SEMISIMPLICITY OF EXTERIOR POWERS OF SEMISIMPLE REPRESENTATIONS OF GROUPS

GEORGE J. MCNINCH

ABSTRACT. This paper answers a question posed by Jean-Pierre Serre; namely, a proof is given that if *V* is a semisimple finite dimensional representation of a group *G* over a field *K* of characteristic p > 0, and $m(\dim_K V - m) < p$, then $\bigwedge^m V$ is again a semisimple representation of *G*.

1. INTRODUCTION

An important feature of the representation theory of a group G over a field K is the following: given representations (modules) V and W of the group algebra KG, the tensor product $V \otimes_K W$ is again a representation of KG. In this paper, all representations will be assumed finite dimensional over K. When the field K has characteristic zero, the notion of semisimplicity is stable under the tensor product; namely, if V and W are semisimple KG modules then $V \otimes_K W$ is again semisimple ([Che54], p. 88). In particular, when K has characteristic 0 and V is semisimple, the modules $V^{\otimes n}$, $\bigwedge^n V$ (the exterior power of V), and $S^n V$ (the symmetric power of V) are semisimple for all $n \ge 0$. If the characteristic of K is p > 0, the tensor product is not as well behaved. Never-

the characteristic of K is p > 0, the tensor product is not as well behaved. Nevertheless, J.-P. Serre has established the following condition for semisimplicity:

Theorem 1. (Serre, [Ser94] Théorème 1) Assume that K has characteristic p > 0 and that V_i , $1 \le i \le r$, are semisimple representations of G. If $\sum_{i=1}^{r} (\dim_K V_i - 1) < p$, then $V_1 \otimes V_2 \otimes \cdots \otimes V_r$ is again semisimple.

Serre also proves the following:

Theorem 2. (Serre, [Ser94] Théorème 2) Assume that K has characteristic p > 0 and that V is a semisimple representation of G of dimension n. If $n \leq \frac{p+3}{2}$, then $\bigwedge^2 V$ is semisimple.

Serre finally poses the following generalization of the previous result:

Problem 1. (Serre, [Ser94]) Let *V* be a semisimple representation of *G* of dimension *n*. Let m > 0, and assume that m(n - m) < p. Is $\bigwedge^m V$ semisimple?

Theorem 2 provides an affirmative answer to this problem for m = 2. During the initial work on this paper, the author was also aware of unpublished work of Serre which gave an affirmative answer for m = 3.

Date: September 14, 1999.

Some time after the publication of [Ser94], Serre generalized this question a bit more, as follows:

Problem 2. (Serre, unpublished) Let $\mathbf{V} = (V_1, V_2, \dots, V_s)$ be a sequence of semisimple representations of *KG*, and let $\mathbf{m} = (m_1, \dots, m_s)$ where the m_i are integers satisfying $1 \le m_i \le \dim_K V_i = n_i$ for each *i*. Put

$$\bigwedge^{\mathbf{m}} \mathbf{V} = \bigwedge^{m_1} V_1 \otimes_K \ldots \otimes_K \bigwedge^{m_s} V_s.$$

If $\sum_{i} m_i(n_i - m_i) < p$, is $\bigwedge^{\mathbf{m}} \mathbf{V}$ semisimple?

We introduce some notations for convenience; let \mathcal{M} denote the class of all finite sequences $\mathbf{V} = (V_1, \ldots, V_s)$ for $s \ge 1$ of semisimple KG modules. We say that \mathbf{V} has type s if \mathbf{V} involves s semisimple KG modules. Given $\mathbf{V} \in \mathcal{M}$ of type s, let $\mathcal{N}(\mathbf{V})$ denote the set of all integral s-tuples $\mathbf{m} = (m_1, \ldots, m_s)$ such that $0 \le m_i \le \dim_K V_i = n_i$ and $\sum_{i=1}^s m_i(n_i - m_i) < p$. Given $\mathbf{m} \in \mathcal{N}(\mathbf{V})$, we may form the module $\bigwedge^{\mathbf{m}} \mathbf{V}$ as above. In this paper, we prove:

Theorem 3. Problem 2 has an affirmative answer. More precisely, for every $\mathbf{V} \in \mathcal{M}$, and for every $\mathbf{m} \in \mathcal{N}(\mathbf{V})$, $\bigwedge^{\mathbf{m}} \mathbf{V}$ is semisimple.

Notice that the theorem implies Theorems 1 and 2, and it implies that Problem 1 has an affirmative answer.

The chronology of the solution is as follows. The author first proved that Problem 1 has an affirmative answer when V is an absolutely simple G module. Upon completion of this work, the author learned that J.-P. Serre had posed Problem 2 and, at roughly the same time, verified its validity through a quite different argument involving the notion of "G-completely reducible subgroups" of a reductive algebraic group G as described in his June 1997 lectures at the Isaac Newton Institute in Cambridge. Upon Serre's suggestion, the original techniques of the author (those used in answering Problem 1 in the absolutely simple case) were considered for Problem 2; this re-examination produced the proof of Theorem 3 given here.

The result of this paper fits into a family of results relating the dimension of a representation to its semisimplicity. The results of [Ser94] have already been pointed out. When the group G is a reductive algebraic group over K, Jantzen [Jan96] proved that any rational representation V with $\dim_K V \leq p$ is automatically semisimple; he proves the same for the finite groups of \mathbb{F}_q rational points $G(\mathbb{F}_q)$ – although in this case one must exclude factors of type A_1 from G.

When *G* is quasisimple of rank *r*, the author has generalized Jantzen's result; namely he has shown [McN98] that whenever $\dim_K V \leq r.p$, *V* is semisimple. This work was extended in [McNb] to cover the finite groups $G(\mathbb{F}_q)$; however, there are a few more exceptions than in Jantzen's situation.

Our proof of Theorem 3 follows closely that of Theorem 1 given in [Ser94]. The basic idea is to prove the Theorem first in case G is a simply connected, connected, simple algebraic group; in this setting the argument is handled via the linkage principle combined with weight combinatorics. See §3 for the argument in this case. The result for

general groups is obtained through a saturation process. In $\S4$, we adapt the saturation procedure of Serre to obtain the desired result.

I would like to thank Jean-Pierre Serre for some valuable suggestions.

2. PRELIMINARIES AND REDUCTIONS

2.1. **Notations.** Tensor products, exterior powers, and symmetric powers are always taken over the fixed ground field K unless otherwise noted. The notation $V^{\otimes m}$ means the m-fold tensor product of V with itself. When V is a vector space, the dual vector space is denoted V^* .

2.2. Some multilinear algebra. If *G* is a group, and *L* is any 1 dimensional *KG* module, any *L*-valued *G*-equivariant non-degenerate bilinear pairing β between *KG* modules *V* and *W* induces a canonically defined *KG* isomorphism $\tilde{\beta} : V \xrightarrow{\simeq} W^* \otimes_K L$. Indeed, one can canonically identify $W^* \otimes_K L$ with $\text{Hom}_K(W, L)$; then $\tilde{\beta}(v)(w) = \beta(v, w)$ for all $v \in V$ and $w \in W$.

Note that in the above situation, one must have $\dim_K V = \dim_K W$; call this dimension *n*. For any $1 \le m \le n$, one has an induced *G*-equivariant bilinear pairing $\beta : \bigwedge^m V \times \bigwedge^m W \to L^{\otimes m}$ determined by the rule $\beta(v_1 \land \cdots \land v_m, w_1 \land \cdots \land w_m) = \det(\beta(v_s, w_t))_{s,t}$ where the determinant is computed in the tensor algebra of *L*. In particular, one has a *KG* isomorphism

(2.2.a)
$$\widetilde{\beta}: \bigwedge^m V \to (\bigwedge^m W)^* \otimes_K L^{\otimes m}.$$

2.2.1. For *V* any *KG* module of dimension *n*, write det(V) for the 1 dimensional representation $\bigwedge^{n} V$. For each $1 \le m \le n$, the pairing $\mu : \bigwedge^{m} V \times \bigwedge^{n-m} V \to det(V)$ given by multiplication in the exterior algebra of *V* is *G*-equivariant and non-degenerate, hence there is a *KG* isomorphism

$$\widetilde{\mu} : \bigwedge^m V \to (\bigwedge^{n-m} V)^* \otimes_K \det(V).$$

2.3. An Example. Fix $m \ge 2$ be an integer. In this section, let K be an algebraically closed field of characteristic p > m, with $p \equiv -1 \pmod{m}$. Consider the group $G = SL_2(K)$, and take for V the "natural" 2-dimensional G module. When $d \ge 1$, the space $S^d V$ of homogeneous polynomials of degree d in a basis of V affords a representation of G which we denote V(d). This representation satisfies $\dim_K V(d) = d + 1$, and in the notation of [Jan87, II.2], one has that $V(d) = H^0(d)$ is the *induced* module with highest weight d. In particular, V(d) has simple socle L(d). Finally, V(d) is simple if and only if d < p, and Steinberg's tensor product theorem 3.3.1 shows that

$$L(d) \simeq L(d_0) \otimes L(pd_1) = L(d_0) \otimes L(d_1)^{[1]}$$

if $d = d_0 + pd_1$ with $0 \le d_0 \le p - 1$ and $d_1 \ge 0$.

2.3.1. With G and m as above, there is a simple G-module W, such that $m(\dim_K W - m) = p + 1$ and so that $\bigwedge^m W$ is not semisimple.

Proof. Let $k = m^2 - m + 1$; by hypothesis, $d = \frac{p+k}{m}$ is an integer. Put W = L(d), the simple G module with highest weight $d = \frac{p+k}{m}$. Since $p > \frac{p+k}{m}$, this simple module coincides with the module V(d) and hence

$$(2.3.b) n = \dim_K W = \frac{p+k+m}{m}.$$

It follows that

(2.3.c)
$$m(n-m) = p + k + m - m^2 = p + 1,$$

as desired.

The arguments given below in the proof of 3.5.3 for rank 1 show that p + 1 is the highest weight of $\Lambda^m W$. Since $W = H^0(d)$ is an induced module, $W^{\otimes m}$ has a good filtration (i.e. a filtration by induced modules) according to a well-known theorem of Donkin, Wang, Mathieu (see [Mat90]).

Since p > m, $\bigwedge^m W$ is a summand of the module $W^{\otimes m}$, hence by [Jan87, Prop II.4.16(b)], $\bigwedge^{m} W$ has a good filtration. Since p+1 is the highest weight of this module, the induced module $H^0(p+1)$ must appear as a filtration factor. By Steinberg's tensor product theorem, the socle of $H^0(p+1)$ is 4 dimensional. Since $p \ge 3$, $p+2 = \dim_K H^0(p+1)$ is at least 5, so this induced module is not semisimple and the proposition follows.

Remark 2.1. The above generalizes the example given in [Ser94, Appendice, Remarque (1)]. One can even argue as in *loc. cit.*; one observes that, for a > 0, V(a) may be identified with the space of homogeneous polynomials of degree a in the variables xand y where x and y are a weight-space basis for V. Hence one may define

$$\theta: \bigwedge^m V(d) \to V(p+1) \operatorname{via} \theta(f_1 \wedge \dots \wedge f_m) = \det \left(\frac{\partial^{m-1} f_i}{\partial x^{j-1} \partial y^{m-j}}\right)_{1 \le i,j \le m}$$

One can show that θ is surjective and *G*-linear.

2.4. Some important reductions. We observe the following trivial but useful fact:

2.4.1. Let $1 \le m < n$ be positive integers. If m(n-m) < p, then m < p and n < p.

This implies in particular that if $\mathbf{V} \in \mathcal{M}$ and $\mathcal{N}(\mathbf{V})$ is non empty, then dim $V_i < p$ for each *i*. Next, we observe:

2.4.2. Theorem 3 holds provided it is verified when the field K is algebraically closed.

Proof. Let $V \in \mathcal{M}$ and $m \in \mathcal{N}(V)$. If $K' \supseteq K$ is a field extension, one has easily

$$(\bigwedge_{K}^{\mathbf{m}} \mathbf{V}) \otimes_{K} K' \simeq \bigwedge_{K'}^{\mathbf{m}} (\mathbf{V} \otimes_{K} K');$$

(where $\mathbf{V} \otimes_K K' = (V_1 \otimes_K K', \dots, V_s \otimes_K K')$). In particular, if $\bigwedge_{K'}^{\mathbf{m}}(\mathbf{V} \otimes_K K')$ is semisimple, then also $\bigwedge_K^{\mathbf{m}} \mathbf{V}$ is semisimple. It only remains to see that $V_j \otimes_K K'$ is semisimple for each j. Since $\dim_K V_j < p$, the argument invoked in [Ser94] Lemme 1 applies; Serre's argument shows that the center of $End_G(V_i)$ is a separable field extension of K, hence that V_i is absolutely semisimple. Π We assume from now on that *K* is algebraically closed.

2.4.3. Theorem 3 holds provided it is verified for those $V \in M$ for which all V_i are simple.

Proof. Let S denote the set of all finite sequences of positive integers, and give S the following partial ordering. For $\alpha = (\alpha_1, \ldots, \alpha_s), \beta = (\beta_1, \ldots, \beta_t) \in S$, we say that $\alpha \leq \beta$ provided that $s \geq t$ and $\sum_{i=1}^{s} \alpha_i = \sum_{j=1}^{t} \beta_j$.

Observe that each $\alpha \in S$ lies over a minimal element in this order; namely, if $a = \sum \alpha_i$, then the tuple $\beta = (\underbrace{1, 1, \ldots, 1})$ is the unique minimal element of S that satisfies

$$\beta \leq \alpha$$

If $\mathbf{V} \in \mathcal{M}$ is of type *s*, put

$$l = l(\mathbf{V}) = (\mathbf{len}(V_1), \dots, \mathbf{len}(V_s)),$$

where len(V_j) denotes the length (number of composition factors) of the *KG* module V_j .

Consider $\mathbf{V} \in \mathcal{M}$, with corresponding $l = l(\mathbf{V}) \in \mathcal{S}$. Observe that all of the modules in \mathbf{V} are simple if and only if l is minimal in \mathcal{S} ; since there is nothing to prove in that case, assume that l is not minimal, and that the theorem is known for any $\mathbf{W} \in \mathcal{M}$ for which $l(\mathbf{W}) < l$. Without loss of generality, assume that $V_1 \simeq V'_1 \oplus V''_1$ where V'_1 and V''_1 are non-zero KG modules. Let d, d', d'' denote the dimensions of V_1, V'_1, V''_1 .

For $\mathbf{m} \in \mathcal{N}(\mathbf{V})$ one has

$$\bigwedge^{\mathbf{m}} \mathbf{V} \simeq \bigoplus_{i+j=m_1} \bigwedge^{\mathbf{n}(\mathbf{i},\mathbf{j})} \mathbf{W}$$

where $\mathbf{W} = (V'_1, V''_1, V_2, \dots, V_s)$ and $\mathbf{n}(\mathbf{i}, \mathbf{j}) = (i, j, m_2, m_3, \dots, m_s)$ for $0 \le j \le m_1$. Note that $\bigwedge^{\mathbf{n}(\mathbf{i}, \mathbf{j})} \mathbf{W} = 0$ unless $1 \le i \le d'$ and $1 \le j \le d''$.

It is straightforward to see that $l(\mathbf{W}) < l$; the result follows by induction provided we argue that $\mathbf{n}(\mathbf{i}, \mathbf{j}) \in \mathcal{N}(\mathbf{W})$ whenever $\bigwedge^{\mathbf{n}(\mathbf{i}, \mathbf{j})} \mathbf{W} \neq 0$. The required assertion follows immediately from the inequality

$$m_1(d - m_1) = i(d' - i) + j(d'' - j) + i(d'' - j) + j(d' - i) \ge i(d' - i) + j(d'' - j)$$

For $\mathbf{V} \in \mathcal{M}$, put $\tilde{\mathcal{N}}(\mathbf{V}) = \{\mathbf{m} \in \mathcal{N}(\mathbf{V}) : 1 \leq m_i \leq \dim_K V_i/2 \text{ for each } i\}.$

2.4.4. Theorem 3 holds provided it is verified for every $V \in \mathcal{M}$ and $m \in \tilde{\mathcal{N}}(V)$.

Proof. A *KG* module *W* is semisimple if and only if the dual module W^* is semisimple; similarly, *W* is semisimple if and only if $W \otimes L$ is semisimple for any 1 dimensional representation *L*.

Let $\mathbf{V} \in \mathcal{M}$, and $\mathbf{m} \in \mathcal{N}(\mathbf{V})$. Suppose \mathbf{V} has type s, and consider $J \subseteq \{1, 2, \dots, s\}$. Let \mathbf{m}' be the s-tuple such that $m'_i = n_i - m_i$ for $i \in J$, while $m'_i = m_i$ otherwise. Define \mathbf{V}' by the rule $V'_i = V_i^*$ for $i \in J$, and $V'_i = V_i$ otherwise. Evidently one has $\mathbf{m}' \in \tilde{\mathcal{N}}(\mathbf{V}')$. It follows from (2.2.1) that $\bigwedge^{\mathbf{m}} \mathbf{V} \simeq \bigwedge^{\mathbf{m}'} \mathbf{V}' \otimes_K L$ for some 1 dimensional KG module L; since $\bigwedge^{\mathbf{m}'} \mathbf{V}'$ is semisimple by assumption, the semisimplicity of $\bigwedge^{\mathbf{m}} \mathbf{V}$ is obtained. \Box

GEORGE J. MCNINCH

A *KG*-module *V* will be called tensor decomposable if $V \simeq X \otimes_K Y$ for *KG* modules *X* and *Y* with dim_{*K*} *X* > 1 and dim_{*K*} *Y* > 1; otherwise, *V* is tensor indecomposable.

Of course, any module of prime dimension is tensor indecomposable. A straightforward induction shows that any *KG* module may be written in at least one way as a tensor product of finitely many tensor indecomposable modules.

2.4.5. Theorem 3 holds provided it is verified for those $V \in M$ for which each V_i is tensor indecomposable.

Proof. Assume the conclusion of Theorem 3 is valid for those $\mathbf{V} \in \mathcal{M}$ for which each V_i is tensor indecomposable, and let $\mathbf{V} \in \mathcal{M}$ be arbitrary. According to 2.4.4, we must show that $\bigwedge^{\mathbf{m}} \mathbf{V}$ is semisimple for each $\mathbf{m} \in \tilde{\mathcal{N}}(\mathbf{V})$. Let $j \ge 0$ be the number of i such that V_i is tensor decomposable; if j = 0 there is nothing to do, so suppose j > 0 and proceed by induction on j.

Without loss of generality we may suppose that V_1 is tensor decomposable, say

$$V_1 \simeq X_1 \otimes_K X_2 \otimes_K \cdots \otimes_K X_r$$

with X_i tensor indecomposable and $r \ge 2$. Fix $\mathbf{m} \in \tilde{\mathcal{N}}(\mathbf{V})$ and put

$$\mathbf{W} = (\underbrace{X_1, \dots, X_1}_{m_1}, \underbrace{X_2, \dots, X_2}_{m_1}, \dots, \underbrace{X_r, \dots, X_r}_{m_1}, V_2, \dots, V_s),$$
$$\mathbf{n} = (\underbrace{1, \dots, 1}_{rm_1}, m_2, m_3, \dots, m_s).$$

Evidently $\bigwedge^{\mathbf{m}} \mathbf{V}$ is a quotient of $\bigwedge^{\mathbf{n}} \mathbf{W}$. The list \mathbf{W} has only j - 1 tensor decomposable modules, so the result follows by induction provided $\mathbf{n} \in \mathcal{N}(\mathbf{W})$.

Let $x_i = \dim_K X_i$ for $1 \le i \le r$, and let $d = x_1 \cdot x_2 \cdots x_r = \dim_K V_1$. Observe that

$$\sum_{i} n_i (\dim_K W_i - n_i) = m_1 (x_1 + x_2 + \dots + x_r - r) + \sum_{j \ge 2} m_j (\dim_K V_j - m_j)$$

Since $\mathbf{m} \in \tilde{\mathcal{N}}(\mathbf{V})$, one has $m_1 \leq d/2$ which implies that $m_1(d - m_1) \geq \frac{1}{2}m_1d$. So, it suffices to prove that $m_1(x_1 + x_2 + \cdots + x_r - r) \leq \frac{m_1d}{2}$, or equivalently that

(2.4.d)
$$\frac{x_1 x_2 \cdots x_r}{2} \ge x_1 + x_2 + \cdots + x_r - r.$$

Since $x_i \ge 2$ for each *i*, we may write $x_i = 2 + y_i$ for a non-negative y_i ; thus

$$\frac{x_1 \cdots x_r}{2} = \frac{1}{2}(2+y_1) \cdots (2+y_r) \ge \frac{1}{2}(2^r + 2y_1 + 2y_2 + \dots + 2y_r)$$
$$= 2^{r-1} + x_1 + x_2 + \dots + x_r - 2r$$

As $r \ge 2$, one has $2^{r-1} \ge r$ and the inequality (2.4.d) is verified.

3. The proof in the case of a linear algebraic group.

Let *G* be a linear algebraic *K*-group, where *K* is an algebraically closed field of characteristic p > 0. Assume that

$$[G:G^0] \not\equiv 0 \pmod{p},$$

where G^0 denotes the identity component of G. Throughout this section, we fix $\mathbf{V} \in \mathcal{M}$ and we assume that \mathbf{V} is rational, i.e. that each V_i is a *rational* representation of G (i.e. that the homomorphism $G \to \operatorname{GL}(V_i)$ is a morphism of algebraic groups).

3.1. **Main result in the algebraic case.** In this section, we prove the following statement:

3.1.1. The conclusion of Theorem 3 is valid in case G is an algebraic group for which $[G:G^0]$ is prime to p and V is rational.

3.2. Reduction to the quasisimple case. Since the finite group G/G^0 has order prime to p, all of its representations in characteristic p are semisimple. Since G is an extension of G/G^0 by the connected algebraic group G^0 , it follows from [Ser94, §3.4,Lemma 5] that $\bigwedge^{\mathbf{m}} \mathbf{V}$ is semisimple for G if and only if it is semisimple for G^0 . Thus we may and shall assume that G is connected.

Let $N \triangleleft G$ denote the kernel of the homomorphism $G \rightarrow \prod_{i=1}^{s} \operatorname{GL}(V_i)$. Since $\bigoplus_{i=1}^{s} V_i$ is a semisimple KG module, it is well known that G/N is reductive. Since $\bigwedge^{\mathbf{m}} \mathbf{V}$ is semisimple for G if and only if it is semisimple for G/N, we may replace G by G/N and hence assume that G is connected and reductive.

Now, for connected reductive G, there is (see e.g. [Spr98, Ch. 9]) an isogeny

$$\prod_i G_i \times T \to G$$

where $\prod_i G_i$ is a finite direct product of simply connected, quasisimple algebraic groups, and *T* is a torus. It follows from [Jan96, §3] that a *G* module *W* is semisimple if and only if *W* is a semisimple module for each G_i (and for *T*, which is trivial).

Hence, we may assume that G is simply connected, and quasisimple.

3.3. The simply connected, quasisimple case. Let T be a maximal torus of G, let X denote the character group of T, and let Φ denote the set of roots of T. Choose a Borel subgroup B of G containing T; this choice determines a system of positive roots. Pick a system of simple roots Δ and for $\alpha \in \Delta$, let $\varpi_{\alpha} \in X$ denote the corresponding fundamental dominant weight.

A weight $\lambda = \sum_{\alpha \in \Delta} n_{\alpha} \varpi_{\alpha} \in X$ is called *dominant* if $n_{\alpha} \geq 0$ for every α , and a dominant weight λ is called *restricted* if $n_{\alpha} < p$ for every α . The subset of dominant weights is denoted X^+ and the subset of restricted weights is denoted X_1 .

For each dominant weight, there is a corresponding simple rational G module denoted $L(\lambda)$; furthermore, any simple rational G module is isomorphic to a unique $L(\lambda)$.

For a dominant weight λ , we have a (finite) *p*-adic expansion

$$\lambda = \lambda_0 + p\lambda_1 + p^2\lambda_2 + \cdots$$

with each λ_i restricted. The importance of representing weights in this way is the following result:

3.3.1. (Steinberg's Theorem) For λ as above, there is a *G*-module isomorphism

$$L(\lambda) \simeq \bigotimes_{i \ge 0} L(\lambda_i)^{[i]}$$

where $W^{[d]}$ denotes the *d*-fold Frobenius twist of a rational G module W.

As a consequence, note that if $\lambda = p^i \lambda'$ for $\lambda' \in X_1$, then for any m

(3.3.e)
$$\bigwedge^m L(\lambda) \simeq \bigwedge^m \left(L(\lambda')^{[i]} \right) \simeq \left(\bigwedge^m L(\lambda') \right)^{[i]}.$$

According to 2.4.3 we may assume that each V_i is simple; thus there are dominant weights λ_i such that $V_i \simeq L(\lambda_i)$. By 2.4.5 we need consider only tensor indecomposable simple modules, so we may assume, in view of Steinberg's Theorem, that $\lambda_i = p^{N_i} \mu_i$ where μ_i is restricted and $N_i \ge 0$.

We will prove the following

3.3.2. Assume that $N_i = 0$, i.e. that $\lambda_i \in X_1$, for each *i*. Then $\bigwedge^{\mathbf{m}} \mathbf{V}$ is semisimple and each composition factor has restricted highest weight.

For the moment, though, let us observe that 3.3.2 suffices to prove 3.1.1. Indeed, if s = 1, (3.3.e) permits one to reduce to the case $\lambda_1 \in X_1$, so we may suppose s > 1 and proceed by induction on s.

Without loss of generality, we may suppose that $\lambda_1, \ldots, \lambda_t \in X_1$ and $\lambda_{t+1}, \ldots, \lambda_s \in pX$. For any $\mathbf{m} \in \mathcal{N}(\mathbf{V})$, one has

$$\bigwedge^{\mathbf{m}} \mathbf{V} \simeq \bigwedge^{\mathbf{m}'} \mathbf{V}' \otimes (\bigwedge^{\mathbf{m}''} \mathbf{V}'')^{[1]}$$

where $\mathbf{m}' = (m_1, \ldots, m_t)$, $\mathbf{m}'' = (m_{t+1}, \ldots, m_s)$, $\mathbf{V}' = (V_1, \ldots, V_t)$, and $\mathbf{V}'' = (V_{t+1}^{[-1]}, \ldots, V_s^{[-1]})$. If t = 0, it suffices to prove that $\bigwedge^{\mathbf{m}''} \mathbf{V}''$ is semisimple; working by induction on the minimal value of N_i , one may reduce to the case t > 0.

This being done, 3.3.2 shows that $\bigwedge^{\mathbf{m}'} \mathbf{V}'$ is semisimple and all its composition factors have restricted highest weight. By induction on *s*, the module $\bigwedge^{\mathbf{m}''} \mathbf{V}''$ is semisimple, and (3.3.e) shows that all of its composition factors have highest weight in *pX*. Steinberg's Theorem now shows that $\bigwedge^{\mathbf{m}} \mathbf{V}$ is itself semisimple.

In the remainder of this section, we finish the verification of 3.1.1 by proving 3.3.2.

3.4. The linkage principle. Let $C \subset X^+$ denote the closure of the lowest dominant alcove for the dot action of the affine Weyl group W_p . Then C is a fundamental domain for this action of W_p . The dominant weights in this set can be described as follows:

$$\mathbf{C}^{+} = \mathbf{C} \cap X^{+} = \{\lambda \in X^{+} : \langle \lambda + \rho, \beta^{\vee} \rangle \le p\}$$

where β is the highest short root in Φ . Denote by $\hat{\mathbf{C}}$ the set $\mathbf{C}^+ \cup \{0\}$.

The following gives for us a useful criteria for membership in \hat{C} .

3.4.1. [Ser94, Prop. 3, Prop. 5] Let $\lambda \in X_1$. If $\dim_K L(\lambda) < p$ then $\lambda = 0$ or $\langle \lambda + \rho, \beta^{\vee} \rangle < p$; equivalently, $\lambda \in \hat{\mathbf{C}}$.

The *linkage principle* (see [Jan87, II.6]) implies the following:

3.4.2. [Jan87, II.6.13,II.5.10] If $\lambda \in \hat{\mathbf{C}}$, then $\dim_K L(\lambda)$ is equal to the value $d(\lambda)$ of the Weyl degree formula:

$$d(\lambda) = \prod_{\alpha>0} \frac{\langle \lambda + \rho, \alpha^{\vee} \rangle}{\langle \rho, \alpha^{\vee} \rangle}.$$

Let the *character* of a G module M be the element of $\mathbb{Z}[X]$ given by $ch(M) = \sum_{\mu \in X} \dim_K M_\mu e^\mu$, where M_μ denotes the μ weight space of M and the e^μ are basis elements for $\mathbb{Z}[X]$. For $\lambda \in X^+$, let $L_{\mathbb{Q}}(\lambda)$ denote the simple module with highest weight λ for the split simple \mathbb{Q} Lie algebra $\mathfrak{g}_{\mathbb{Q}}$ with root system Φ ; we denote $ch(L_{\mathbb{Q}}(\lambda))$ by $\chi(\lambda)$ (the character of a $\mathfrak{g}_{\mathbb{Q}}$ module is defined via the weights of a maximal toral subalgebra on the module). For $m \geq 1$, it follows from the representation theory of $\mathfrak{g}_{\mathbb{Q}}$ that there is a finite subset $\mathcal{H}(\lambda, m) \subset X^+$ such that

(3.4.f)
$$\operatorname{ch}(\bigwedge^m L_{\mathbb{Q}}(\lambda)) = \sum_{\mu \in \mathcal{H}(\lambda,m)} m_\mu \chi(\mu)$$

for suitable multiplicities $m_{\mu} > 0$.

For $\lambda \in C$, [Jan87, II.6.13] actually shows that $ch(L(\lambda)) = ch(L_{\mathbb{Q}}(\lambda))$; it follows from [Bou72, VIII §7, exerc. 11] that:

3.4.3. For $\lambda \in \hat{\mathbf{C}}$ and $m \geq 1$, $ch(\bigwedge^m L(\lambda)) = ch\bigwedge^m L_{\mathbb{Q}}(\lambda)$. In particular, any weight ν of $\bigwedge^m L(\lambda)$ satisfies $\nu \leq \mu$ for some $\mu \in \mathcal{H}(\lambda, m)$.

The significance of the linkage principle for semisimplicity is demonstrated by:

3.4.4. [Jan87, II.6.17, II.2.12 (1)] If $\lambda, \mu \in \hat{\mathbf{C}}$, then $Ext^1_G(L(\lambda), L(\mu)) = 0$.

After one notes $\hat{\mathbf{C}} \subset X_1$, 3.4.4 has the immediate consequence:

3.4.5. Suppose that $\langle \nu + \rho, \beta^{\vee} \rangle \leq p$ for each weight ν of the *G* module *M*. Then *M* is semisimple and each composition factor of *M* has restricted highest weight.

3.5. Weight considerations. Let us say that an *admissible pair* (λ, m) consists in $\lambda \in X^+$ and $1 \le m \le d(\lambda)/2$ such that

(3.5.g) $\langle \nu + \rho, \beta^{\vee} \rangle \le m(d(\lambda) - m)$

for each weight $\nu \in \mathcal{H}(\lambda, m)$.

Remark 3.1. Let (λ, m) be a pair as above. Since each weight $\nu \in \mathcal{H}(\lambda, m)$ satisfies $\nu < m\lambda$, one knows that (λ, m) is admissible in case $\langle m\lambda + \rho, \beta^{\vee} \rangle \leq m(d(\lambda) - m)$.

Define a partial order relation on X^+ by the following simple rule: say that $\mu \to \lambda$ provided $\lambda - \mu \in X^+$.

3.5.1. Let c > 0 be a real number. Suppose that $d(\mu) \ge c\langle \mu + \rho, \beta^{\vee} \rangle$. If $\mu \to \lambda$, then $d(\lambda) \ge c\langle \lambda + \rho, \beta^{\vee} \rangle$.

Proof. For any positive root α , we have

$$\langle \lambda + \rho, \alpha^{\vee} \rangle - \langle \mu + \rho, \alpha^{\vee} \rangle = \langle \lambda - \mu, \alpha^{\vee} \rangle \ge 0$$

since $\lambda - \mu \in X^+$. Inspecting the Weyl degree formula, it is then clear that

$$d(\lambda) \ge d(\mu) \cdot \frac{\langle \lambda + \rho, \beta^{\vee} \rangle}{\langle \mu + \rho, \beta^{\vee} \rangle} \ge c \langle \mu + \rho, \beta^{\vee} \rangle \frac{\langle \lambda + \rho, \beta^{\vee} \rangle}{\langle \mu + \rho, \beta^{\vee} \rangle} \ge c \langle \lambda + \rho, \beta^{\vee} \rangle,$$

as desired.

Remark 3.2. The numberings of the fundamental dominant weights used in the following result, and throughout this paper, are those used in the tables in [Bou72].

3.5.2. Suppose the rank of the root system is at least 2, and let $\lambda \in X^+$. Then

(3.5.h)
$$d(\lambda) \ge 2\langle \lambda + \rho, \beta^{\vee} \rangle,$$

unless λ is among the set of weights $\mathcal{E} = \mathcal{E}(\Phi)$ indicated in the following table:

Φ	E	Φ	ε
A_2	$\mathfrak{a}_1, \mathfrak{a}_2, 2\mathfrak{a}_1, 2\mathfrak{a}_2$	$C_r, r \ge 3$	$\overline{\mathfrak{o}_1}$
A_3	$\mathfrak{D}_1,\mathfrak{D}_2,\mathfrak{D}_3$	$D_r, r \ge 5$	$\overline{\mathfrak{o}_1}$
$A_r, r \ge 4$	$\mathfrak{D}_1,\mathfrak{D}_r$	D_4	$\varpi_i, i = 1, 3, 4$
B_2	${f \mathfrak o}_1,{f \mathfrak o}_2$	G_2	$\mathfrak{a}_1,\mathfrak{a}_2$
B_3	$\mathfrak{a}_1,\mathfrak{a}_3$		
$B_r, r \ge 4$	$ \omega_1 $		

Remark 3.3. In [McN98], the author proves a slightly stronger estimate of this sort; namely, that $\dim_K L(\lambda) \ge r \langle \lambda + \rho, \beta^{\vee} \rangle$ for almost all λ . However, the list of exceptional λ is larger, and the techniques used are somewhat more unwieldy than the argument given here due to the fact that $\dim_K L(\lambda) \ne d(\lambda)$ in general.

Sketch of proof. Initially, let λ be a fundamental dominant weight. In [Bou72] Table 2, the value of $d(\lambda)$ is recorded for each indecomposable root system and each fundamental dominant weight. A straightforward computation of $\langle \lambda + \rho, \beta^{\vee} \rangle$ in each case yields immediately the assertion that λ satisfies (3.5.h) unless λ is among the specified exceptions.

In view of 3.5.2, the assertion holds for $\Phi = E_6, E_7, E_8, F_4$. Furthermore, it suffices to prove that (3.5.h) is valid for $\lambda = \mu_1 + \mu_2$ for all possible fundamental weights μ_1 and μ_2 which fail to satisfy (3.5.h); in most cases this is true. We list below those λ for which one must check (3.5.h), and we indicate the value of $d(\lambda)$ for each such λ ; it is then straightforward to verify (3.5.h). For unbounded rank, we provide references for the dimension assertions; in low rank the calculation of $d(\lambda)$ is straightforward (note that some labor may be avoided in case $\Phi = A_2, B_2, G_2$, as $d(\lambda)$ is given in closed form in [Hum80, §24.3] for those Φ).

• $\Phi = A_r, r \ge 4$: $\lambda = 2\varpi_1, 2\varpi_2, \varpi_1 + \varpi_r$. According to [McN98, Props. 4.2.2,4.6.8] one has (for $r \ge 1$):

$$d(2\boldsymbol{\varpi}_1) = d(2\boldsymbol{\varpi}_r) = \binom{r+2}{2}$$
 and $d(\boldsymbol{\varpi}_1 + \boldsymbol{\varpi}_r) = r(r+2).$

- $\Phi = A_3$: $\lambda = 2\varpi_2$. $d(2\varpi_2) = 20$.
- $\Phi = A_2$: $\lambda = 3\omega_1, 3\omega_2, 2\omega_1 + 2\omega_2$. $d(\lambda) = 10, 10, 27$ respectively.
- $\Phi = B_r$, $r \ge 4$; $\Phi = C_r$, $r \ge 3$; $\Phi = D_r$, $r \ge 5$: $\lambda = 2\omega_1$. According to [McN98, Props. 4.2.2, 4.7.3, 4.8.1] one has:

$$d(2\boldsymbol{\varpi}_1) = \binom{2r+2}{2} - \epsilon \text{ where } \epsilon = 1, 0, 1 \text{ for } \Phi = B_r, C_r, D_r \text{ respectively}$$

- $\Phi = B_r$: $r = 2, 3, \lambda = 2\varpi_1, 2\varpi_r, \varpi_1 + \varpi_r$. When $r = 2, d(\lambda) = 14, 10, 16$ respectively. When $r = 3, d(\lambda) = 27, 35, 48$ respectively.
- $\Phi = D_4$: $\lambda = \varpi_2, \varpi_i + \varpi_j$ for all pairs $i, j \in \{1, 3, 4\}$. $d(\varpi_2) = 28$, $d(\varpi_i + \varpi_j) = 56$ for $i \neq j$. $d(2\varpi_i) = 35$ for each $i \in \{1, 3, 4\}$.
- $\Phi = G_2$: $\lambda = 2\omega_1, 2\omega_2, \omega_1 + \omega_2$. $d(\lambda) = 27, 77, 64$ respectively.

Our goal is to list those pairs (λ, m) which fail to be admissible. Towards this end, we introduce the subset $\mathcal{E}' \subset \mathcal{E}$ as follows.

Φ	\mathcal{E}'	Φ	\mathcal{E}'
$A_r \ (r \ge 2)$	$\mathfrak{D}_1,\mathfrak{D}_r$	$D_r \ (r \ge 5)$	$\overline{\mathfrak{o}_1}$
$B_r \ (r \ge 2)$	\mathfrak{a}_1	D_4	$\mathfrak{D}_1,\mathfrak{D}_3,\mathfrak{D}_4$
$C_r \ (r \ge 2)$	${\mathfrak a}_1$		

3.5.3. Let $\lambda \in X^+$ and let $1 \le m \le d(\lambda)/2$. Then (λ, m) is admissible unless one of the following holds:

- (1) $\Phi = A_1$
- (2) $m = 1, \lambda \in \mathcal{E}'$ and Φ is one of A_r $(r \ge 2), B_r$ $(r \ge 2), \text{ or } C_r$ $(r \ge 2)$.
- (3) m = 2, $\lambda = \varpi_1$ and $\Phi = C_2$.

If (λ, m) is not admissible, then

(3.5.i)
$$\langle \mu + \rho, \beta^{\vee} \rangle \le m(d(\lambda) - m) + 1.$$

for any $\mu \in \mathcal{H}(\lambda, m)$.

Proof. We first verify (3.5.i) when Φ has rank 1. In this case X may be identified with \mathbb{Z} , and X^+ with $\mathbb{Z}_{\geq 0}$. For $a \in X$, one has d(a) = a + 1; if $1 \leq m \leq a + 1$, the $\mathfrak{g}_{\mathbb{Q}} = \mathfrak{sl}_2(\mathbb{Q})$ module $\bigwedge^m L_{\mathbb{Q}}(a)$ has highest weight given by

$$b = a + (a - 2) + \dots + (a - 2(m - 1)) = ma - 2\sum_{j=1}^{m-1} j = m(a + 1 - m)$$

whence $b + 1 = \langle b + \rho, \beta^{\vee} \rangle = m(a + 1 - m) + 1$. The remaining assertions of 3.5.i are straightforward to verify for the indicated inadmissible pairs; we omit the details.

For the remainder of the proof, we assume that the rank of Φ is at least 2; assume first that $\lambda \notin \mathcal{E}$, i.e. that λ satisfies (3.5.h). As noted in Remark 3.1, one may test admissibility by considering $\nu = m\lambda$; for such a λ one has

$$\langle m\lambda + \rho, \beta^{\vee} \rangle \le m \langle \lambda + \rho, \beta^{\vee} \rangle \le \frac{m \cdot d(\lambda)}{2} \le m(d(\lambda) - m).$$

Thus (λ, m) is admissible.

Now let $\lambda \in \mathcal{E} \setminus \mathcal{E}'$; in this case one deduces the admissibility of (λ, m) for each $1 \le m \le d(\lambda)/2$ via Remark 3.1 and the following data:

Φ	λ	$d(\lambda)$	$\langle m\lambda+\rho,\beta^\vee\rangle$
A_2	$2\mathfrak{a}_1, 2\mathfrak{a}_2$	6	2m + 2
A_3	${\mathfrak a}_2$	6	m+3
B_3	${\mathfrak a}_3$	8	m+5
G_2	\mathfrak{a}_1	7	2m + 5
G_2	\mathfrak{a}_2	14	3m + 5

Finally suppose that $\lambda \in \mathcal{E}'$. It follows from constructions in [Bou72, VIII] that in the expression (3.4.f) one has $m_{\mu} = 1$ for each $\mu \in \mathcal{H}(\lambda, m)$, and that $\mathcal{H}(\lambda, m)$ is as specified in the following table (3.5.j). (For type A_r , B_r , and C_r , see *loc. cit.* VIII.§13 no. 1,2,3 respectively; for type D_r , see *loc. cit.* VIII.§13 no. 4 and exerc. VIII.§13.10. Note that a description of the character $\bigwedge^m L(\varpi_i)$ for type D_4 and i = 3, 4 is easily obtained by triality from the given description of $\bigwedge^m L(\varpi_1)$.)

(3.5.j)	Φ	λ	$d(\lambda)$	Conditions		$\mathcal{H}(\lambda,m)$
	A_r	\mathfrak{a}_1	r+1	$1 \le m \le r$		$\overline{\mathfrak{Q}}_m$
	A_r	\mathfrak{D}_r	r+1	$1 \le m \le r$		ϖ_{r+1-m}
	$B_r, r \ge 2$	\mathfrak{a}_1	2r + 1	$1 \le m \le r - 1$		\mathfrak{D}_m
	$B_r, r \ge 2$	\mathfrak{a}_1	2r + 1	m = r		$2\varpi_r$
	$C_r, r \ge 2$	\mathfrak{a}_1	2r	$1 \le m \le r, m \equiv 0$	$\pmod{2}$	$\boldsymbol{\varpi}_m, \boldsymbol{\varpi}_{m-2}, \dots, \boldsymbol{\varpi}_2, 0$
	$C_r, r \ge 2$	\mathfrak{a}_1	2r	$1 \leq m \leq r, m \equiv 1$	$\pmod{2}$	$\mathfrak{D}_m,\mathfrak{D}_{m-2},\ldots,\mathfrak{D}_3,\mathfrak{D}_1$
	$D_r, r \ge 4$	\mathfrak{a}_1	2r	$1 \le m \le r - 2$		\mathfrak{D}_m
	$D_r, r \ge 4$	\mathfrak{a}_1	2r	m = r - 1		$\varpi_r + \varpi_{r-1}$
	$D_r, r \ge 4$	\mathfrak{a}_1	2r	m = r		$2\varpi_r, 2\varpi_{r-1}$

To complete the proof, fix $\lambda \in \mathcal{E}'$ and let $d = d(\lambda)$, $2 \leq m \leq d/2$. Suppose $\nu \in \mathcal{H}(\lambda, m)$. One has $m(d - m) \geq m(d/2) \geq d$, so in this case the admissibility of (λ, m) follows provided $\langle \nu + \rho, \beta^{\vee} \rangle \leq d$; the data in table (3.5.j) permits one to verify this latter condition holds if $\Phi \neq C_r$ (and $m \geq 2$).

Suppose now that $\Phi = C_r$; we only must consider $\lambda = \varpi_1$. Using table (3.5.j), one checks that $\langle \nu + \rho, \beta^{\vee} \rangle \leq 2r + 1$ for each $\nu \in \mathcal{H}(\lambda, m)$. Assume first that $3 \leq m \leq d/2 = r$; in that case $m(d-m) \geq 3r \geq 2r + 1$ and the result holds. When m = 2 and $r \geq 3$, one gets the desired result by noting $m(d-m) = 2(2r-2) = 4(r-1) \geq 2r + 1$.

The above handles $m \ge 2$. When m = 1, we only must consider $\Phi = D_r$ and the weight $\lambda = \varpi_1$. The table shows that $\langle \nu + \rho, \beta^{\vee} \rangle = 2r - 2 < 2r - 1 = d - 1$ for each $\nu \in \mathcal{H}(\lambda, 1) = \{\varpi_1\}$, whence the admissibility of $(\varpi_1, 1)$ in this case.

We are now is a position to complete the proof of 3.3.2 (and hence of 3.1.1). Let $\mathbf{V} = (L(\lambda_1), \ldots, L(\lambda_s))$ with each λ_i restricted, and let $\mathbf{m} \in \tilde{\mathcal{N}}(\mathbf{V})$. In view of (3.4.1), $\lambda_i \in \hat{\mathbf{C}}$ for each *i*.

Any weight ν of $\bigwedge^{\mathbf{m}} \mathbf{V}$ has the form $\nu = \nu_1 + \cdots + \nu_s$ where ν_i is a weight of $\bigwedge^{m_i} L(\lambda_i)$. According to 3.4.3, there is a weight $\mu_i \in \mathcal{H}(\lambda_i, m_i)$ with $\nu_i \leq \mu_i$; since $\langle \nu_i, \beta^{\vee} \rangle \leq \langle \mu_i, \beta^{\vee} \rangle$, we may as well assume that $\nu_i \in \mathcal{H}(\lambda_i, m_i)$ for each *i*. We will verify 3.3.2; in most cases we will do this by checking that 3.4.5 holds.

After re-ordering, we may suppose that for some $1 \le i \le s+1$, (λ_j, m_j) is admissible if and only if j < i.

Suppose first that i > 1; in this case note that (3.5.i) yields $\langle \lambda_k, \beta^{\vee} \rangle \leq m_k (d(\lambda_k) - m_k)$ for $i \leq k$. Combining this with the admissibility of the first i - 1 weights yields

$$\langle \nu + \rho, \beta^{\vee} \rangle \le \sum_{j=1}^{i-1} \langle \nu_j + \rho, \beta^{\vee} \rangle + \sum_{k=i}^s \langle \nu_j, \beta^{\vee} \rangle \le \sum_{\ell=1}^s m_\ell (d(\lambda_\ell) - m_\ell) < p,$$

as desired.

Now suppose that i = 1, i.e. that no pair (λ_j, m_j) is admissible. If $\Phi = A_1$, we have by (3.5.i)

$$b = \langle \nu, \beta^{\vee} \rangle \le \sum_{i=1}^{s} m_i (d(\lambda_i) - m_i) < p$$

whence $b + 1 = \langle \nu + \rho, \beta^{\vee} \rangle \leq p$, as asserted. So we now assume that the rank of Φ is at least 2. If s = 1, the semisimplicity of $\bigwedge^{\mathbf{m}} \mathbf{V}$ is trivial in case $m_1 = 1$; the only situation not handled by this observation is $m_1 = 2$, $\lambda_1 = \varpi_1$, $\Phi = C_2$. A straightforward computation shows that $\bigwedge^2 L(\varpi_1)$ is semisimple with restricted composition factors unless p = 2; see [McN98, Lemma 4.5.3] and note that p = 2 is ruled out by the condition $\mathbf{m} \in \mathcal{N}(\mathbf{V})$.

Finally, suppose s > 1. Using (3.5.i), one has

$$\langle \nu + \rho, \beta^{\vee} \rangle \leq \sum_{i=1}^{s} \langle \nu_i + \rho, \beta^{\vee} \rangle - (s-1) \langle \rho, \beta^{\vee} \rangle \leq \sum_{i=1}^{s} m_i (d(\lambda_i) - m_i) + s - (s-1) \langle \rho, \beta^{\vee} \rangle$$

$$$$

where $h - 1 = \langle \rho, \beta^{\vee} \rangle \ge 2$ (*h* is the Coxeter number). Since $s \ge 2$, one has $s \ge \frac{h-1}{h-2}$ and 3.4.5 is verified in this case.

This completes the proof of 3.1.1.

Remark 3.4. Let $V = L(\lambda)$, $\lambda \in \mathcal{E}'$. More can be said about the G module $\bigwedge^m V$. If $\Phi = B_r$ or D_r , assume $p \neq 2$. If $\Phi = C_r$, assume p > r. Then one has $\bigwedge^m V \simeq \bigoplus_{\mu \in \mathcal{H}(\lambda,m)} L(\mu)$. These assertions are verified in [McN98, Prop. 4.2.2] in the following situations: $\Phi = A_r$; $\Phi = B_r$ and m < r; $\Phi = D_r$ and m < r - 1. For $\Phi = B_r$, the assertion for $\bigwedge^r V$ follows from [Sei87, 8.1]; for $\Phi = D_r$, the assertion for $\bigwedge^{r-1} V$ follows from [Sei87, 8.1]. When $\Phi = C_r$, see [McNa, Prop. 6.3.5.] where the indecomposable summands of $\bigwedge^m V$ are worked out for all p. The only remaining situation is $\bigwedge^r V$ for type D_r . As a suitable reference was not located, we sketch an argument.

Let *F* be a field of characteristic $p \ge 0$, $p \ne 2$, and let (V,q) be a non-degenerate quadratic *F*-space with $\dim_F V = 2r$, $r \ge 3$. Let G = SO(V,q); then *G* is the group of *F* points of an algebraic group G of type D_r , and *V* is an *F*-form of the rational G-module $L(\varpi_1)$. Assume that *V* has an orthogonal basis $\{e_i\}$ for which $q(e_i) = \alpha_i$, and let $\Delta = \Delta(q) = (-1)^r \alpha_1 \cdots \alpha_{2r}$; of course a different choice of orthogonal basis results in a

different value of Δ , but any choice yields the same element in $F^{\times}/(F^{\times})^2$. In particular, the field extension $F' = F(\sqrt{\Delta})$ is well defined.

In [KMRT98, Proposition (10.22)], a *G*-automorphism τ of $\bigwedge^r V$ is constructed with the property that τ^2 is given by multiplication with $1/\Delta$. Let $V' = V \otimes_F F'$; then $\bigwedge^r V'$ is the direct sum of eigenspaces E_{\pm} for τ with eigenvalues $\pm 1/\sqrt{\Delta}$. These eigenspaces are F'G submodules of $\bigwedge^r V'$ (in fact, they are even F'SO(V', q') submodules).

Write $V = Fe \oplus W$ as an orthogonal sum with *e* non-singular, and let $H = SO(W) \le G$. Then *H* is the group of *F* points of an algebraic group of type B_{r-1} . Evidently

$$\operatorname{res}_{H}^{G}(\bigwedge^{r} V) \simeq \bigwedge^{r-1} W \oplus \bigwedge^{r} W.$$

Using (2.2.a), we have $\bigwedge^r W \simeq \bigwedge^{r-1} W$, and we have already seen that this module is absolutely simple for FH. Since $\operatorname{res}_{H}^{G}(\bigwedge^r V')$ has length 2, it follows at once that the F'G modules E_{\pm} are simple. Working over an algebraic closure \overline{F} (or over any field which splits q), one finds that the highest weights of $\bigwedge^r V \otimes_F \overline{F}$ are $2\varpi_r$ and $2\varpi_{r-1}$; since these weights are incomparable, it follows by length considerations that $\bigwedge^r V \otimes_F$ $\overline{F} \simeq L(2\varpi_r) \oplus L(2\varpi_{r-1})$. In particular, E_+ and E_- are non-isomorphic. This gives the claimed result. We have shown that $\bigwedge^r V$ is an absolutely semisimple FG module of absolute length 2; if $\Delta \in (F^{\times})^2$ then $\operatorname{End}_{FG}(\bigwedge^r V) \simeq F \times F$, otherwise $\operatorname{End}_{FG}(\bigwedge^r V) \simeq F'$ and $\bigwedge^r V$ is simple for FG.

4. THE PROOF FOR AN ARBITRARY GROUP

The argument presented in this section follows very closely that given in [Ser94]. For completeness we outline the entire argument.

4.1. Saturation. Let *V* be a vector space of dimension *n* over *K*, and let $u \in GL(V)$ be an element of order *p*. Then x = u - 1 is a nilpotent endomorphism of *V* satisfying $x^p = 0$.

One defines a homomorphism $\phi_s : K \to \operatorname{GL}(V)$ by using a truncated exponential. More precisely, for $t \in K$, define $\phi_u(t) = u^t \in \operatorname{GL}(V)$ to be

(4.1.k)
$$u^{t} = \sum_{i=0}^{p-1} {t \choose i} x^{i} = 1 + tx + \frac{t(t-1)}{2} x^{2} + \cdots$$

4.1.1. [Ser94, §4.1] The homomorphism $\phi_u : K \to GL(V)$ is uniquely characterized by the following properties:

P1. $\phi_u(1) = u$.

P2. ϕ_u has degree < p, (i.e. $t \mapsto u^t$ is polynomial in t of degree < p).

A subgroup $H \leq GL(V)$ is called *saturated* if every unipotent element u of H satisfies $u^p = 1$ and $u^t \in H$ for every $t \in K$.

From our point of view, the important fact about saturated subgroups of GL(V) is the following:

4.1.2. [Ser94, Proposition 11] Let $H \leq GL(V)$ be an algebraic subgroup which is saturated. Then $[H : H^0] \not\equiv 0 \pmod{p}$, where H^0 denotes the identity component of H.

4.2. The proof of Theorem 3. Let *G* by a group, let V be a sequence of semisimple *G*-modules of dimension n_i , and let $\mathbf{m} \in \mathcal{N}(\mathbf{V})$. Let *H* denote the subgroup of $GL(\mathbf{V}) = GL(V_1) \times \cdots \times GL(V_s)$ consisting of all elements x so that $\bigwedge^{\mathbf{m}}(\mathbf{x}) = \bigwedge^{m_1} x_1 \otimes \cdots \otimes \bigwedge^{m_s} x_s$ leaves stable each subspace of $\bigwedge^{\mathbf{m}} \mathbf{V}$ which is stable under *G*. Then *H* is an *algebraic* subgroup of $GL(\mathbf{V})$, and $\bigwedge^{\mathbf{m}} \mathbf{V}$ is a rational *H* module. Furthermore, $\bigwedge^{\mathbf{m}} \mathbf{V}$ is a semisimple *G* module if and only if it is a semisimple module for *H*.

In view of the results of section 3, Theorem 3 will follow provided that we argue $[H : H^0] \not\equiv 0 \pmod{p}$. To verify this property, we invoke 4.1.2; we must verify that *H* is saturated.

4.2.1. Let $\mathbf{u} \in H$ be unipotent. Then $\mathbf{u}^p = 1$.

Proof. This follows (as noted in [Ser94, 4.2]) since every unipotent in $GL(V_i)$ has this property when $\dim_K V_i \leq p$.

4.2.2. Let $\mathbf{u} \in H$ be a unipotent element. Then $\mathbf{u}^t \in H$ for all $t \in K$.

Proof. We must verify that $\bigwedge^{\mathbf{m}}(\mathbf{u}^t)$ leaves stable each *G*-invariant subspace of $\bigwedge^{\mathbf{m}} \mathbf{V}$. It is straightforward to see that $(\bigwedge^{\mathbf{m}} \mathbf{u})^t$ leaves stable each *G*-invariant subspace of $\bigwedge^{\mathbf{m}} \mathbf{V}$, so it suffices to show that $\bigwedge^{\mathbf{m}}(\mathbf{u}^t) = (\bigwedge^{\mathbf{m}} \mathbf{u})^t$. In view of the uniqueness in 4.1.1 and the fact that $\bigwedge^{\mathbf{m}}(\mathbf{u}^1) = (\bigwedge^{\mathbf{m}} \mathbf{u})^1$, it suffices to show that $t \mapsto \bigwedge^{\mathbf{m}}(\mathbf{u}^t)$ is polynomial of degree f < p.

Let f_i denote the degree of the map $t \mapsto \bigwedge^{m_i} u_i^t$; evidently $f = \sum_{i=1}^s f_i$. Thus we are reduced to showing the following:

4.2.3. If V is a K vector space and $u \in GL(V)$ is unipotent, then the degree f of $t \mapsto \bigwedge^{m}(u^{t})$ satisfies $f \leq m(\dim_{K} V - m)$.

Let e_1, e_2, \ldots, e_n be a basis of V chosen so that the unipotent element u fixes the "standard flag"

$$E_0 = 0 \subset E_1 = Ke_1 \subset E_2 = Ke_1 + Ke_2 \subset \cdots \subset E_n = V.$$

It follows that x = u - 1 satisfies $x(E_i) \subseteq E_{i-1}$.

We adopt the convention that $e_i = \text{if } i \leq 0 \text{ or } i > n$. For each *m*-tuple of integers \vec{a} , let

$$e(\vec{a}) = e_{a(1)} \wedge e_{a(2)} \wedge \dots \wedge e_{a(m)} \in \bigwedge^m V$$

Of course $e(\vec{a}) = 0$ if any two components of \vec{a} coincide, or if any a(i) fails to lie between 1 and n. Put $|\vec{a}| = \sum_{i} a(i)$. It is straightforward to verify that:

4.2.4. If \vec{a} is an *m*-tuple such that $e(\vec{a}) \neq 0$, then $\frac{m(m+1)}{2} \leq |\vec{a}| \leq mn - \frac{m(m-1)}{2}$.

Fix \vec{a} with $e(\vec{a}) \neq 0$, and consider the morphism

$$f_{\vec{a}}: K \to \bigwedge^m V$$

given by $t \mapsto \bigwedge^m(u^t) \cdot e(\vec{a})$. The degree of the polynomial map $t \mapsto \bigwedge^m(u^t)$ is equal to $\sup\{\deg(f_{\vec{a}})\}$, the sup taken over all choices of \vec{a} as above.

In view of the definition of u^t and the fact that

$$\bigwedge^{m}(u^{t})e(\vec{a}) = (u^{t}e_{a(1)}) \wedge (u^{t}e_{a(2)}) \wedge \dots \wedge (u^{t}e_{a(n)}),$$

it suffices to show the following:

4.2.5. Let \vec{a} be such that $e(\vec{a}) \neq 0$. Whenever \vec{b} is an *m*-tuple of positive integers with $|\vec{b}| > m(n-m)$, then $e(\vec{a}-\vec{b}) = 0$.

To prove this, we note that 4.2.4 gives an upper bound for $|\vec{a}|$, so we have

$$|\vec{a} - \vec{b}| = |\vec{a}| - |\vec{b}| < |\vec{a}| - m(n - m) \le mn - \frac{m(m - 1)}{2} - m(n - m) = \frac{m(m + 1)}{2},$$

whence $e(\vec{a} - \vec{b}) = 0$ by the lower bound given in 4.2.4. We have thus verified 4.2.2.

The fact that H is saturated now follows; as noted above, this completes the proof of Theorem 3.

REFERENCES

- [Bou72] N. Bourbaki, *Groupes et algèbres de Lie*, Hermann, Paris, 1972.
- [Che54] Claude Chevalley, *Théorie des groupes de Lie, Tome III*, Hermann, Paris, 1954.
- [Hum80] James Humphreys, *An introduction to Lie algebras and representation theory*, third ed., Grad. Texts in Math., no. 9, Springer Verlag, 1980.
- [Jan87] Jens C. Jantzen, *Representations of algebraic groups*, Pure and Applied Mathematics, vol. 131, Academic Press, Orlando, FL, 1987.
- [Jan96] Jens C. Jantzen, *Low dimensional representations of reductive groups are semisimple*, Algebraic Groups and Related Subjects; a Volume in Honour of R. W. Richardson (Cambridge) (et al. G. I. Lehrer, ed.), Austral. Math. Soc. Lect. Ser., Cambridge Univ. Press, Cambridge, 1996, pp. 255–266.
- [KMRT98] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, *The book of involutions*, Amer. Math. Soc. Colloq. Publ., vol. 44, Amer. Math. Soc., 1998.
- [Mat90] Olivier Mathieu, *Filtrations of G-modules*, Ann. Sci. École Norm. Sup. **23** (1990), no. 2, 625–644.
- [McNa] George J. McNinch, *Filtrations and positive characteristic Howe duality*, Math. Z., to appear.
- [McNb] George J. McNinch, *Semisimple modules for finite groups of Lie type*, J. London Math. Soc., to appear.
- [McN98] George J. McNinch, *Dimensional criteria for semisimplicity of representations*, Proc. London Math. Soc. **76** (1998), no. 3, 95–149.
- [Sei87] Gary M. Seitz, *Maximal subgroups of classical algebraic groups*, vol. 67, Mem. Amer. Math. Soc., no. 365, Amer. Math. Soc., Providence, Rhode Island, May 1987.
- [Ser94] Jean-Pierre Serre, *Sur la semi-simplicité des produits tensoriels de représentations de groupes*, Invent. Math. **116** (1994), 513–530.
- [Spr98] T.A. Springer, *Linear algebraic groups*, 2nd ed., Progr. in Math., vol. 9, Birhäuser, Boston, 1998.