}(\mathcal{A})$ such that X' = Ad(g)X.
 - The "Bala-Carter data" of $X_{\rm K}$ and $X_{\rm k}$ are "the same".
 - Using results of mcninch16:reductive-subgroup-schemes, the result is extended in mcninch16:nilpotent-orbits-over-local-field to so-called parahoric group schemes (under some further assumptions).

 $\mathsf{SL}_2 \text{ over } \mathcal{A}$

Theorem

Let $X \in \text{Lie}(\mathcal{G})$ be a balanced nilpotent section and let $\phi : \mathbf{G}_m \to \mathcal{G}$ be an \mathcal{A} -homomorphism such that $\phi_{\mathcal{F}}$ is a cocharacter associated to $X_{\mathcal{F}}$ for $\mathcal{F} \in \{k, K\}$. If $(X_k)^{[p]} = 0$, there is a unique \mathcal{A} -homomorphism

$$\Phi: SL_{2/\mathcal{A}} \to \mathcal{M}$$

such that $d\Phi(E) = X$, and $\Phi_{|S} = \phi$, where $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \text{Lie}(SL_{2,\mathcal{A}})$ and $S \simeq \mathbf{G}_{m,\mathcal{A}}$ is the diag torus of SL_2 .

Smoothness

Theorem (Brian Conrad)

Let \mathcal{H} be a group scheme of finite type over \mathcal{A} for which the fibers \mathcal{H}_K and \mathcal{H}_k are each smooth of the same dimension. Then there is a locally closed subgroup scheme $\mathcal{M} \subset \mathcal{H}$ such that:

(a) ${\mathcal M}$ is smooth, affine, and of finite type over ${\mathcal A},$

(b)
$$\mathcal{M}_{\mathrm{K}} = (\mathcal{H}_{\mathrm{K}})^0$$
 and $\mathcal{M}_{\mathrm{k}} = (\mathcal{H}_{\mathrm{k}})^0$.

Corollary

If $X \in \text{Lie}(\mathcal{G})$ is balanced section, there is a locally closed subgroup scheme $\mathcal{M} \subset C = C_{\mathcal{G}}(X)$ such that:

• \mathcal{M} is smooth, affine and of finite type over \mathcal{A} , and

•
$$\mathcal{M}_{\mathrm{K}} = C^{0}_{\mathcal{G}_{\mathrm{K}}}(X_{\mathrm{K}})$$
 and $\mathcal{M}_{\mathrm{k}} = C^{0}_{\mathcal{G}_{\mathrm{k}}}(X_{\mathrm{k}})$

Smoothness, continued

- ▶ In mcninch08:MR2423832, it was claimed that $C = C_{\mathcal{G}}(X)$ is smooth when X is balanced, but the argument is incorrect (it fails to justify why C is *flat* over A).
- Results on the previous slide essentially fix the problem for the identity component C⁰.
- However, with knowing the smoothness of the "full centralizer group scheme" *C*, the given arguments for mcninch08:MR2423832 are incorrect. That theorem concerns a comparison of the component groups C_K/C⁰_K and C_k/C⁰_k. I don't know whether the conclusion of the Theorem is correct.

The reductive quotient of a nilpotent centralizer

Theorem (Theorem A of mcninch08:MR2423832)

Let $X \in \text{Lie}(\mathcal{G})$ a balanced nilpotent section. The geom root datum of the reduc quotient of the conn centralizer $C^0_{\mathcal{G}_K}(X_K)$ is the same as the geom root datum of the reduc quotient of $C^0_{\mathcal{G}_k}(X_k)$.

- This proof can be found in mcninch16:nilpotent-orbits-over-local-field.
- ▶ In fact, let ϕ : $\mathbf{G}_m \to \mathcal{G}$ be an \mathcal{A} -homom s.t. ϕ_K is a cochar assoc to X_K and ϕ_k is a cochar assoc to X_k .
- And let *M* ⊂ *C* be the smooth locally closed subgp scheme of the Corollary above.
- Then the centralizer L = C_M(φ) is a reductive subgroup scheme of M for which L_K is a Levi factor of C⁰_{G_K}(X_K) and L_k is a Levi factor of C⁰_{G_K}(X_k).
- ▶ Now use: \mathcal{M} splits over some unramified extension of \mathcal{A} .

Outline

Overview

The center of the centralizer of an even nilpotent element

Balanced nilpotent sections