SEMISIMPLICITY OF EXTERIOR POWERS OF SEMISIMPLE REPRESENTATIONS OF GROUPS

GEORGE J. MCNINCH

ABSTRACT. This paper answers a question posed by Jean-Pierre Serre; namely, a proof is given that if V is a semisimple finite dimensional representation of a group G over a field K of characteristic $p > 0$, and $m(\dim_K V - m) < p$, then $\bigwedge^m V$ is again a semisimple representation of G.

1. INTRODUCTION

An important feature of the representation theory of a group G over a field K is the following: given representations (modules) V and W of the group algebra KG , the tensor product $V \otimes_K W$ is again a representation of KG. In this paper, all representations will be assumed finite dimensional over K . When the field K has characteristic zero, the notion of semisimplicity is stable under the tensor product; namely, if V and W are semisimple KG modules then $V \otimes_K W$ is again semisimple ([Che54], p. 88). In particular, when K has characteristic 0 and V is semisimple, the modules $V^{\otimes n}$, $\bigwedge^n V$ (the exterior power of V), and S^nV (the symmetric power of V) are semisimple for all $n \geq 0$.

If the characteristic of K is $p > 0$, the tensor product is not as well behaved. Nevertheless, J.-P. Serre has established the following condition for semisimplicity:

Theorem 1. *(Serre,* [Ser94] *Théorème 1) Assume that K* has characteristic $p > 0$ and *that* V_i , $1 \leq i \leq r$, are semisimple representations of G. If $\sum_{i=1}^r (\dim_K V_i - 1) < p$, then $V_1 \otimes V_2 \otimes \cdots \otimes V_r$ *is again semisimple.*

Serre also proves the following:

Theorem 2. *(Serre,* [Ser94] *Théorème 2) Assume that K* has characteristic $p > 0$ and *that V is a semisimple representation of G of dimension n.* If $n \leq \frac{p+3}{2}$ $\frac{1}{2}$, then $\bigwedge^2 V$ is *semisimple.*

Serre finally poses the following generalization of the previous result:

Problem 1. (Serre, [Ser94]) Let *V* be a semisimple representation of *G* of dimension *n*. Let $m > 0$, and assume that $m(n - m) < p$. Is $\bigwedge^m V$ semisimple?

Theorem 2 provides an affirmative answer to this problem for $m = 2$. During the initial work on this paper, the author was also aware of unpublished work of Serre which gave an affirmative answer for $m = 3$.

Date: September 14, 1999.

Some time after the publication of [Ser94], Serre generalized this question a bit more, as follows:

Problem 2. (Serre, unpublished) Let $V = (V_1, V_2, \ldots, V_s)$ be a sequence of semisimple representations of $K\tilde{G}$, and let $\mathbf{m} = (m_1, \ldots, m_s)$ where the m_i are integers satisfying $1 \leq m_i \leq \dim_K V_i = n_i$ for each i. Put

$$
{\textstyle\bigwedge}^{\mathbf m}\mathbf V={\textstyle\bigwedge}^{m_1}V_1\otimes_K\ldots\otimes_K{\textstyle\bigwedge}^{m_s}V_s.
$$

If $\sum_i m_i(n_i-m_i) < p$, is $\bigwedge^{\text{m}}\!{\mathbf{V}}$ semisimple?

We introduce some notations for convenience; let M denote the class of all finite sequences $V = (V_1, \ldots, V_s)$ for $s \ge 1$ of semisimple KG modules. We say that V has type s if V involves s semisimple KG modules. Given $V \in \mathcal{M}$ of type s, let $\mathcal{N}(V)$ denote the set of all integral \sum e set of all integral s -tuples $\mathbf{m} = (m_1, \ldots, m_s)$ such that $0 \leq m_i \leq \dim_K V_i = n_i$ and $\sum_{i=1}^s m_i(n_i - m_i) < p$. Given $\mathbf{m} \in \mathcal{N}(\mathbf{V})$, we may form the module $\bigwedge^\mathbf{m} \mathbf{V}$ as above. In this paper, we prove:

Theorem 3. *Problem 2 has an affirmative answer. More precisely, for every* $V \in M$ *, and for every* $m \in \mathcal{N}(V)$, $\bigwedge^{m}V$ *is semisimple.*

Notice that the theorem implies Theorems 1 and 2, and it implies that Problem 1 has an affirmative answer.

The chronology of the solution is as follows. The author first proved that Problem 1 has an affirmative answer when V is an absolutely simple G module. Upon completion of this work, the author learned that J.-P. Serre had posed Problem 2 and, at roughly the same time, verified its validity through a quite different argument involving the notion of "G-completely reducible subgroups" of a reductive algebraic group G as described in his June 1997 lectures at the Isaac Newton Institute in Cambridge. Upon Serre's suggestion, the original techniques of the author (those used in answering Problem 1 in the absolutely simple case) were considered for Problem 2; this re-examination produced the proof of Theorem 3 given here.

The result of this paper fits into a family of results relating the dimension of a representation to its semisimplicity. The results of [Ser94] have already been pointed out. When the group G is a reductive algebraic group over K , Jantzen [Jan96] proved that any rational representation V with $\dim_K V \leq p$ is automatically semisimple; he proves the same for the finite groups of \mathbb{F}_q rational points $G(\mathbb{F}_q)$ – although in this case one must exclude factors of type A_1 from G .

When G is quasisimple of rank r , the author has generalized Jantzen's result; namely he has shown [McN98] that whenever $\dim_K V \leq r.p$, V is semisimple. This work was extended in [McNb] to cover the finite groups $G(\mathbb{F}_q)$; however, there are a few more exceptions than in Jantzen's situation.

Our proof of Theorem 3 follows closely that of Theorem 1 given in [Ser94]. The basic idea is to prove the Theorem first in case G is a simply connected, connected, simple algebraic group; in this setting the argument is handled via the linkage principle combined with weight combinatorics. See §3 for the argument in this case. The result for general groups is obtained through a saturation process. In §4, we adapt the saturation procedure of Serre to obtain the desired result.

I would like to thank Jean-Pierre Serre for some valuable suggestions.

2. PRELIMINARIES AND REDUCTIONS

2.1. **Notations.** Tensor products, exterior powers, and symmetric powers are always taken over the fixed ground field K unless otherwise noted. The notation $V^{\otimes m}$ means the m -fold tensor product of V with itself. When V is a vector space, the dual vector space is denoted V^* .

2.2. **Some multilinear algebra.** If G is a group, and L is any 1 dimensional KG module, any L-valued G-equivariant non-degenerate bilinear pairing β between KG modules V and W induces a canonically defined KG isomorphism $\tilde{\beta}: V \stackrel{\simeq}{\to} W^* \otimes_K L.$ Indeed, one can canonically identify $W^* \otimes_K L$ with $\text{Hom}_K(W, L)$; then $\tilde{\beta}(v)(w) = \beta(v, w)$ for all $v \in V$ and $w \in W$.

Note that in the above situation, one must have $\dim_K V = \dim_K W$; call this dimension *n*. For any $1 \le m \le n$, one has an induced *G*-equivariant bilinear pairing β : $\bigwedge^m V \times \bigwedge^m W \to L^{\otimes m}$ determined by the rule $\beta(v_1 \wedge \cdots \wedge v_m, w_1 \wedge \cdots \wedge w_m) =$ $\det(\beta(v_s, w_t))_{s,t}$ where the determinant is computed in the tensor algebra of L. In particular, one has a KG isomorphism

(2.2.a)
$$
\widetilde{\beta}: \bigwedge^m V \to (\bigwedge^m W)^* \otimes_K L^{\otimes m}.
$$

2.2.1. For V any KG module of dimension n, write $det(V)$ for the 1 dimensional representation $\bigwedge^n V$. For each $1 \leq m \leq n$, the pairing $\mu : \bigwedge^m V \times \bigwedge^{n-m} V \to \det(V)$ given by multiplication in the exterior algebra of V is G -equivariant and non-degenerate, hence there is a KG isomorphism

$$
\widetilde{\mu}: \bigwedge\nolimits^m V \to (\bigwedge\nolimits^{n-m} V)^* \otimes_K \det(V).
$$

2.3. An Example. Fix $m > 2$ be an integer. In this section, let K be an algebraically closed field of characteristic $p > m$, with $p \equiv -1 \pmod{m}$. Consider the group $G =$ $SL_2(K)$, and take for V the "natural" 2-dimensional G module. When $d > 1$, the space S^dV of homogeneous polynomials of degree d in a basis of V affords a representation of G which we denote $V(d)$. This representation satisfies $\dim_K V(d) = d+1$, and in the notation of [Jan87, II.2], one has that $V(d) = H^0(d)$ is the *induced* module with highest weight d. In particular, $V(d)$ has simple socle $L(d)$. Finally, $V(d)$ is simple if and only if $d < p$, and Steinberg's tensor product theorem 3.3.1 shows that

$$
L(d) \simeq L(d_0) \otimes L(p d_1) = L(d_0) \otimes L(d_1)^{[1]}
$$

if $d = d_0 + pd_1$ with $0 \leq d_0 \leq p - 1$ and $d_1 \geq 0$.

2.3.1. *With* G and m as above, there is a simple G-module W, such that $m(\dim_K W$ $m = p + 1$ and so that $\bigwedge^m W$ is not semisimple.

Proof. Let $k = m^2 - m + 1$; by hypothesis, $d = \frac{p + k}{p}$ $\frac{1}{m}$ is an integer. Put $W = L(d)$, the simple G module with highest weight $d =$ $p + k$ $\frac{m}{m}$. Since $p >$ $p + k$ $\frac{m}{m}$, this simple module coincides with the module $V(d)$ and hence

(2.3.b)
$$
n = \dim_K W = \frac{p + k + m}{m}.
$$

It follows that

(2.3.c)
$$
m(n-m) = p + k + m - m^2 = p + 1,
$$

as desired.

The arguments given below in the proof of 3.5.3 for rank 1 show that $p + 1$ is the highest weight of $\bigwedge^m W$. Since $W = H^0(d)$ is an induced module, $W^{\otimes m}$ has a good filtration (i.e. a filtration by induced modules) according to a well-known theorem of Donkin, Wang, Mathieu (see [Mat90]).

Since $p > m$, $\bigwedge^m W$ is a summand of the module $W^{\otimes m}$, hence by [Jan87, Prop II.4.16(b)], $\bigwedge^m W$ has a good filtration. Since $p+1$ is the highest weight of this module, the induced module $H^0(p+1)$ must appear as a filtration factor. By Steinberg's tensor product theorem, the socle of $H^0(p+1)$ is 4 dimensional. Since $p \geq 3$, $p+2 = \dim_K H^0(p+1)$ is at least 5, so this induced module is not semisimple and the proposition follows.

Remark 2.1*.* The above generalizes the example given in [Ser94, Appendice, Remarque (1)]. One can even argue as in *loc. cit.*; one observes that, for $a > 0$, $V(a)$ may be identified with the space of homogeneous polynomials of degree a in the variables x and y where x and y are a weight-space basis for V. Hence one may define

$$
\theta : \bigwedge\nolimits^m V(d) \to V(p+1) \text{ via } \theta(f_1 \wedge \dots \wedge f_m) = \det \left(\frac{\partial^{m-1} f_i}{\partial x^{j-1} \partial y^{m-j}} \right)_{1 \le i,j \le m}
$$

.

One can show that θ is surjective and G-linear.

2.4. **Some important reductions.** We observe the following trivial but useful fact:

2.4.1. *Let* $1 \leq m < n$ *be positive integers. If* $m(n - m) < p$ *, then* $m < p$ *and* $n < p$ *.*

This implies in particular that if $V \in \mathcal{M}$ and $\mathcal{N}(V)$ is non empty, then $\dim V_i < p$ for each i. Next, we observe:

2.4.2. *Theorem 3 holds provided it is verified when the field* K *is algebraically closed.*

Proof. Let $V \in \mathcal{M}$ and $m \in \mathcal{N}(V)$. If $K' \supseteq K$ is a field extension, one has easily

$$
(\bigwedge\nolimits_K^{\mathbf m}\mathbf V)\otimes_K K'\simeq \bigwedge\nolimits_{K'}^{\mathbf m}(\mathbf V\otimes_K K');
$$

(where $\mathbf{V} \otimes_K K' = (V_1 \otimes_K K', \dots, V_s \otimes_K K')$).

In particular, if $\bigwedge_{K'}^{\mathbf m}(\mathbf V\otimes_K K')$ is semisimple, then also $\bigwedge_K^{\mathbf m}\! \mathbf V$ is semisimple. It only remains to see that $V_j\bar{\otimes}_K K'$ is semisimple for each $j.$ Since $\dim_K V_j< p,$ the argument invoked in [Ser94] Lemme 1 applies; Serre's argument shows that the center of $\text{End}_G(V_j)$ is a separable field extension of K, hence that V, is absolutely semisimple. is a separable field extension of K, hence that V_j is absolutely semisimple.

We assume from now on that K is algebraically closed.

2.4.3. *Theorem 3 holds provided it is verified for those* $V \in M$ *for which all* V_i *are simple.*

Proof. Let S denote the set of all finite sequences of positive integers, and give S the following partial ordering. For $\alpha = (\alpha_1, \dots, \alpha_s), \beta = (\beta_1, \dots, \beta_t) \in S$, we say that $\alpha \le \beta$ provided that $s \geq t$ and $\sum_{i=1}^s \alpha_i = \sum_{j=1}^t \beta_j$.

 $\sum \alpha_i$, then the tuple $\beta = (1, 1, \dots, 1)$ Observe that each $\alpha \in S$ lies over a minimal element in this order; namely, if $\alpha =$ \overline{a}) is the unique minimal element of S that satisfies

$$
\beta \leq \alpha.
$$

If $V \in \mathcal{M}$ is of type s, put

$$
l = l(\mathbf{V}) = (\text{len}(V_1), \dots, \text{len}(V_s)),
$$

where $len(V_i)$ denotes the length (number of composition factors) of the KG module V_j .

Consider $V \in \mathcal{M}$, with corresponding $l = l(V) \in \mathcal{S}$. Observe that all of the modules in V are simple if and only if l is minimal in S ; since there is nothing to prove in that case, assume that l is not minimal, and that the theorem is known for any $W \in \mathcal{M}$ for which $l(\mathbf{W}) < l.$ Without loss of generality, assume that $V_1 \simeq V'_1 \oplus V''_1$ where V'_1 and V''_1 are non-zero KG modules. Let d, d', d'' denote the dimensions of $V_1, V_1', V_1'',$

For $m \in \mathcal{N}(V)$ one has

$$
{\textstyle\bigwedge}^{\mathbf m}\mathbf V\simeq\bigoplus_{i+j=m_1}{\textstyle\bigwedge}^{\mathbf n(i,j)}\mathbf W
$$

where $\mathbf{W} = (V'_1, V''_1, V_2, \dots, V_s)$ and $\mathbf{n}(\mathbf{i}, \mathbf{j}) = (i, j, m_2, m_3, \dots, m_s)$ for $0 \le j \le m_1$. Note that $\bigwedge^{\mathbf{n(i,j)}} \mathbf{W} = 0$ unless $1 \leq i \leq d'$ and $1 \leq j \leq d''$.

It is straightforward to see that $l(W) < l$; the result follows by induction provided we argue that $n(i,j) \in \mathcal{N}(W)$ whenever $\bigwedge^{n(i,j)} W \neq 0$. The required assertion follows immediately from the inequality

$$
m_1(d - m_1) = i(d' - i) + j(d'' - j) + i(d'' - j) + j(d' - i) \geq i(d' - i) + j(d'' - j)
$$

For $V \in \mathcal{M}$, put $\tilde{\mathcal{N}}(V) = \{m \in \mathcal{N}(V) : 1 \le m_i \le \dim_K V_i/2 \text{ for each } i\}.$

2.4.4. *Theorem 3 holds provided it is verified for every* $V \in \mathcal{M}$ *and* $m \in \tilde{\mathcal{N}}(V)$ *.*

Proof. A KG module W is semisimple if and only if the dual module W^* is semisimple; similarly, W is semisimple if and only if $W \otimes L$ is semisimple for any 1 dimensional representation L.

Let $V \in \mathcal{M}$, and $m \in \mathcal{N}(V)$. Suppose V has type s, and consider $J \subseteq \{1, 2, ..., s\}$. Let m' be the s-tuple such that $m'_i = n_i - m_i$ for $i \in J$, while $m'_i = m_i$ otherwise. Define ${\bf V}'$ by the rule $V_i'=V_i^*$ for $i\in J,$ and $V_i'=V_i$ otherwise. Evidently one has ${\bf m}'\in \tilde{\cal N}({\bf V}').$ It follows from (2.2.1) that $\bigwedge^{\mathbf m}\mathbf V\simeq \bigwedge^{\mathbf m'}\mathbf V'\otimes_KL$ for some 1 dimensional KG module L ; since $\bigwedge^{\mathbf{m'}}\mathbf{V}'$ is semisimple by assumption, the semisimplicity of $\bigwedge^{\mathbf{m}}\mathbf{V}$ is obtained. $\quad \Box$

6 GEORGE J. MCNINCH

A KG-module V will be called tensor decomposable if $V \simeq X \otimes_K Y$ for KG modules X and Y with $\dim_K X > 1$ and $\dim_K Y > 1$; otherwise, V is tensor indecomposable.

Of course, any module of prime dimension is tensor indecomposable. A straightforward induction shows that any KG module may be written in at least one way as a tensor product of finitely many tensor indecomposable modules.

2.4.5. *Theorem 3 holds provided it is verified for those* $V \in M$ *for which each* V_i *is tensor indecomposable.*

Proof. Assume the conclusion of Theorem 3 is valid for those $V \in M$ for which each V_i is tensor indecomposable, and let $\mathbf{V} \in \mathcal{M}$ be arbitrary. According to 2.4.4, we must show that $\bigwedge^m V$ is semisimple for each $m \in \tilde{\mathcal{N}}(V)$. Let $j \geq 0$ be the number of i such that V_i is tensor decomposable; if $j=0$ there is nothing to do, so suppose $j>0$ and proceed by induction on j.

Without loss of generality we may suppose that V_1 is tensor decomposable, say

$$
V_1 \simeq X_1 \otimes_K X_2 \otimes_K \cdots \otimes_K X_r
$$

with X_i tensor indecomposable and $r > 2$. Fix $m \in \tilde{\mathcal{N}}(V)$ and put

$$
\mathbf{W} = (\underbrace{X_1, \dots, X_1}_{m_1}, \underbrace{X_2, \dots, X_2}_{m_1}, \dots, \underbrace{X_r, \dots, X_r}_{m_1}, V_2, \dots, V_s),
$$

$$
\mathbf{n} = (\underbrace{1, \dots, 1}_{rm_1}, m_2, m_3, \dots, m_s).
$$

Evidently \bigwedge^mV is a quotient of \bigwedge^nW . The list W has only j – 1 tensor decomposable modules, so the result follows by induction provided $n \in \mathcal{N}(W)$.

Let $x_i = \dim_K X_i$ for $1 \le i \le r$, and let $d = x_1 \cdot x_2 \cdots x_r = \dim_K V_1$. Observe that

$$
\sum_{i} n_i (\dim_K W_i - n_i) = m_1(x_1 + x_2 + \dots + x_r - r) + \sum_{j \ge 2} m_j (\dim_K V_j - m_j).
$$

Since $m \in \tilde{\mathcal{N}}(V)$, one has $m_1 \leq d/2$ which implies that $m_1(d - m_1) \geq \frac{1}{2}m_1d$. So, it suffices to prove that $m_1(x_1 + x_2 + \cdots + x_r - r) \leq \frac{m_1 d}{2}$ $\frac{a_1 d}{2}$, or equivalently that

(2.4.d)
$$
\frac{x_1 x_2 \cdots x_r}{2} \ge x_1 + x_2 + \cdots + x_r - r.
$$

Since $x_i \geq 2$ for each i , we may write $x_i = 2 + y_i$ for a non-negative y_i ; thus

$$
\frac{x_1 \cdots x_r}{2} = \frac{1}{2}(2+y_1)\cdots(2+y_r) \ge \frac{1}{2}(2^r + 2y_1 + 2y_2 + \cdots + 2y_r)
$$

= $2^{r-1} + x_1 + x_2 + \cdots + x_r - 2r$.

As $r \geq 2$, one has $2^{r-1} \geq r$ and the inequality (2.4.d) is verified.

3. THE PROOF IN THE CASE OF A LINEAR ALGEBRAIC GROUP.

Let G be a linear algebraic K -group, where K is an algebraically closed field of characteristic $p > 0$. Assume that

$$
[G:G^0] \not\equiv 0 \pmod{p},
$$

where G^0 denotes the identity component of G. Throughout this section, we fix $V \in \mathcal{M}$ and we assume that V is rational, i.e. that each V_i is a *rational* representation of G (i.e. that the homomorphism $G \to GL(V_i)$ is a morphism of algebraic groups).

3.1. **Main result in the algebraic case.** In this section, we prove the following statement:

3.1.1. *The conclusion of Theorem 3 is valid in case* G *is an algebraic group for which* $[G: G⁰]$ *is prime to p and* V *is rational.*

3.2. **Reduction to the quasisimple case.** Since the finite group G/G^0 has order prime to p, all of its representations in characteristic p are semisimple. Since G is an extension of G/G^0 by the connected algebraic group G^0 , it follows from [Ser94, §3.4,Lemma 5] that $\bigwedge^m V$ is semisimple for G if and only if it is semisimple for G^0 . Thus we may and shall assume that G is connected.

Let $N \triangleleft G$ denote the kernel of the homomorphism $G \to \prod_{i=1}^s {\rm GL}(V_i).$ Since $\bigoplus_{i=1}^s V_i$ is a semisimple KG module, it is well known that G/N is reductive. Since $\bigwedge^m V$ is semisimple for G if and only if it is semisimple for G/N , we may replace G by G/N and hence assume that G is connected and reductive.

Now, for connected reductive G , there is (see e.g. [Spr98, Ch. 9]) an isogeny

$$
\prod_i G_i \times T \to G
$$

where $\prod_i G_i$ is a finite direct product of simply connected, quasisimple algebraic groups, and T is a torus. It follows from [Jan96, §3] that a G module W is semisimple if and only if W is a semisimple module for each G_i (and for T, which is trivial).

Hence, we may assume that G is simply connected, and quasisimple.

3.3. **The simply connected, quasisimple case.** Let T be a maximal torus of G, let X denote the character group of T, and let Φ denote the set of roots of T. Choose a Borel subgroup B of G containing T ; this choice determines a system of positive roots. Pick a system of simple roots Δ and for $\alpha \in \Delta$, let $\varpi_{\alpha} \in X$ denote the corresponding fundamental dominant weight.

A weight $\lambda = \sum_{\alpha \in \Delta} n_{\alpha} \varpi_{\alpha} \in X$ is called *dominant* if $n_{\alpha} \geq 0$ for every α , and a dominant weight λ is called *restricted* if $n_{\alpha} < p$ for every α . The subset of dominant weights is denoted X^+ and the subset of restricted weights is denoted X_1 .

For each dominant weight, there is a corresponding simple rational G module denoted $L(\lambda)$; furthermore, any simple rational G module is isomorphic to a unique $L(\lambda)$.

For a dominant weight λ , we have a (finite) *p*-adic expansion

$$
\lambda = \lambda_0 + p\lambda_1 + p^2\lambda_2 + \cdots
$$

with each λ_i restricted. The importance of representing weights in this way is the following result:

3.3.1. *(Steinberg's Theorem) For* λ *as above, there is a* G*-module isomorphism*

$$
L(\lambda) \simeq \bigotimes_{i \geq 0} L(\lambda_i)^{[i]}
$$

where $W^{[d]}$ *denotes the d-fold Frobenius twist of a rational G module* W.

As a consequence, note that if $\lambda=p^i\lambda'$ for $\lambda'\in X_1$, then for any m

(3.3.e)
$$
\bigwedge^m L(\lambda) \simeq \bigwedge^m \left(L(\lambda')^{[i]} \right) \simeq \left(\bigwedge^m L(\lambda') \right)^{[i]}.
$$

According to 2.4.3 we may assume that each V_i is simple; thus there are dominant weights λ_i such that $V_i \simeq L(\lambda_i)$. By 2.4.5 we need consider only tensor indecomposable simple modules, so we may assume, in view of Steinberg's Theorem, that $\lambda_i\,=\,p^{N_i}\mu_i$ where μ_i is restricted and $N_i\geq 0.$

We will prove the following

3.3.2. *Assume that* $N_i = 0$, *i.e. that* $\lambda_i \in X_1$, for each *i*. Then $\bigwedge^m V$ *is semisimple and each composition factor has restricted highest weight.*

For the moment, though, let us observe that 3.3.2 suffices to prove 3.1.1. Indeed, if s = 1, (3.3.e) permits one to reduce to the case $\lambda_1 \in X_1$, so we may suppose s > 1 and proceed by induction on s.

Without loss of generality, we may suppose that $\lambda_1, \ldots, \lambda_t \in X_1$ and $\lambda_{t+1}, \ldots, \lambda_s \in$ pX . For any $m \in \mathcal{N}(V)$, one has

$$
{\textstyle\bigwedge}^{\mathbf m}\mathbf V\simeq {\textstyle\bigwedge}^{\mathbf m'}\mathbf V'\otimes ({\textstyle\bigwedge}^{\mathbf m''}\mathbf V'')^{[1]}
$$

where $\mathbf{m}'=(m_1,\ldots,m_t)$, $\mathbf{m}''=(m_{t+1},\ldots,m_s)$, $\mathbf{V}'=(V_1,\ldots,V_t)$, and $\mathbf{V}''=(V_{t+1}^{[-1]},\ldots,V_s^{[-1]})$. If $t = 0$, it suffices to prove that $\bigwedge^{m''} V''$ is semisimple; working by induction on the minimal value of N_i , one may reduce to the case $t>0.$

This being done, 3.3.2 shows that $\bigwedge^{\mathbf{m}'} \mathbf{V}'$ is semisimple and all its composition factors have restricted highest weight. By induction on s, the module $\bigwedge^{m''}V''$ is semisimple, and (3.3.e) shows that all of its composition factors have highest weight in $pX.$ Steinberg's Theorem now shows that $\wedge^m \overrightarrow{V}$ is itself semisimple.

In the remainder of this section, we finish the verification of 3.1.1 by proving 3.3.2.

3.4. **The linkage principle.** Let $C \subset X^+$ denote the closure of the lowest dominant alcove for the dot action of the affine Weyl group W_p . Then C is a fundamental domain for this action of W_p . The dominant weights in this set can be described as follows:

$$
\mathbf{C}^+ = \mathbf{C} \cap X^+ = \{ \lambda \in X^+ : \langle \lambda + \rho, \beta^\vee \rangle \le p \}
$$

where β is the highest short root in Φ . Denote by \hat{C} the set $C^+ \cup \{0\}$.

The following gives for us a useful criteria for membership in \hat{C} .

3.4.1. [Ser94, Prop. 3, Prop. 5] *Let* $\lambda \in X_1$ *. If* $\dim_K L(\lambda) < p$ *then* $\lambda = 0$ *or* $\langle \lambda + \rho, \beta^{\vee} \rangle < p$; *equivalently,* $\lambda \in \hat{C}$ *.*

The *linkage principle* (see [Jan87, II.6]) implies the following:

3.4.2. [Jan87, II.6.13,II.5.10] *If* $\lambda \in \hat{C}$, *then* dim_K $L(\lambda)$ *is equal to the value* $d(\lambda)$ *of the Weyl degree formula:*

$$
d(\lambda) = \prod_{\alpha > 0} \frac{\langle \lambda + \rho, \alpha^{\vee} \rangle}{\langle \rho, \alpha^{\vee} \rangle}.
$$

Let the *character* of a G module M be the element of $\mathbb{Z}[X]$ given by $\ch(M) = \sum_{\mu \in X} \dim_K M_\mu e^\mu$, where M_μ denotes the μ weight space of M and the e^μ are basis elements for $\mathbb{Z}[\tilde{X}].$ For $\lambda \in X^+$, let $L_{\mathbb{Q}}(\lambda)$ denote the simple module with highest weight λ for the split simple Q Lie algebra \mathfrak{g}_0 with root system Φ ; we denote $\mathrm{ch}(L_0(\lambda))$ by $\chi(\lambda)$ (the character of a \mathfrak{g}_0 module is defined via the weights of a maximal toral subalgebra on the module). For $m \geq 1$, it follows from the representation theory of $\mathfrak{g}_{\mathbb{Q}}$ that there is a finite subset $\mathcal{H}(\lambda, m) \subset X^+$ such that

(3.4. f)
$$
\operatorname{ch}(\bigwedge^m L_{\mathbb{Q}}(\lambda)) = \sum_{\mu \in \mathcal{H}(\lambda,m)} m_{\mu} \chi(\mu)
$$

for suitable multiplicities $m_u > 0$.

For $\lambda \in \hat{\mathbf{C}}$. [Jan87, II.6.13] actually shows that $\text{ch}(L(\lambda)) = \text{ch}(L_{\mathbb{O}}(\lambda))$; it follows from [Bou72, VIII §7, exerc. 11] that:

3.4.3. *For* $\lambda \in \hat{C}$ *and* $m \geq 1$ *, ch*($\bigwedge^m L(\lambda)$) = *ch* $\bigwedge^m L_{\mathbb{Q}}(\lambda)$ *. In particular, any weight* ν *of* $\bigwedge^m L(\lambda)$ satisfies $\nu \leq \mu$ for some $\mu \in \mathcal{H}(\lambda, m)$.

The significance of the linkage principle for semisimplicity is demonstrated by:

3.4.4. [Jan87, II.6.17,II.2.12 (1)] *If* $\lambda, \mu \in \hat{\mathbf{C}}$ *, then* $\text{Ext}^1_G(L(\lambda), L(\mu)) = 0$ *.*

After one notes $\hat{\mathbf{C}} \subset X_1$, 3.4.4 has the immediate consequence:

3.4.5. Suppose that $\langle \nu + \rho, \beta^{\vee} \rangle \leq p$ for each weight ν of the G module M. Then M is *semisimple and each composition factor of* M *has restricted highest weight.*

3.5. **Weight considerations.** Let us say that an *admissible pair* (λ, m) consists in $\lambda \in$ X^+ and $1 \le m \le d(\lambda)/2$ such that

(3.5.g) $\langle \nu + \rho, \beta^{\vee} \rangle \le m(d(\lambda) - m)$

for each weight $\nu \in \mathcal{H}(\lambda, m)$.

Remark 3.1. Let (λ, m) be a pair as above. Since each weight $\nu \in \mathcal{H}(\lambda, m)$ satisfies $\nu < m\lambda$, one knows that (λ, m) is admissible in case $\langle m\lambda + \rho, \beta^{\vee} \rangle \le m(d(\lambda) - m)$.

Define a partial order relation on X^+ by the following simple rule: say that $\mu \to \lambda$ provided $\lambda - \mu \in X^+$.

3.5.1. Let $c > 0$ be a real number. Suppose that $d(\mu) \ge c \langle \mu + \rho, \beta^{\vee} \rangle$. If $\mu \to \lambda$, then $d(\lambda) \geq c \langle \lambda + \rho, \beta^{\vee} \rangle.$

Proof. For any positive root α , we have

$$
\langle \lambda + \rho, \alpha^{\vee} \rangle - \langle \mu + \rho, \alpha^{\vee} \rangle = \langle \lambda - \mu, \alpha^{\vee} \rangle \ge 0
$$

since $\lambda - \mu \in X^+$. Inspecting the Weyl degree formula, it is then clear that

$$
d(\lambda) \ge d(\mu) \cdot \frac{\langle \lambda + \rho, \beta^{\vee} \rangle}{\langle \mu + \rho, \beta^{\vee} \rangle} \ge c \langle \mu + \rho, \beta^{\vee} \rangle \frac{\langle \lambda + \rho, \beta^{\vee} \rangle}{\langle \mu + \rho, \beta^{\vee} \rangle} \ge c \langle \lambda + \rho, \beta^{\vee} \rangle,
$$
 as desired.

Remark 3.2*.* The numberings of the fundamental dominant weights used in the following result, and throughout this paper, are those used in the tables in [Bou72].

3.5.2. *Suppose the rank of the root system is at least 2, and let* $\lambda \in X^+$ *. Then*

(3.5.h)
$$
d(\lambda) \ge 2\langle \lambda + \rho, \beta^{\vee} \rangle,
$$

unless λ *is among the set of weights* $\mathcal{E} = \mathcal{E}(\Phi)$ *indicated in the following table:*

Remark 3.3*.* In [McN98], the author proves a slightly stronger estimate of this sort; namely, that $\dim_K L(\lambda) \ge r\langle \lambda + \rho, \beta^\vee \rangle$ for almost all λ . However, the list of exceptional λ is larger, and the techniques used are somewhat more unwieldy than the argument given here due to the fact that $\dim_K L(\lambda) \neq d(\lambda)$ in general.

Sketch of proof. Initially, let λ be a fundamental dominant weight. In [Bou72] Table 2, the value of $d(\lambda)$ is recorded for each indecomposable root system and each fundamental dominant weight. A straightforward computation of $\langle \lambda + \rho, \beta^{\vee} \rangle$ in each case yields immediately the assertion that λ satisfies (3.5.h) unless λ is among the specified exceptions.

In view of 3.5.2, the assertion holds for $\Phi = E_6, E_7, E_8, F_4$. Furthermore, it suffices to prove that (3.5.h) is valid for $\lambda = \mu_1 + \mu_2$ for all possible fundamental weights μ_1 and μ_2 which fail to satisfy (3.5.h); in most cases this is true. We list below those λ for which one must check (3.5.h), and we indicate the value of $d(\lambda)$ for each such λ ; it is then straightforward to verify (3.5.h). For unbounded rank, we provide references for the dimension assertions; in low rank the calculation of $d(\lambda)$ is straightforward (note that some labor may be avoided in case $\Phi = A_2, B_2, G_2$, as $d(\lambda)$ is given in closed form in [Hum80, \S 24.3] for those Φ).

• $\Phi = A_r, r \geq 4$: $\lambda = 2\omega_1, 2\omega_2, \omega_1 + \omega_r$. According to [McN98, Props. 4.2.2,4.6.8] one has (for $r > 1$):

$$
d(2\omega_1) = d(2\omega_r) = {r+2 \choose 2}
$$
 and
$$
d(\omega_1 + \omega_r) = r(r+2).
$$

- $\Phi = A_3$: $\lambda = 2\omega_2$. $d(2\omega_2) = 20$.
- $\Phi = A_2$: $\lambda = 3\omega_1, 3\omega_2, 2\omega_1 + 2\omega_2$. $d(\lambda) = 10, 10, 27$ respectively.
- $\Phi = B_r$, $r \geq 4$; $\Phi = C_r$, $r \geq 3$; $\Phi = D_r$, $r \geq 5$: $\lambda = 2\omega_1$. According to [McN98, Props. 4.2.2,4.7.3,4.8.1] one has:

$$
d(2\omega_1) = {2r+2 \choose 2} - \epsilon
$$
 where $\epsilon = 1, 0, 1$ for $\Phi = B_r, C_r, D_r$ respectively

- $\Phi = B_r$: $r = 2, 3, \lambda = 2\omega_1, 2\omega_r, \omega_1 + \omega_r$. When $r = 2, d(\lambda) = 14, 10, 16$ respectively. When $r = 3$, $d(\lambda) = 27, 35, 48$ respectively.
- $\Phi = D_4$: $\lambda = \varpi_2, \varpi_i + \varpi_j$ for all pairs $i, j \in \{1, 3, 4\}$. $d(\varpi_2) = 28$, $d(\varpi_i + \varpi_j) = 56$ for $i \neq j$. $d(2\omega_i) = 35$ for each $i \in \{1, 3, 4\}$.
- $\Phi = G_2$: $\lambda = 2\omega_1, 2\omega_2, \omega_1 + \omega_2$. $d(\lambda) = 27, 77, 64$ respectively.

Our goal is to list those pairs (λ, m) which fail to be admissible. Towards this end, we introduce the subset $\mathcal{E}' \subset \mathcal{E}$ as follows.

3.5.3. *Let* $\lambda \in X^+$ *and let* $1 \leq m \leq d(\lambda)/2$ *. Then* (λ, m) *is admissible unless one of the following holds:*

- (1) $\Phi = A_1$
- (2) $m = 1, \lambda \in \mathcal{E}'$ and Φ *is one of* A_r ($r \ge 2$), B_r ($r \ge 2$), or C_r ($r \ge 2$).
- (3) $m = 2$, $\lambda = \varpi_1$ and $\Phi = C_2$.

If (λ, m) *is not admissible, then*

(3.5.1)
$$
\langle \mu + \rho, \beta^{\vee} \rangle \leq m(d(\lambda) - m) + 1.
$$

for any $\mu \in \mathcal{H}(\lambda, m)$ *.*

Proof. We first verify (3.5.i) when Φ has rank 1. In this case X may be identified with \mathbb{Z} , and X⁺ with $\mathbb{Z}_{\geq 0}$. For $a \in X$, one has $d(a) = a + 1$; if $1 \leq m \leq a + 1$, the $\mathfrak{g}_0 = \mathfrak{sl}_2(\mathbb{Q})$ module $\bigwedge^m L_{\mathbb{Q}}(a)$ has highest weight given by

$$
b = a + (a - 2) + \dots + (a - 2(m - 1)) = ma - 2\sum_{j=1}^{m-1} j = m(a + 1 - m)
$$

whence $b + 1 = \langle b + \rho, \beta^{\vee} \rangle = m(a + 1 - m) + 1$. The remaining assertions of 3.5.i are straightforward to verify for the indicated inadmissible pairs; we omit the details.

For the remainder of the proof, we assume that the rank of Φ is at least 2; assume first that $\lambda \notin \mathcal{E}$, i.e. that λ satisfies (3.5.h). As noted in Remark 3.1, one may test admissibility by considering $\nu = m\lambda$; for such a λ one has

$$
\langle m\lambda + \rho, \beta^{\vee} \rangle \le m\langle \lambda + \rho, \beta^{\vee} \rangle \le \frac{m \cdot d(\lambda)}{2} \le m(d(\lambda) - m).
$$

 \Box

Thus (λ, m) is admissible.

Now let $\lambda \in \mathcal{E} \setminus \mathcal{E}'$; in this case one deduces the admissibility of (λ, m) for each $1 \leq m \leq d(\lambda)/2$ via Remark 3.1 and the following data:

Finally suppose that $\lambda \in \mathcal{E}'$. It follows from constructions in [Bou72, VIII] that in the expression (3.4.f) one has $m_{\mu} = 1$ for each $\mu \in \mathcal{H}(\lambda, m)$, and that $\mathcal{H}(\lambda, m)$ is as specified in the following table (3.5.j). (For type A_r , B_r , and C_r , see *loc. cit.* VIII.§13 no. 1,2,3 respectively; for type D_r , see *loc. cit.* VIII.§13 no. 4 and exerc. VIII.§13.10. Note that a description of the character $\bigwedge^m L(\varpi_i)$ for type D_4 and $i = 3, 4$ is easily obtained by triality from the given description of $\bigwedge^m L(\overline{\omega}_1)$.)

To complete the proof, fix $\lambda \in \mathcal{E}'$ and let $d = d(\lambda)$, $2 \le m \le d/2$. Suppose $\nu \in$ $\mathcal{H}(\lambda, m)$. One has $m(d - m) > m(d/2) > d$, so in this case the admissibility of (λ, m) follows provided $\langle \nu + \rho, \beta^{\vee} \rangle \leq d$; the data in table (3.5.j) permits one to verify this latter condition holds if $\Phi \neq C_r$ (and $m \geq 2$).

Supose now that $\Phi = C_r$; we only must consider $\lambda = \varpi_1$. Using table (3.5.j), one checks that $\langle \nu + \rho, \beta^{\vee} \rangle \leq 2r + 1$ for each $\nu \in \mathcal{H}(\lambda, m)$. Assume first that $3 \leq m \leq d/2 = r$; in that case $m(d - m) \geq 3r \geq 2r + 1$ and the result holds. When $m = 2$ and $r \geq 3$, one gets the desired result by noting $m(d - m) = 2(2r - 2) = 4(r - 1) > 2r + 1$.

The above handles $m > 2$. When $m = 1$, we only must consider $\Phi = D_r$ and the weight $\lambda = \varpi_1$. The table shows that $\langle \nu + \rho, \beta^\vee \rangle = 2r - 2 < 2r - 1 = d - 1$ for each $\nu \in \mathcal{H}(\lambda, 1) = {\varpi_1}$, whence the admissibility of $(\varpi_1, 1)$ in this case.

We are now is a position to complete the proof of 3.3.2 (and hence of 3.1.1). Let $V = (L(\lambda_1), \ldots, L(\lambda_s))$ with each λ_i restricted, and let $m \in \tilde{\mathcal{N}}(V)$. In view of (3.4.1), $\lambda_i \in \hat{\mathbf{C}}$ for each *i*.

Any weight ν of $\bigwedge^{\bf m}{\bf V}$ has the form $\nu=\nu_1+\cdots+\nu_s$ where ν_i is a weight of $\bigwedge^{m_i}L(\lambda_i).$ According to 3.4.3, there is a weight $\mu_i\in \mathcal{H}(\lambda_i,m_i)$ with $\nu_i\leq \mu_i;$ since $\langle \nu_i,\beta^\vee\rangle\leq \langle \mu_i,\beta^\vee\rangle,$

we may as well assume that $\nu_i \in \mathcal{H}(\lambda_i,m_i)$ for each $i.$ We will verify 3.3.2; in most cases we will do this by checking that 3.4.5 holds.

After re-ordering, we may suppose that for some $1\leq i\leq s+1,$ (λ_j,m_j) is admissible if and only if $j < i$.

Suppose first that $i>1$; in this case note that (3.5.i) yields $\langle \lambda_k, \beta^\vee \rangle \leq m_k(d(\lambda_k)-m_k)$ for $i \leq k$. Combining this with the admissibility of the first $i - 1$ weights yields

$$
\langle \nu + \rho, \beta^{\vee} \rangle \leq \sum_{j=1}^{i-1} \langle \nu_j + \rho, \beta^{\vee} \rangle + \sum_{k=i}^{s} \langle \nu_j, \beta^{\vee} \rangle \leq \sum_{\ell=1}^{s} m_{\ell}(d(\lambda_{\ell}) - m_{\ell}) < p,
$$

as desired.

Now suppose that $i=1$, i.e. that no pair (λ_j,m_j) is admissible. If $\Phi=A_1$, we have by (3.5.i)

$$
b = \langle \nu, \beta^{\vee} \rangle \le \sum_{i=1}^{s} m_i (d(\lambda_i) - m_i) < p
$$

whence $b + 1 = \langle \nu + \rho, \beta^{\vee} \rangle \leq p$, as asserted. So we now assume that the rank of Φ is at least 2. If $s = 1$, the semisimplicity of $\bigwedge^m V$ is trivial in case $m_1 = 1$; the only situation not handled by this observation is $m_1 = 2$, $\lambda_1 = \varpi_1$, $\Phi = C_2$. A straightforward computation shows that $\bigwedge^2 L(\varpi_1)$ is semisimple with restricted composition factors unless $p = 2$; see [McN98, Lemma 4.5.3] and note that $p = 2$ is ruled out by the condition $m \in \mathcal{N}(V)$.

Finally, suppose $s > 1$. Using (3.5.i), one has

$$
\langle \nu + \rho, \beta^{\vee} \rangle \le \sum_{i=1}^{s} \langle \nu_i + \rho, \beta^{\vee} \rangle - (s-1) \langle \rho, \beta^{\vee} \rangle \le \sum_{i=1}^{s} m_i (d(\lambda_i) - m_i) + s - (s-1) \langle \rho, \beta^{\vee} \rangle
$$

$$
< p - (h-2)s + h - 1,
$$

where $h-1 = \langle \rho, \beta^\vee \rangle \ge 2$ (h is the Coxeter number). Since $s \ge 2$, one has $s \ge \frac{h-1}{h-2}$ $\frac{h-1}{h-2}$ and 3.4.5 is verified in this case.

This completes the proof of 3.1.1.

Remark 3.4. Let $V = L(\lambda)$, $\lambda \in \mathcal{E}'$. More can be said about the G module $\bigwedge^n V$. If $\Phi = B_r$ or D_r , assume $p \neq 2$. If $\Phi = C_r$, assume $p > r$. Then one has $\bigwedge^m V \simeq \bigoplus_{\mu \in \mathcal{H}(\lambda,m)} L(\mu)$. These assertions are verified in [McN98, Prop. 4.2.2] in the following situations: $\Phi =$ A_r ; $\Phi = B_r$ and $m < r$; $\Phi = D_r$ and $m < r - 1$. For $\Phi = B_r$, the assertion for $\bigwedge^r V$ follows from [Sei87, 8.1]; for $\Phi=D_r$, the assertion for $\bigwedge^{r-1}V$ follows from [Sei87, 8.1]. When $\Phi=C_r$, see [McNa, Prop. 6.3.5.] where the indecomposable summands of $\bigwedge^m V$ are worked out for all p. The only remaining situation is $\bigwedge^{\tilde{r}}V$ for type D_r . As a suitable reference was not located, we sketch an argument.

Let F be a field of characteristic $p \geq 0$, $p \neq 2$, and let (V, q) be a non-degenerate quadratic F-space with $\dim_F V = 2r$, $r > 3$. Let $G = SO(V, q)$; then G is the group of F points of an algebraic group G of type D_r , and V is an F-form of the rational Gmodule $L(\mathbf{\varpi}_1)$. Assume that V has an orthogonal basis $\{e_i\}$ for which $q(e_i) = \alpha_i$, and let $\Delta = \Delta(q) = (-1)^r \alpha_1 \cdots \alpha_{2r}$; of course a different choice of orthogonal basis results in a different value of \triangle , but any choice yields the same element in $F^{\times}/(F^{\times})^2$. In particular, the field extension $F'=F(\sqrt{\Delta})$ is well defined.

In [KMRT98, Proposition (10.22)], a G -automorphism τ of \bigwedge^rV is constructed with the property that τ^2 is given by multiplication with 1/ Δ . Let $V' = V \otimes_F F'$; then $\bigwedge^r V'$ is the direct sum of eigenspaces E_\pm for τ with eigenvalues $\pm 1/\sqrt{\Delta}.$ These eigenspaces are F'G submodules of $\bigwedge^r V'$ (in fact, they are even $F'SO(V', q')$ submodules).

Write $V = Fe \oplus W$ as an orthogonal sum with e non-singular, and let $H = SO(W) \le$ G. Then H is the group of F points of an algebraic group of type B_{r-1} . Evidently

$$
\text{res}_{H}^{G}(\textstyle{\bigwedge}^r V) \simeq \textstyle{\bigwedge}^{r-1} W \oplus \textstyle{\bigwedge}^r W.
$$

Using (2.2.a), we have $\bigwedge^r W \simeq \bigwedge^{r-1} W$, and we have already seen that this module is absolutely simple for FH . Since $res_H^G(\wedge^r V')$ has length 2, it follows at once that the $F'G$ modules E_{\pm} are simple. Working over an algebraic closure \bar{F} (or over any field which splits q), one finds that the highest weights of $\bigwedge^r V \otimes_F \bar{F}$ are $2\varpi_r$ and $2\varpi_{r-1}$; since these weights are incomparable, it follows by length considerations that $\bigwedge^rV\otimes_F$ $\overline{F} \simeq L(2\omega_r) \oplus L(2\omega_{r-1})$. In particular, E_+ and E_- are non-isomorphic. This gives the claimed result. We have shown that $\bigwedge^r V$ is an absolutely semisimple FG module of absolute length 2; if $\Delta \in (F^\times)^2$ then $\text{End}_{FG}(\bigwedge^r V) \simeq F \times F$, otherwise $\text{End}_{FG}(\bigwedge^r V) \simeq F'$ and $\bigwedge^r V$ is simple for FG .

4. THE PROOF FOR AN ARBITRARY GROUP

The argument presented in this section follows very closely that given in [Ser94]. For completeness we outline the entire argument.

4.1. **Saturation.** Let V be a vector space of dimension n over K, and let $u \in GL(V)$ be an element of order p. Then $x = u - 1$ is a nilpotent endomorphism of V satisfying $x^p=0.$

One defines a homomorphism $\phi_s : K \to GL(V)$ by using a truncated exponential. More precisely, for $t \in K$, define $\phi_u(t) = u^t \in GL(V)$ to be

(4.1.k)
$$
u^{t} = \sum_{i=0}^{p-1} {t \choose i} x^{i} = 1 + tx + \frac{t(t-1)}{2}x^{2} + \cdots
$$

4.1.1. [Ser94, §4.1] *The homomorphism* $\phi_u : K \to GL(V)$ *is uniquely characterized by the following properties:*

P1. $\phi_u(1) = u$.

P2. ϕ_u has degree $< p$, (i.e. $t \mapsto u^t$ is polynomial in t of degree $< p$).

A subgroup $H \le GL(V)$ is called *saturated* if every unipotent element u of H satisfies $u^p = 1$ and $u^t \in H$ for every $t \in K$.

From our point of view, the important fact about saturated subgroups of $GL(V)$ is the following:

4.1.2. [Ser94, Proposition 11] *Let* $H \le GL(V)$ *be an algebraic subgroup which is saturated. Then* $[H : H^0] \neq 0 \pmod{p}$, where H^0 denotes the identity component of H.

4.2. **The proof of Theorem 3.** Let G by a group, let V be a sequence of semisimple Gmodules of dimension n_i , and let $\mathbf{m}\in\mathcal{N}(\mathbf{V}).$ Let H denote the subgroup of $\operatorname{GL}(\mathbf{V})=$ $GL(V_1)\times\cdots\times GL(V_s)$ consisting of all elements x so that $\bigwedge^m(x)=\bigwedge^{m_1}x_1\otimes\cdots\otimes\bigwedge^{m_s}x_s$ leaves stable each subspace of $\bigwedge^m V$ which is stable under G. Then H is an *algebraic* subgroup of GL(V), and \bigwedge^mV is a rational H module. Furthermore, \bigwedge^mV is a semisimple G module if and only if it is a semisimple module for H.

In view of the results of section 3, Theorem 3 will follow provided that we argue $[H:H^0]\not\equiv 0 \pmod{p}$. To verify this property, we invoke 4.1.2; we must verify that H is saturated.

4.2.1. Let $u \in H$ be unipotent. Then $u^p = 1$.

Proof. This follows (as noted in [Ser94, 4.2]) since every unipotent in $GL(V_i)$ has this property when $\dim_K V_i \leq p$.

4.2.2. Let $u \in H$ be a unipotent element. Then $u^t \in H$ for all $t \in K$.

Proof. We must verify that $\bigwedge^m(u^t)$ leaves stable each G-invariant subspace of \bigwedge^mV . It is straightforward to see that $\left(\bigwedge^{\bf m} {\bf u}\right)^t$ leaves stable each G -invariant subspace of $\bigwedge^{\bf m} {\bf V}$, so it suffices to show that $\bigwedge^m(u^t) = (\bigwedge^m u)^t$. In view of the uniqueness in 4.1.1 and the fact that $\bigwedge^{\bf m}({\bf u}^1)= (\bigwedge^{\bf m} {\bf u})^1$, it suffices to show that $t\mapsto \bigwedge^{\bf m}({\bf u}^t)$ is polynomial of degree $f < p$.

Let f_i denote the degree of the map $t\mapsto \bigwedge^{m_i}u_i^t;$ evidently $f=\sum_{i=1}^sf_i.$ Thus we are reduced to showing the following:

4.2.3. If V is a K vector space and $u \in GL(V)$ is unipotent, then the degree f of $t \mapsto$ $\Lambda^m(\omega^t)$ satisfies $f \le m(\dim V, m)$ $\bigwedge^m(u^t)$ satisfies $f \leq m(\dim_K V - m)$.

Let e_1, e_2, \ldots, e_n be a basis of V chosen so that the unipotent element u fixes the "standard flag"

$$
E_0 = 0 \subset E_1 = Ke_1 \subset E_2 = Ke_1 + Ke_2 \subset \cdots \subset E_n = V.
$$

It follows that $x = u - 1$ satisfies $x(E_i) \subseteq E_{i-1}$.

We adopt the convention that $e_i =$ if $i \leq 0$ or $i > n$. For each m-tuple of integers \vec{a} , let

$$
e(\vec{a}) = e_{a(1)} \wedge e_{a(2)} \wedge \cdots \wedge e_{a(m)} \in \bigwedge\nolimits^{m} V.
$$

Of course $e(\vec{a}) = 0$ if any two components of \vec{a} coincide, or if any $a(i)$ fails to lie between 1 and *n*. Put $|\vec{a}| = \sum_i a(i)$. It is straightforward to verify that:

4.2.4. If \vec{a} is an m-tuple such that $e(\vec{a}) \neq 0$, then $\frac{m(m+1)}{2} \leq |\vec{a}| \leq mn - \frac{m(m-1)}{2}$ $\frac{n-1)}{2}$.

Fix \vec{a} with $e(\vec{a}) \neq 0$, and consider the morphism

$$
f_{\vec{a}}:K\to\bigwedge\nolimits^m V
$$

given by $t \mapsto \bigwedge^m (u^t) \cdot e(\vec{a})$. The degree of the polynomial map $t \mapsto \bigwedge^m (u^t)$ is equal to $\sup\{\text{deg}(f_{\vec{a}})\}\$, the sup taken over all choices of \vec{a} as above.

In view of the definition of u^t and the fact that

$$
\bigwedge\nolimits^m (u^t) e(\vec{a}) = (u^t e_{a(1)}) \wedge (u^t e_{a(2)}) \wedge \cdots \wedge (u^t e_{a(n)}),
$$

it suffices to show the following:

4.2.5. Let \vec{a} be such that $e(\vec{a}) \neq 0$. Whenever \vec{b} is an m-tuple of positive integers with $|\vec{b}| > m(n-m)$, then $e(\vec{a} - \vec{b}) = 0$.

To prove this, we note that 4.2.4 gives an upper bound for $|\vec{a}|$, so we have

$$
|\vec{a}-\vec{b}| = |\vec{a}| - |\vec{b}| < |\vec{a}| - m(n-m) \le mn - \frac{m(m-1)}{2} - m(n-m) = \frac{m(m+1)}{2},
$$

whence $e(\vec{a} - \vec{b}) = 0$ by the lower bound given in 4.2.4. We have thus verified 4.2.2. □

The fact that H is saturated now follows; as noted above, this completes the proof of Theorem 3.

REFERENCES

- [Bou72] N. Bourbaki, *Groupes et algebres de Lie `* , Hermann, Paris, 1972.
- [Che54] Claude Chevalley, *Théorie des groupes de Lie, Tome III*, Hermann, Paris, 1954.
- [Hum80] James Humphreys, *An introduction to Lie algebras and representation theory*, third ed., Grad. Texts in Math., no. 9, Springer Verlag, 1980.
- [Jan87] Jens C. Jantzen, *Representations of algebraic groups*, Pure and Applied Mathematics, vol. 131, Academic Press, Orlando, FL, 1987.
- [Jan96] Jens C. Jantzen, *Low dimensional representations of reductive groups are semisimple*, Algebraic Groups and Related Subjects; a Volume in Honour of R. W. Richardson (Cambridge) (et al. G. I. Lehrer, ed.), Austral. Math. Soc. Lect. Ser., Cambridge Univ. Press, Cambridge, 1996, pp. 255–266.
- [KMRT98] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, *The book of involutions*, Amer. Math. Soc. Colloq. Publ., vol. 44, Amer. Math. Soc., 1998.
- [Mat90] Olivier Mathieu, *Filtrations of G-modules*, Ann. Sci. École Norm. Sup. 23 (1990), no. 2, 625– 644.
- [McNa] George J. McNinch, *Filtrations and positive characteristic Howe duality*, Math. Z., to appear.
- [McNb] George J. McNinch, *Semisimple modules for finite groups of Lie type*, J. London Math. Soc., to appear.
- [McN98] George J. McNinch, *Dimensional criteria for semisimplicity of representations*, Proc. London Math. Soc. **76** (1998), no. 3, 95–149.
- [Sei87] Gary M. Seitz, *Maximal subgroups of classical algebraic groups*, vol. 67, Mem. Amer. Math. Soc., no. 365, Amer. Math. Soc., Providence, Rhode Island, May 1987.
- [Ser94] Jean-Pierre Serre, *Sur la semi-simplicité des produits tensoriels de représentations de groupes*, Invent. Math. **116** (1994), 513–530.
- [Spr98] T.A. Springer, *Linear algebraic groups*, 2nd ed., Progr. in Math., vol. 9, Birhäuser, Boston, 1998.