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ABSTRACT. This paper answers a question posed by Jean-Pierre Serre; namely, a proof
is given that if V' is a semisimple finite dimensional representation of a group G over a
field K of characteristicp > 0, and m(dimgx V —m) < p, then A"V is again a semisimple
representation of G.

1. INTRODUCTION

An important feature of the representation theory of a group G over a field K is the
following: given representations (modules) IV and W of the group algebra K G, the ten-
sor product V ®x W is again a representation of K'G. In this paper, all representations
will be assumed finite dimensional over K. When the field K has characteristic zero,
the notion of semisimplicity is stable under the tensor product; namely, if V. and W are
semisimple K'G modules then V @, W is again semisimple ([Che54], p. 88). In par-
ticular, when K has characteristic 0 and V' is semisimple, the modules V", A"V (the
exterior power of V), and S™V (the symmetric power of V) are semisimple for all n > 0.

If the characteristic of K is p > 0, the tensor product is not as well behaved. Never-
theless, J.-P. Serre has established the following condition for semisimplicity:

Theorem 1. (Serre, [Ser94] Théoreme 1) Assume that K has characteristicp > 0 and
thatV;, 1 < i < r, are semisimple representations of G. If y_._,(dimg V; — 1) < p, then
Vi®eV,®---®V, is again semisimple.

Serre also proves the following:
Theorem 2. (Serre, [Ser94] Théoreme 2) Assume that K has characteristicp > 0 and

. . . . . +3 .
that V' is a semisimple representation of G of dimension n. Ifn < pT’ then \*V is

semisimple.
Serre finally poses the following generalization of the previous result:

Problem 1. (Serre, [Ser94]) Let V' be a semisimple representation of G of dimension n.
Let m > 0, and assume that m(n —m) < p. Is A"V semisimple?

Theorem 2 provides an affirmative answer to this problem for m = 2. During the
initial work on this paper, the author was also aware of unpublished work of Serre
which gave an affirmative answer for m = 3.

Date: September 14, 1999.
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Some time after the publication of [Ser94], Serre generalized this question a bit
more, as follows:

Problem 2. (Serre, unpublished) Let V = (V;, V4, ..., V) be a sequence of semisimple
representations of KG, and let m = (my,..., m,) where the m; are integers satisfying
1 <m; < dimg V; = n, for each i. Put

A"V =AN"Vi Rk ...0x N V..
Ity mi(n; —m;) < p,is A™V semisimple?

We introduce some notations for convenience; let M denote the class of all finite
sequences V = (V4,...,V;) for s > 1 of semisimple K'G modules. We say that V has
type s if V involves s semisimple K'G modules. Given V € M of type s, let V'(V) denote
the set of all integral s-tuples m = (mg,...,ms) such that 0 < m; < dimg V; = n; and
>or_ mi(n; —m;) < p. Given m € N(V), we may form the module A\™V as above. In
this paper, we prove:

Theorem 3. Problem 2 has an affirmative answer. More precisely, for everyV € M, and
foreverym € N(V), NV is semisimple.

Notice that the theorem implies Theorems 1 and 2, and it implies that Problem 1
has an affirmative answer.

The chronology of the solution is as follows. The author first proved that Problem 1
has an affirmative answer when V' is an absolutely simple G module. Upon completion
of this work, the author learned that J.-P. Serre had posed Problem 2 and, at roughly the
same time, verified its validity through a quite different argument involving the notion
of “G-completely reducible subgroups” of a reductive algebraic group G as described
in his June 1997 lectures at the Isaac Newton Institute in Cambridge. Upon Serre’s
suggestion, the original techniques of the author (those used in answering Problem
1 in the absolutely simple case) were considered for Problem 2; this re-examination
produced the proof of Theorem 3 given here.

The result of this paper fits into a family of results relating the dimension of a rep-
resentation to its semisimplicity. The results of [Ser94] have already been pointed out.
When the group G is a reductive algebraic group over K, Jantzen [Jan96] proved that
any rational representation V' with dimg V' < p is automatically semisimple; he proves
the same for the finite groups of F, rational points G(F,) — although in this case one
must exclude factors of type A, from G.

When G is quasisimple of rank r, the author has generalized Jantzen’s result; namely
he has shown [McN98] that whenever dimg V' < r.p, V is semisimple. This work was
extended in [McNb] to cover the finite groups G(F,); however, there are a few more
exceptions than in Jantzen’s situation.

Our proof of Theorem 3 follows closely that of Theorem 1 given in [Ser94]. The basic
idea is to prove the Theorem first in case G is a simply connected, connected, simple
algebraic group; in this setting the argument is handled via the linkage principle com-
bined with weight combinatorics. See §3 for the argument in this case. The result for
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general groups is obtained through a saturation process. In §4, we adapt the saturation
procedure of Serre to obtain the desired result.
[ would like to thank Jean-Pierre Serre for some valuable suggestions.

2. PRELIMINARIES AND REDUCTIONS

2.1. Notations. Tensor products, exterior powers, and symmetric powers are always
taken over the fixed ground field K unless otherwise noted. The notation V™ means
the m-fold tensor product of V' with itself. When V' is a vector space, the dual vector
space is denoted V*.

2.2. Some multilinear algebra. If G is a group, and L is any 1 dimensional X G mod-
ule, any L-valued G-equivariant non-degenerate bilinear pairing 5 between K'G mod-
ules V and I induces a canonically defined K G isomorphism § : V = W* @y L. In-
deed, one can canonically identify W* @y L with Homy (W, L); then (v)(w) = B(v, w)
forallv e Vandw € W.

Note that in the above situation, one must have dimx V = dimx W; call this di-
mension n. For any 1 < m < n, one has an induced G-equivariant bilinear pairing
B N"V x N"W — L®™ determined by the rule B(vy A -+ A vy, wy A -+ A wy,) =
det(5(vs, wy))s where the determinant is computed in the tensor algebra of L. In par-
ticular, one has a K'G isomorphism

(2.2.a) B: NV = (N"W)* @k LO™,

2.2.1. For V any K G module of dimension n, write det(1) for the 1 dimensional repre-
sentation A\"V. For each 1 < m < n, the pairing . : A"V x A"V — det(V) given by
multiplication in the exterior algebra of V' is G-equivariant and non-degenerate, hence
there is a K G isomorphism

i NV = (NTVY @ det(V).

2.3. An Example. Fix m > 2 be an integer. In this section, let K be an algebraically
closed field of characteristic p > m, with p = —1 (mod m). Consider the group G =
SLy(K), and take for V the “natural” 2-dimensional G module. When d > 1, the space
SV of homogeneous polynomials of degree d in a basis of V' affords a representation
of G which we denote V/(d). This representation satisfies dimy V' (d) = d + 1, and in the
notation of [Jan87, I1.2], one has that V (d) = H°(d) is the induced module with highest
weight d. In particular, V'(d) has simple socle L(d). Finally, V' (d) is simple if and only if
d < p, and Steinberg’s tensor product theorem 3.3.1 shows that

L(d) ~ L(dy) ® L(pdy) = L(do) ® L(dy)™
ifd = d0+pd1With0 < do Sp— 1andd1 > 0.

2.3.1. With G and m as above, there is a simple G-module W, such that m(dimg W —
m) = p+ 1 and so that \"'W is not semisimple.
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k
Proof. Let k = m* — m + 1; by hypothesis, d = pt

simple G module with highest weight d = Z%k. Since p > Z%k, this simple module

is an integer. Put W = L(d), the

coincides with the module V'(d) and hence

k
2.3.b) n = dimg W = 7%.
It follows that
(2.3.0) mn—m)=p+k+m-—m?=p+1,
as desired.

The arguments given below in the proof of 3.5.3 for rank 1 show that p + 1 is the
highest weight of A"W. Since W = H°(d) is an induced module, W®™ has a good
filtration (i.e. a filtration by induced modules) according to a well-known theorem of
Donkin, Wang, Mathieu (see [Mat90]).

Since p > m, A\"'W is asummand of the module W*®™, hence by [Jan87, Prop 11.4.16(b)],
A" W has a good filtration. Since p+ 1 is the highest weight of this module, the induced
module H°(p + 1) must appear as a filtration factor. By Steinberg’s tensor product the-
orem, the socle of H°(p + 1) is 4 dimensional. Since p > 3, p + 2 = dimyx H’(p + 1) is at
least 5, so this induced module is not semisimple and the proposition follows. O

Remark 2.1. The above generalizes the example given in [Ser94, Appendice, Remarque
(1)]. One can even argue as in loc. cit.; one observes that, for « > 0, V(a) may be
identified with the space of homogeneous polynomials of degree « in the variables x
and y where = and y are a weight-space basis for V. Hence one may define

: . o
0:N\N"V(d) = V(p+1)viad(fi - A fin) = det (&Cj_l—aym‘j)m%m'

One can show that ¢ is surjective and G-linear.
2.4. Some important reductions. We observe the following trivial but useful fact:
2.4.1. Let1 < m < n be positive integers. If m(n — m) < p, thenm < p andn < p.

This implies in particular thatif V € M and N (V) is non empty, then dim V; < p for
each :. Next, we observe:

2.4.2. Theorem 3 holds provided it is verified when the field K is algebraically closed.
Proof. LetV € Mandm € N (V). If K’ D K is a field extension, one has easily

(ARV) ®x K~ Ng (V @k K');
(where V@i K' = (Vi @ K', ...,V @k K')).

In particular, if A% (V®x K') is semisimple, then also AV is semisimple. It only re-
mains to see that V; ® x K’ is semisimple for each j. Since dimg V; < p, the argument in-
voked in [Ser94] Lemme 1 applies; Serre’s argument shows that the center of End¢ (V)
is a separable field extension of K, hence that V} is absolutely semisimple. O



SEMISIMPLICITY OF EXTERIOR POWERS OF SEMISIMPLE REPRESENTATIONS OF GROUPS 5

We assume from now on that K is algebraically closed.
2.4.3. Theorem 3 holds provided it is verified for thoseV € M for which allV; are simple.

Proof. Let S denote the set of all finite sequences of positive integers, and give S the
following partial ordering. For a = (o, ...,a5),8 = (b1,...,0:) € S, wesay thata <
provided thats > tand Y7, s = >, ;.

Observe that each a € S lies over a minimal element in this order; namely, if a =
> «, then the tuple § = (1,1,...,1) is the unique minimal element of S that satisfies

f <o
If V e Misof type s, put
I=1V)=(len(}}),...,len(Vj)),
where len(V;) denotes the length (number of composition factors) of the KG module
Vi.

Consider V € M, with corresponding [ = [(V) € S. Observe that all of the modules
in V are simple if and only if / is minimal in S; since there is nothing to prove in that
case, assume that / is not minimal, and that the theorem is known for any W € M for
which [(W) < [. Without loss of generality, assume that ; ~ V] @ V" where V/ and V"

are non-zero K G modules. Let d, d’, d’ denote the dimensions of V;, V/, V/".
For m € N(V) one has

A"V ~ @ /\n(i’j)W
i+j=my
where W = (V/, V"V, ..., V) and n(i,j) = (i,j,ma, ms,...,ms) for 0 < j < m;. Note
that /\“(”)W =Ounlessl1 <:<dand1<j<d".
It is straightforward to see that [(W) < [; the result follows by induction provided

we argue that n(i,j) € N (W) whenever A\"™W £ (. The required assertion follows
immediately from the inequality

my(d —my) =i(d — i) + j(d" = j) +i(d" = j) + j(d' — 1) Zi(d — i) + j(d" - j)

For Ve M,put N (V) = {m € N(V) : 1 < m; < dimg V;/2 for each i}.
2.4.4. Theorem 3 holds provided it is verified for everyV € M andm € N'(V).

Proof. A KG module W is semisimple if and only if the dual module W* is semisimple;
similarly, W' is semisimple if and only if W ® L is semisimple for any 1 dimensional
representation L.

LetV € M, and m € N (V). Suppose V has type s, and consider J C {1,2,...,s}.
Let m’ be the s-tuple such that m/, = n; — m, fori € J, while m; = m, otherwise. Define
V' by the rule V/ = V;* fori € .J, and V/ = V; otherwise. Evidently one has m’ € N(V").
It follows from (2.2.1) that A™V ~ A™ V' @ L for some 1 dimensional K G module L;
since /\m/V’ is semisimple by assumption, the semisimplicity of A™V is obtained. O
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A KG-module V will be called tensor decomposable if V ~ X ®x Y for KG modules
X and Y with dimyg X > 1 and dimg Y > 1; otherwise, V' is tensor indecomposable.

Of course, any module of prime dimension is tensor indecomposable. A straight-
forward induction shows that any A'GG module may be written in at least one way as a
tensor product of finitely many tensor indecomposable modules.

2.4.5. Theorem 3 holds provided it is verified for thoseV € M for which eachV; is tensor
indecomposable.

Proof. Assume the conclusion of Theorem 3 is valid for those V € M for which each
V; is tensor indecomposable, and let V € M be arbitrary. According to 2.4.4, we must
show that A™V is semisimple for each m € N'(V). Let j > 0 be the number of i such
that V; is tensor decomposable; if j = 0 there is nothing to do, so suppose j > 0 and
proceed by induction on j.

Without loss of generality we may suppose that V; is tensor decomposable, say

Vi~ X1 Qg Xo Q-+ QO X,
with X; tensor indecomposable and r > 2. Fixm € N (V) and put

W= (Xt Xy, Xy Xy Xy X Ve, V),

N v~
mi mi mi

n=(1,...,1,mg,mg,...,my).
——
Evidently A™V is a quotient of A"W. The list W has only j — 1 tensor decomposable

modules, so the result follows by induction provided n € N (W).
Letz; = dimg X, forl1 <i<r,andletd = z; - x5 - - -z, = dimg V;. Observe that

Zni(dimKW}- —n;)=my(x; + 20+ +x, — 1)+ ij(dimKV} —m;).

Jj=2

Since m € N(V), one has m; < d/2 which implies that m;(d — m;) > imad. So, it
suffices to prove that my (1 + zo + -+ 2, — 1) < mgd, or equivalently that

x1x2.--xr

(2.4.d) 5

>x1+x0+ - +x— T

Since z; > 2 for each i, we may write z; = 2 + y; for a non-negative y;; thus

:L’l-..l‘r
2

1 1,
25(2+y1)“'(2+%)25(2 + 201 + 2y0 + - - - + 2y,
=2"""d o fa+ o, —2r

Asr > 2, one has 2"~! > r and the inequality (2.4.d) is verified. O
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3. THE PROOF IN THE CASE OF A LINEAR ALGEBRAIC GROUP.

Let G be a linear algebraic K -group, where K is an algebraically closed field of char-
acteristic p > 0. Assume that

[G:G°#0 (mod p),

where G° denotes the identity component of G. Throughout this section, we fix V € M
and we assume that V is rational, i.e. that each V; is a rational representation of G (i.e.
that the homomorphism G — GL(V;) is a morphism of algebraic groups).

3.1. Main result in the algebraic case. In this section, we prove the following state-
ment:

3.1.1. The conclusion of Theorem 3 is valid in case G is an algebraic group for which
|G : G°] is prime to p and V is rational.

3.2. Reduction to the quasisimple case. Since the finite group G//G° has order prime
to p, all of its representations in characteristic p are semisimple. Since G is an extension
of G/G° by the connected algebraic group G°, it follows from [Ser94, §3.4,Lemma 5]
that A\™V is semisimple for G if and only if it is semisimple for G°. Thus we may and
shall assume that G is connected.

Let N <« G denote the kernel of the homomorphism G — [];_, GL(V;). Since @;_, V;
is a semisimple K'G module, it is well known that G/N is reductive. Since A™V is
semisimple for G if and only if it is semisimple for G/N, we may replace G by G/N and
hence assume that G is connected and reductive.

Now, for connected reductive G, there is (see e.g. [Spr98, Ch. 9]) an isogeny

[[¢ixT—¢

where [ [, G, is a finite direct product of simply connected, quasisimple algebraic groups,
and 7 is a torus. It follows from [Jan96, §3] that a G module W is semisimple if and only
if W is a semisimple module for each G; (and for 7', which is trivial).

Hence, we may assume that G is simply connected, and quasisimple.

3.3. The simply connected, quasisimple case. Let 7" be a maximal torus of G, let X
denote the character group of 7', and let ® denote the set of roots of 7. Choose a Borel
subgroup B of GG containing 7’; this choice determines a system of positive roots. Pick
a system of simple roots A and for a € A, let ®, € X denote the corresponding fun-
damental dominant weight.

A weight X = 3 _ n.@, € X is called dominant if n, > 0 for every o, and a
dominant weight X is called restricted if n, < p for every a. The subset of dominant
weights is denoted Xt and the subset of restricted weights is denoted Xj.

For each dominant weight, there is a corresponding simple rational G module de-
noted L(\); furthermore, any simple rational G module is isomorphic to a unique L(\).

For a dominant weight A, we have a (finite) p-adic expansion

)\:)\0+p)\1+p2)\2+---
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with each \; restricted. The importance of representing weights in this way is the fol-
lowing result:

3.3.1. (Steinberg’s Theorem) For \ as above, there is a G-module isomorphism

L(A) ~ Q) L(\)!

i>0
where W' denotes the d-fold Frobenius twist of a rational G module W .

As a consequence, note that if A = p')\’ for M’ € X, then for any m
[i]
(3.3.€) ATLA) = A™ (L)1) ~ (/\%(X))

According to 2.4.3 we may assume that each V; is simple; thus there are dominant
weights \; such that V; ~ L();). By 2.4.5 we need consider only tensor indecomposable
simple modules, so we may assume, in view of Steinberg’s Theorem, that \; = pYiy;
where y; is restricted and N; > 0.

We will prove the following

3.3.2. Assume that N; = 0, i.e. that \; € X, for each i. Then \™V is semisimple and
each composition factor has restricted highest weight.

For the moment, though, let us observe that 3.3.2 suffices to prove 3.1.1. Indeed, if
s = 1, (3.3.e) permits one to reduce to the case \; € X;, so we may suppose s > 1 and
proceed by induction on s.

Without loss of generality, we may suppose that A\y,..., A\, € Xj and A\yq,..., s €
pX. Foranym € NV (V), one has

AV = AV @ (A™ V)
wherem' = (my, ..., m;), m" = (myiq,...,m.), V' = (Vi,...,V;),and V" = (V1 . vy,
If t = 0, it suffices to prove that /\m”V” is semisimple; working by induction on the
minimal value of N;, one may reduce to the case ¢t > 0.

This being done, 3.3.2 shows that /\m'V’ is semisimple and all its composition fac-

tors have restricted highest weight. By induction on s, the module /\mHV” is semisim-
ple, and (3.3.e) shows that all of its composition factors have highest weight in pX.
Steinberg’s Theorem now shows that A™YV is itself semisimple.

In the remainder of this section, we finish the verification of 3.1.1 by proving 3.3.2.

3.4. The linkage principle. Let C C X denote the closure of the lowest dominant

alcove for the dot action of the affine Weyl group W,. Then C is a fundamental domain

for this action of W,,. The dominant weights in this set can be described as follows:
Cr=CnX*={AeX": (A p.B) <p)

where £ is the highest short root in ®. Denote by C the set C* U {0}.
The following gives for us a useful criteria for membership in C.
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3.4.1. [Ser94, Prop. 3, Prop. 5] Let A € X;. Ifdimy L(\) < pthen A =0or{(\A+p,5") < p;
equivalently, A € C.

The linkage principle (see [Jan87, 11.6]) implies the following:

3.4.2. [Jan87, 11.6.13,I1.5.10] If A\ € C, then dimg L()\) is equal to the value d()\) of the
Wey!l degree formula:

d(\) = H</\+—p’av>

a>0 <p7 av>

Let the character ofa G module M be the element of Z[X] given by ch(M) = 3 dimg M,e",
where M, denotes the  weight space of M and the e are basis elements for Z[X]. For
A € X1, let Lg()\) denote the simple module with highest weight A for the split simple
Q Lie algebra gg with root system @; we denote ch(Lg())) by x()\) (the character of a
go module is defined via the weights of a maximal toral subalgebra on the module).
For m > 1, it follows from the representation theory of gg that there is a finite subset
H(A,m) C X+ such that

(3.4.D ch(A"La(N) = 22 ennm mux (1)
for suitable multiplicities m,, > 0.

For \ € C, [Jan87, 11.6.13] actually shows that ch(L())) = ch(Lg())); it follows from
[Bou72, VIII §7, exerc. 11] that:

3.4.3. For A € Candm > 1, ch(\"L(\)) = ch\"Lg()\). In particular, any weight v of
N"L()\) satisfiesv < p for some i € H(\, m).

The significance of the linkage principle for semisimplicity is demonstrated by:
3.4.4. [Jan87,11.6.17,11.2.12 ()] If A, p € C, then Ext(L(\), L(1)) = 0.
After one notes C C X, 3.4.4 has the immediate consequence:

3.4.5. Suppose that (v + p,3Y) < p for each weight v of the G module M. Then M is
semisimple and each composition factor of M has restricted highest weight.

3.5. Weight considerations. Let us say that an admissible pair (A, m) consists in A €
X*Tand 1 <m < d(\)/2such that

(3.5.8) (v +p,8") < m(d(A) —m)
for each weight v € H(A\, m).

Remark 3.1. Let (A\,m) be a pair as above. Since each weight v € #H(\, m) satisfies
v < mA\, one knows that (A, m) is admissible in case (m\ + p, 8Y) < m(d(\) — m).

Define a partial order relation on X by the following simple rule: say that ; — A
provided A — € X,

3.5.1. Let ¢ > 0 be a real number. Suppose that d(u) > c(u+ p,8Y). If u — A, then
d(A) > c(A+p, B8Y).
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Proof. For any positive root «, we have
(A+pa”) = (p+pa’)=(A—pa’) >0
since A — u € X . Inspecting the Weyl degree formula, it is then clear that

(A+p,B") (A+p,8) v
dO‘)Zd(M)'m W+—M20<A+p,6 )y

as desired. O

> c(p+p, 5Y)

Remark 3.2. The numberings of the fundamental dominant weights used in the fol-
lowing result, and throughout this paper, are those used in the tables in [Bou72].

3.5.2. Suppose the rank of the root system is at least 2, and let \ € X*. Then

(3.5.h) d(X) > 2(\+ p, BY),
unless \ is among the set of weights £ = £(®) indicated in the following table:
® & P £
A2 ®17®272®172®2 Orar Z 3 (O]
Az @1, W, @3 Dyyr > 5| @
AT,TZ4 w1, @O, Dy @i,i:1,3,4
By W1, @2 G @1, @2
Bs Wy, W3
B..r>4| @

Remark 3.3. In [McN98], the author proves a slightly stronger estimate of this sort;
namely, that dimy L(\) > r(\ + p, 8¥) for almost all \. However, the list of exceptional
A is larger, and the techniques used are somewhat more unwieldy than the argument
given here due to the fact that dimy L(\) # d()) in general.

Sketch of proof. Initially, let A be a fundamental dominant weight. In [Bou72] Table 2,
the value of d()\) is recorded for each indecomposable root system and each funda-
mental dominant weight. A straightforward computation of (A + p, 3¥) in each case
yields immediately the assertion that A satisfies (3.5.h) unless ) is among the specified
exceptions.

In view of 3.5.2, the assertion holds for ® = E, E;, Eg, F,. Furthermore, it suffices
to prove that (3.5.h) is valid for A\ = p; + po for all possible fundamental weights
and ., which fail to satisfy (3.5.h); in most cases this is true. We list below those X for
which one must check (3.5.h), and we indicate the value of d(\) for each such J; it is
then straightforward to verify (3.5.h). For unbounded rank, we provide references for
the dimension assertions; in low rank the calculation of d(\) is straightforward (note
that some labor may be avoided in case ® = Ay, By, G, as d()) is given in closed form
in [Huma80, §24.3] for those ®).

e d=A,r >4\ =20,2®,, @ + @,. According to [McN98, Props. 4.2.2,4.6.8]
one has (forr > 1):

d2@,) = d(2@,) = (T —g 2) and d(@, + @,) = r(r + 2).
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o & = A3: A= 2Ws. d(?@g) = 20.

o &= Ay )\ =3m@,3@y, 20 + 2@,. d(A) = 10, 10, 27 respectively.

e d=B,r>4d=0C,r>3®=D,r >5 \=2m;. According to [McN98,
Props. 4.2.2,4.7.3,4.8.1] one has:

2 2 .
d(2m,) = ( r; ) —ewheree =1,0,1for ® = B,,C,, D, respectively

e d=PB:1r=23\=20,20,® +®,. Whenr = 2,d(\) = 14,10, 16 respec-
tively. When r = 3, d(\) = 27, 35, 48 respectively.
e & =Dy \=wy,@; + o, forall pairs i, j € {1,3,4}. d(@2) = 28, d(@; + @;) = 56
fori # j. d(2m;) = 35 foreachi € {1, 3,4}.
o =Gy A =2w1,20,, @1 + @2. d(\) = 27,77, 64 respectively.
U

Our goal is to list those pairs (A, m) which fail to be admissible. Towards this end, we
introduce the subset &' C £ as follows.

P & P o

A, (r>2) @, D.(r>5) @

Br (7” > 2) (v f] D4 W1, W3, Wy
OT (7" Z 2) W

3.5.3. Let A € Xt andlet1 < m < d(\)/2. Then (\,m) is admissible unless one of the
following holds:
(1) = A,
2)m=1, xe& and®isoneof A, (r > 2), B, (r >2),0rC, (r >2).
B m=2 = (O] and ® = 02.
If (A, m) is not admissible, then
(3.5.0) (+p,BY) <m(d\) —m)+ 1.
forany € H(X,m).
Proof. We first verify (3.5.i) when ® has rank 1. In this case X may be identified with Z,

and X with Z-,. Fora € X, onehasd(a) = a+ 1;if 1 <m < a+ 1, the gg = s,(Q)
module A" Lg(a) has highest weight given by

b:a+(a—2)+-~~+(a—2(m—1)):ma—22j:m(a+1—m)

whence b+ 1 = (b+ p,3Y) = m(a +1 —m) + 1. The remaining assertions of 3.5.i are
straightforward to verify for the indicated inadmissible pairs; we omit the details.

For the remainder of the proof, we assume that the rank of ¢ is at least 2; assume first
that A € &, i.e. that A satisfies (3.5.h). As noted in Remark 3.1, one may test admissibility
by considering v = mJ; for such a A one has

m - d(X)
2

(mX+p, 87) <mA+p, ") < < m(d(A) —m).
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Thus (A, m) is admissible.
Now let A € £\ &’; in this case one deduces the admissibility of (A, m) for each
1 <m < d(\)/2via Remark 3.1 and the following data:

o A d(A) (mA+p,BY)
A2 201,200, 6 2m + 2
G2 (O] 7 2m+5
G2 W9 14 3m+5

Finally suppose that A € £’. It follows from constructions in [Bou72, VIII] that in the
expression (3.4.f) one has m, = 1 for each 1 € H(\, m), and that H (A, m) is as specified
in the following table (3.5.j). (For type A,, B,, and C,, see loc. cit. VIII.§13 no. 1,2,3
respectively; for type D,, see loc. cit. VIII.§13 no. 4 and exerc. VIIL.§13.10. Note that
a description of the character A" L(@;) for type D, and i = 3,4 is easily obtained by
triality from the given description of A" L(@,).)

3.5)) @ A d(\) Conditions H(A,m)
A, o r+1 1<m<r ®m
A, @, 7+1 1<m<r Dr41-m
B.,r>2 @ 2r+1 1<m<r-—1 @,
B.,r>2 @ 2r+1 m=r 20,
C.,r>2 @ 2r I1<m<rm=0 (mod2) @, Dn_2,...,020
C.,r>2 @ 2r 1<m<rm=1 (mod2) @, DOn2,..., D03 D1
D.r>4 @ 2r 1<m<r—-2 D
D.r>4 @ 2r m=r—1 @, + Orq
D.r>4 @ 2r m=r 20,,20,_1

To complete the proof, fix A € £ and letd = d(\), 2 < m < d/2. Suppose v €
H(A,m). One has m(d — m) > m(d/2) > d, so in this case the admissibility of (A, m)
follows provided (v + p, 5¥) < d; the data in table (3.5.j) permits one to verify this latter
condition holds if  # C, (and m > 2).

Supose now that & = C,; we only must consider A = @;. Using table (3.5.j), one
checks that (v+p, 8¥) < 2r+1foreach v € H(A, m). Assume first that3 < m < d/2 = r;
in that case m(d — m) > 3r > 2r + 1 and the result holds. When m = 2 and r > 3, one
gets the desired result by noting m(d — m) =2(2r —2) =4(r — 1) > 2r + 1.

The above handles m > 2. When m = 1, we only must consider & = D, and the
weight A = @,. The table shows that (v + p,8") = 2r —2 < 2r — 1 = d — 1 for each
v € H(A 1) = {®;}, whence the admissibility of (@1, 1) in this case. O

We are now is a position to complete the proof of 3.3.2 (and hence of 3.1.1). Let
V = (L(\),...,L(\,)) with each ) restricted, and let m € N (V). In view of (3.4.1),
)\; € C foreach .

Any weight v of A™V has the form v = v; + - - - + v, where v; is a weight of A™ L(\;).
According to 3.4.3, there is a weight u; € H(\;, m;) with v; < y; since (v;, 8Y) < (i, 5Y),
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we may as well assume that v; € H(\;, m;) for each i. We will verify 3.3.2; in most cases
we will do this by checking that 3.4.5 holds.

After re-ordering, we may suppose that for some 1 <i < s+ 1, (\;, m;) is admissible
ifand only if j < i.

Suppose first that 7 > 1; in this case note that (3.5.i) yields (A, 5Y) < mg(d(A\p) — my)
for i < k. Combining this with the admissibility of the first i — 1 weights yields

H

i—

<U+p7ﬁv> <VJ‘|’1076V +Z Vjvﬁv <me )\K () <p,

7=1

as desired.
Now suppose thati = 1, i.e. that no pair (\;, m;) is admissible. If ® = A;, we have by
(3.5.1)

b= (v,8) <§:mz —mi) <p

whenceb+ 1= (v+p,5") < p,as asserted. So we now assume that the rank of ¢ is at
least 2. If s = 1, the semisimplicity of A™V is trivial in case m; = 1; the only situation
not handled by this observation is m; = 2, A\; = @;, & = C,. A straightforward com-
putation shows that A”L(®,) is semisimple with restricted composition factors unless
p = 2; see [McN98, Lemma 4.5.3] and note that p = 2 is ruled out by the condition
m € N (V).

Finally, suppose s > 1. Using (3.5.i), one has

<V+pa6v> SZ(VZ—Fp,BV) (8_1 paﬁv <Zml 1 ml)+s—(3—1)<p,ﬁv>
=1

—«h—ms+h—1

where h — 1 = (p, V) > 2 (h is the Coxeter number). Since s > 2, one has s > 1 and
3.4.5 is verified in this case.
This completes the proof of 3.1.1.

Remark3.4. LetV = L(\), A € £'. More can be said about the G module A"'V. If & = B,
or D,, assume p # 2. If & = C,, assume p > r. Then one has A"V ~ @, cyr ) L(1)-
These assertions are verified in [McN98, Prop. 4.2.2] in the following situations: ¢ =
A;®=B.,andm < r;® = D, andm < r — 1. For ® = B,, the assertion for \"V
follows from [Sei87, 8.1]; for ® = D,, the assertion for A"~V follows from [Sei87, 8.1].
When ® = C,, see [McNa, Prop. 6.3.5.] where the indecomposable summands of A"V
are worked out for all p. The only remaining situation is A"V for type D,. As a suitable
reference was not located, we sketch an argument.

Let F' be a field of characteristic p > 0, p # 2, and let (V,¢) be a non-degenerate
quadratic F'-space with dimpV = 2r, r > 3. Let G = SO(V, ¢); then G is the group
of F points of an algebraic group G of type D,, and V is an F-form of the rational G-
module L(@;). Assume that V' has an orthogonal basis {¢;} for which ¢(e;) = «;, and let
A = A(q) = (—1)"aq - - - ag,; of course a different choice of orthogonal basis results in a
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different value of A, but any choice yields the same element in /"% /(F*)?. In particular,
the field extension F’ = F(1/A) is well defined.

In [KMRT98, Proposition (10.22)], a G-automorphism 7 of A"V is constructed with
the property that 72 is given by multiplication with 1/A. Let V' = V ®p F’; then A"V’
is the direct sum of eigenspaces E.. for 7 with eigenvalues +-1/v/A. These eigenspaces
are G submodules of A"V’ (in fact, they are even F'SO(V’, ¢') submodules).

Write V' = Fe @ IV as an orthogonal sum with e non-singular, and let # = SO(W) <
G. Then H is the group of F points of an algebraic group of type B,_;. Evidently

resG(ANV) ~ N 'W e N'W.

Using (2.2.a), we have A" ~ A""'W, and we have already seen that this module is
absolutely simple for FH. Since res%(A"V’) has length 2, it follows at once that the
F'G modules E are simple. Working over an algebraic closure F' (or over any field
which splits ¢), one finds that the highest weights of A"V ®r F are 2®, and 2®,_;;
since these weights are incomparable, it follows by length considerations that \"V ®
F ~ L(2®,) ® L(2®,_,). In particular, £, and E_ are non-isomorphic. This gives the
claimed result. We have shown that A"V is an absolutely semisimple F'G module of
absolute length 2; if A € (F*)? then Endpq(\"V) ~ F' x I, otherwise Endpg(A"V) ~ F’
and A"V is simple for FG.

4. THE PROOF FOR AN ARBITRARY GROUP

The argument presented in this section follows very closely that given in [Ser94]. For
completeness we outline the entire argument.

4.1. Saturation. Let I be a vector space of dimension »n over K, and letu € GL(V') be
an element of order p. Then x = u — 1 is a nilpotent endomorphism of V' satisfying
P = 0.

One defines a homomorphism ¢, : K — GL(V') by using a truncated exponential.
More precisely, for t € K, define ¢,(t) = u* € GL(V) to be

p—1
t\ . t(t —1)

4.1. b= =1 -
4.1.k) u ;(Z)Jf +tr + 52 +
4.1.1. [Ser94, §4.1] The homomorphism ¢, : K — GL(V) is uniquely characterized by
the following properties:

P1. ¢,(1) = u.

P2. ¢, has degree < p, (i.e. t — u' is polynomial int of degree < p).

A subgroup H < GL(V) is called saturated if every unipotent element u of H satisfies
u? =1and u' € H foreveryt € K.

From our point of view, the important fact about saturated subgroups of GL(V) is
the following:

4.1.2. [Ser94, Proposition 11] Let H < GL(V') be an algebraic subgroup which is satu-
rated. Then [H : H°] # 0 (mod p), where H° denotes the identity component of H.
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4.2. The proof of Theorem 3. Let GG by a group, let V be a sequence of semisimple G-
modules of dimension n;, and let m € N(V). Let H denote the subgroup of GL(V) =
GL(V}) x - - - x GL(V;) consisting of all elements x so that A™(x) = A"z, @ --- @ Nz,
leaves stable each subspace of A™V which is stable under G. Then H is an algebraic
subgroup of GL(V), and A™V is arational H module. Furthermore, A™V is a semisim-
ple G module if and only if it is a semisimple module for H.

In view of the results of section 3, Theorem 3 will follow provided that we argue
[H : H°] # 0 (mod p). To verify this property, we invoke 4.1.2; we must verify that A is
saturated.

4.2.1. Letu € H be unipotent. Thenu? = 1.

Proof. This follows (as noted in [Ser94, 4.2]) since every unipotent in GL(V;) has this
property when dimg V; < p. O

4.2.2. Letu € H be a unipotent element. Thenu' € H forallt € K.

Proof. We must verify that A™(u') leaves stable each G-invariant subspace of A™V. It
is straightforward to see that (A\™u)’ leaves stable each G-invariant subspace of A\™V,
so it suffices to show that A™(u’) = (A™u)". In view of the uniqueness in 4.1.1 and the
fact that A™(u!) = (A™u)’, it suffices to show that ¢ — A™(u') is polynomial of degree

f <op.
Let f; denote the degree of the map ¢t — A" u; evidently f = >"° | f;. Thus we are
reduced to showing the following:

4.2.3. IfV is a K vector space and u € GL(V) is unipotent, then the degree f oft —
A" (u') satisfies f < m(dimg V —m).
Let ey, es,...,¢, be a basis of V' chosen so that the unipotent element « fixes the
“standard flag”
Eh=0CFkE =KegyChky=Kegt+Key, C---CE,=V.

It follows that © = u — 1 satisfies z(E;) C E;_;.
We adopt the convention that ¢; = ifi < 0 or ¢ > n. For each m-tuple of integers a,
let
6(5) = €q(1) N €q2) N+ N\ €q(m) € /\mV
Of course e(a@) = 0 if any two components of @ coincide, or if any () fails to lie between
1 and n. Put|d| = ), a(i). It is straightforward to verify that:

4.2.4. Ifd is an m-tuple such that e(d) # 0, then % < |al <mn— w
Fix @ with e(@) # 0, and consider the morphism
fa: K> N\"V
given by ¢t — A" (u') - e(@). The degree of the polynomial map ¢ — A™(u') is equal to

sup{deg(fz)}, the sup taken over all choices of @ as above.
In view of the definition of ' and the fact that

A" (u')e(@) = (u'eay) A (ulea)) A==+ A (U'eam)),
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it suffices to show the following:

4.2.5. Let @ be such that e(@) # 0. Whenever b is an m-tuple of positive integers with

-

6| > m(n —m), thene(d@ — b) = 0.
To prove this, we note that 4.2.4 gives an upper bound for |d|, so we have
m(m — 1) m(m + 1)
2 2 ’
whence ¢(@ — b) = 0 by the lower bound given in 4.2.4. We have thus verified 4.2.2. [

@ —b| = |a@] — |b] < |@] —m(n—m) <mn— —m(n—m) =

The fact that H is saturated now follows; as noted above, this completes the proof of
Theorem 3.
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