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ABSTRACT. This paper answers a question posed by Jean-Pierre Serre; namely, a proof
is given that if V is a semisimple finite dimensional representation of a group G over a
field K of characteristic p > 0, and m(dimK V −m) < p, then

∧m
V is again a semisimple

representation of G.

1. INTRODUCTION

An important feature of the representation theory of a group G over a field K is the
following: given representations (modules) V andW of the group algebraKG, the ten-
sor product V ⊗K W is again a representation of KG. In this paper, all representations
will be assumed finite dimensional over K. When the field K has characteristic zero,
the notion of semisimplicity is stable under the tensor product; namely, if V andW are
semisimple KG modules then V ⊗K W is again semisimple ([Che54], p. 88). In par-
ticular, when K has characteristic 0 and V is semisimple, the modules V ⊗n,

∧nV (the
exterior power of V ), and SnV (the symmetric power of V ) are semisimple for all n ≥ 0.

If the characteristic of K is p > 0, the tensor product is not as well behaved. Never-
theless, J.-P. Serre has established the following condition for semisimplicity:

Theorem 1. (Serre, [Ser94] Théorème 1) Assume that K has characteristic p > 0 and
that Vi, 1 ≤ i ≤ r, are semisimple representations of G. If

∑r
i=1(dimK Vi − 1) < p, then

V1 ⊗ V2 ⊗ · · · ⊗ Vr is again semisimple.

Serre also proves the following:

Theorem 2. (Serre, [Ser94] Théorème 2) Assume that K has characteristic p > 0 and

that V is a semisimple representation of G of dimension n. If n ≤ p+ 3

2
, then

∧2V is

semisimple.

Serre finally poses the following generalization of the previous result:

Problem 1. (Serre, [Ser94]) Let V be a semisimple representation of G of dimension n.
Let m > 0, and assume that m(n−m) < p. Is

∧mV semisimple?

Theorem 2 provides an affirmative answer to this problem for m = 2. During the
initial work on this paper, the author was also aware of unpublished work of Serre
which gave an affirmative answer for m = 3.

Date: September 14, 1999.
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Some time after the publication of [Ser94], Serre generalized this question a bit
more, as follows:

Problem 2. (Serre, unpublished) Let V = (V1, V2, . . . , Vs) be a sequence of semisimple
representations of KG, and let m = (m1, . . . ,ms) where the mi are integers satisfying
1 ≤ mi ≤ dimK Vi = ni for each i. Put∧mV =

∧m1V1 ⊗K . . .⊗K
∧msVs.

If
∑

imi(ni −mi) < p, is
∧mV semisimple?

We introduce some notations for convenience; letM denote the class of all finite
sequences V = (V1, . . . , Vs) for s ≥ 1 of semisimple KG modules. We say that V has
type s ifV involves s semisimpleKGmodules. GivenV ∈M of type s, letN (V) denote
the set of all integral s-tuples m = (m1, . . . ,ms) such that 0 ≤ mi ≤ dimK Vi = ni and∑s

i=1mi(ni −mi) < p. Given m ∈ N (V), we may form the module
∧mV as above. In

this paper, we prove:

Theorem 3. Problem 2 has an affirmative answer. More precisely, for every V ∈M, and
for every m ∈ N (V),

∧mV is semisimple.

Notice that the theorem implies Theorems 1 and 2, and it implies that Problem 1
has an affirmative answer.

The chronology of the solution is as follows. The author first proved that Problem 1
has an affirmative answer when V is an absolutely simpleGmodule. Upon completion
of this work, the author learned that J.-P. Serre had posed Problem 2 and, at roughly the
same time, verified its validity through a quite different argument involving the notion
of “G-completely reducible subgroups” of a reductive algebraic group G as described
in his June 1997 lectures at the Isaac Newton Institute in Cambridge. Upon Serre’s
suggestion, the original techniques of the author (those used in answering Problem
1 in the absolutely simple case) were considered for Problem 2; this re-examination
produced the proof of Theorem 3 given here.

The result of this paper fits into a family of results relating the dimension of a rep-
resentation to its semisimplicity. The results of [Ser94] have already been pointed out.
When the group G is a reductive algebraic group over K, Jantzen [Jan96] proved that
any rational representation V with dimK V ≤ p is automatically semisimple; he proves
the same for the finite groups of Fq rational points G(Fq) – although in this case one
must exclude factors of type A1 from G.

WhenG is quasisimple of rank r, the author has generalized Jantzen’s result; namely
he has shown [McN98] that whenever dimK V ≤ r.p, V is semisimple. This work was
extended in [McNb] to cover the finite groups G(Fq); however, there are a few more
exceptions than in Jantzen’s situation.

Our proof of Theorem 3 follows closely that of Theorem 1 given in [Ser94]. The basic
idea is to prove the Theorem first in case G is a simply connected, connected, simple
algebraic group; in this setting the argument is handled via the linkage principle com-
bined with weight combinatorics. See §3 for the argument in this case. The result for
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general groups is obtained through a saturation process. In §4, we adapt the saturation
procedure of Serre to obtain the desired result.

I would like to thank Jean-Pierre Serre for some valuable suggestions.

2. PRELIMINARIES AND REDUCTIONS

2.1. Notations. Tensor products, exterior powers, and symmetric powers are always
taken over the fixed ground field K unless otherwise noted. The notation V ⊗m means
the m-fold tensor product of V with itself. When V is a vector space, the dual vector
space is denoted V ∗.

2.2. Some multilinear algebra. If G is a group, and L is any 1 dimensional KG mod-
ule, any L-valued G-equivariant non-degenerate bilinear pairing β between KG mod-
ules V and W induces a canonically defined KG isomorphism β̃ : V

'→ W ∗ ⊗K L. In-
deed, one can canonically identify W ∗ ⊗K L with HomK(W,L); then β̃(v)(w) = β(v, w)
for all v ∈ V and w ∈ W .

Note that in the above situation, one must have dimK V = dimKW ; call this di-
mension n. For any 1 ≤ m ≤ n, one has an induced G-equivariant bilinear pairing
β :

∧mV ×
∧mW → L⊗m determined by the rule β(v1 ∧ · · · ∧ vm, w1 ∧ · · · ∧ wm) =

det(β(vs, wt))s,t where the determinant is computed in the tensor algebra of L. In par-
ticular, one has a KG isomorphism

(2.2.a) β̃ :
∧mV → (

∧mW )∗ ⊗K L⊗m.

2.2.1. For V anyKGmodule of dimension n, write det(V ) for the 1 dimensional repre-
sentation

∧nV . For each 1 ≤ m ≤ n, the pairing µ :
∧mV ×

∧n−mV → det(V ) given by
multiplication in the exterior algebra of V isG-equivariant and non-degenerate, hence
there is a KG isomorphism

µ̃ :
∧mV → (

∧n−mV )∗ ⊗K det(V ).

2.3. An Example. Fix m ≥ 2 be an integer. In this section, let K be an algebraically
closed field of characteristic p > m, with p ≡ −1 (mod m). Consider the group G =
SL2(K), and take for V the “natural” 2-dimensional G module. When d ≥ 1, the space
SdV of homogeneous polynomials of degree d in a basis of V affords a representation
of G which we denote V (d). This representation satisfies dimK V (d) = d+ 1, and in the
notation of [Jan87, II.2], one has that V (d) = H0(d) is the induced module with highest
weight d. In particular, V (d) has simple socle L(d). Finally, V (d) is simple if and only if
d < p, and Steinberg’s tensor product theorem 3.3.1 shows that

L(d) ' L(d0)⊗ L(pd1) = L(d0)⊗ L(d1)[1]

if d = d0 + pd1 with 0 ≤ d0 ≤ p− 1 and d1 ≥ 0.

2.3.1. With G and m as above, there is a simple G-module W , such that m(dimKW −
m) = p+ 1 and so that

∧mW is not semisimple.
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Proof. Let k = m2 − m + 1; by hypothesis, d =
p+ k

m
is an integer. Put W = L(d), the

simple G module with highest weight d =
p+ k

m
. Since p >

p+ k

m
, this simple module

coincides with the module V (d) and hence

(2.3.b) n = dimKW =
p+ k +m

m
.

It follows that

(2.3.c) m(n−m) = p+ k +m−m2 = p+ 1,

as desired.
The arguments given below in the proof of 3.5.3 for rank 1 show that p + 1 is the

highest weight of
∧mW . Since W = H0(d) is an induced module, W⊗m has a good

filtration (i.e. a filtration by induced modules) according to a well-known theorem of
Donkin, Wang, Mathieu (see [Mat90]).

Since p > m,
∧mW is a summand of the moduleW⊗m, hence by [Jan87, Prop II.4.16(b)],∧mW has a good filtration. Since p+1 is the highest weight of this module, the induced

module H0(p+ 1) must appear as a filtration factor. By Steinberg’s tensor product the-
orem, the socle of H0(p + 1) is 4 dimensional. Since p ≥ 3, p + 2 = dimK H

0(p + 1) is at
least 5, so this induced module is not semisimple and the proposition follows. �

Remark 2.1. The above generalizes the example given in [Ser94, Appendice, Remarque
(1)]. One can even argue as in loc. cit.; one observes that, for a ≥ 0, V (a) may be
identified with the space of homogeneous polynomials of degree a in the variables x
and y where x and y are a weight-space basis for V . Hence one may define

θ :
∧mV (d)→ V (p+ 1) via θ(f1 ∧ · · · ∧ fm) = det

(
∂m−1fi

∂xj−1∂ym−j

)
1≤i,j≤m

.

One can show that θ is surjective and G-linear.

2.4. Some important reductions. We observe the following trivial but useful fact:

2.4.1. Let 1 ≤ m < n be positive integers. If m(n−m) < p, then m < p and n < p.

This implies in particular that if V ∈M andN (V) is non empty, then dimVi < p for
each i. Next, we observe:

2.4.2. Theorem 3 holds provided it is verified when the field K is algebraically closed.

Proof. Let V ∈M and m ∈ N (V). If K ′ ⊇ K is a field extension, one has easily

(
∧m
KV)⊗K K ′ '

∧m
K′(V ⊗K K ′);

(where V ⊗K K ′ = (V1 ⊗K K ′, . . . , Vs ⊗K K ′)).
In particular, if

∧m
K′(V⊗KK ′) is semisimple, then also

∧m
KV is semisimple. It only re-

mains to see that Vj⊗KK ′ is semisimple for each j. Since dimK Vj < p, the argument in-
voked in [Ser94] Lemme 1 applies; Serre’s argument shows that the center of EndG(Vj)
is a separable field extension of K, hence that Vj is absolutely semisimple. �
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We assume from now on that K is algebraically closed.

2.4.3. Theorem 3 holds provided it is verified for thoseV ∈M for which all Vi are simple.

Proof. Let S denote the set of all finite sequences of positive integers, and give S the
following partial ordering. For α = (α1, . . . , αs), β = (β1, . . . , βt) ∈ S, we say that α ≤ β
provided that s ≥ t and

∑s
i=1 αi =

∑t
j=1 βj .

Observe that each α ∈ S lies over a minimal element in this order; namely, if a =∑
αi, then the tuple β = (1, 1, . . . , 1︸ ︷︷ ︸

a

) is the unique minimal element of S that satisfies

β ≤ α.
If V ∈M is of type s, put

l = l(V) = (len(V1), . . . , len(Vs)),

where len(Vj) denotes the length (number of composition factors) of the KG module
Vj .

Consider V ∈ M, with corresponding l = l(V) ∈ S. Observe that all of the modules
in V are simple if and only if l is minimal in S; since there is nothing to prove in that
case, assume that l is not minimal, and that the theorem is known for any W ∈ M for
which l(W) < l. Without loss of generality, assume that V1 ' V ′1 ⊕ V ′′1 where V ′1 and V ′′1
are non-zero KG modules. Let d, d′, d′′ denote the dimensions of V1, V

′
1 , V

′′
1 .

For m ∈ N (V) one has ∧mV '
⊕

i+j=m1

∧n(i,j)W

where W = (V ′1 , V
′′

1 , V2, . . . , Vs) and n(i, j) = (i, j,m2,m3, . . . ,ms) for 0 ≤ j ≤ m1. Note
that

∧n(i,j)W = 0 unless 1 ≤ i ≤ d′ and 1 ≤ j ≤ d′′.
It is straightforward to see that l(W) < l; the result follows by induction provided

we argue that n(i, j) ∈ N (W) whenever
∧n(i,j)W 6= 0. The required assertion follows

immediately from the inequality

m1(d−m1) = i(d′ − i) + j(d′′ − j) + i(d′′ − j) + j(d′ − i) ≥ i(d′ − i) + j(d′′ − j)
�

For V ∈M, put Ñ (V) = {m ∈ N (V) : 1 ≤ mi ≤ dimK Vi/2 for each i}.

2.4.4. Theorem 3 holds provided it is verified for every V ∈M and m ∈ Ñ (V).

Proof. AKGmoduleW is semisimple if and only if the dual moduleW ∗ is semisimple;
similarly, W is semisimple if and only if W ⊗ L is semisimple for any 1 dimensional
representation L.

Let V ∈ M, and m ∈ N (V). Suppose V has type s, and consider J ⊆ {1, 2, . . . , s}.
Let m′ be the s-tuple such that m′i = ni −mi for i ∈ J , while m′i = mi otherwise. Define
V′ by the rule V ′i = V ∗i for i ∈ J , and V ′i = Vi otherwise. Evidently one has m′ ∈ Ñ (V′).
It follows from (2.2.1) that

∧mV '
∧m′

V′ ⊗K L for some 1 dimensional KG module L;
since

∧m′
V′ is semisimple by assumption, the semisimplicity of

∧mV is obtained. �
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AKG-module V will be called tensor decomposable if V ' X⊗K Y forKGmodules
X and Y with dimK X > 1 and dimK Y > 1; otherwise, V is tensor indecomposable.

Of course, any module of prime dimension is tensor indecomposable. A straight-
forward induction shows that any KG module may be written in at least one way as a
tensor product of finitely many tensor indecomposable modules.

2.4.5. Theorem 3 holds provided it is verified for those V ∈M for which each Vi is tensor
indecomposable.

Proof. Assume the conclusion of Theorem 3 is valid for those V ∈ M for which each
Vi is tensor indecomposable, and let V ∈ M be arbitrary. According to 2.4.4, we must
show that

∧mV is semisimple for each m ∈ Ñ (V). Let j ≥ 0 be the number of i such
that Vi is tensor decomposable; if j = 0 there is nothing to do, so suppose j > 0 and
proceed by induction on j.

Without loss of generality we may suppose that V1 is tensor decomposable, say

V1 ' X1 ⊗K X2 ⊗K · · · ⊗K Xr

with Xi tensor indecomposable and r ≥ 2. Fix m ∈ Ñ (V) and put

W = (X1, . . . , X1︸ ︷︷ ︸
m1

, X2, . . . , X2︸ ︷︷ ︸
m1

, . . . , Xr, . . . , Xr︸ ︷︷ ︸
m1

, V2, . . . , Vs),

n = (1, . . . , 1︸ ︷︷ ︸
rm1

,m2,m3, . . . ,ms).

Evidently
∧mV is a quotient of

∧nW. The list W has only j − 1 tensor decomposable
modules, so the result follows by induction provided n ∈ N (W).

Let xi = dimK Xi for 1 ≤ i ≤ r, and let d = x1 · x2 · · ·xr = dimK V1. Observe that∑
i

ni(dimKWi − ni) = m1(x1 + x2 + · · ·+ xr − r) +
∑
j≥2

mj(dimK Vj −mj).

Since m ∈ Ñ (V), one has m1 ≤ d/2 which implies that m1(d − m1) ≥ 1
2
m1d. So, it

suffices to prove that m1(x1 + x2 + · · ·+ xr − r) ≤ m1d
2
, or equivalently that

(2.4.d)
x1x2 · · ·xr

2
≥ x1 + x2 + · · ·+ xr − r.

Since xi ≥ 2 for each i, we may write xi = 2 + yi for a non-negative yi; thus

x1 · · ·xr
2

=
1

2
(2 + y1) · · · (2 + yr) ≥

1

2
(2r + 2y1 + 2y2 + · · ·+ 2yr)

= 2r−1 + x1 + x2 + · · ·+ xr − 2r.

As r ≥ 2, one has 2r−1 ≥ r and the inequality (2.4.d) is verified. �
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3. THE PROOF IN THE CASE OF A LINEAR ALGEBRAIC GROUP.

LetG be a linear algebraicK-group, whereK is an algebraically closed field of char-
acteristic p > 0. Assume that

[G : G0] 6≡ 0 (mod p),

whereG0 denotes the identity component ofG. Throughout this section, we fix V ∈M
and we assume that V is rational, i.e. that each Vi is a rational representation of G (i.e.
that the homomorphism G→ GL(Vi) is a morphism of algebraic groups).

3.1. Main result in the algebraic case. In this section, we prove the following state-
ment:

3.1.1. The conclusion of Theorem 3 is valid in case G is an algebraic group for which
[G : G0] is prime to p and V is rational.

3.2. Reduction to the quasisimple case. Since the finite group G/G0 has order prime
to p, all of its representations in characteristic p are semisimple. SinceG is an extension
of G/G0 by the connected algebraic group G0, it follows from [Ser94, §3.4,Lemma 5]
that

∧mV is semisimple for G if and only if it is semisimple for G0. Thus we may and
shall assume that G is connected.

Let N / G denote the kernel of the homomorphism G→
∏s

i=1 GL(Vi). Since
⊕s

i=1 Vi
is a semisimple KG module, it is well known that G/N is reductive. Since

∧mV is
semisimple for G if and only if it is semisimple for G/N , we may replace G by G/N and
hence assume that G is connected and reductive.

Now, for connected reductive G, there is (see e.g. [Spr98, Ch. 9]) an isogeny∏
i

Gi × T → G

where
∏

iGi is a finite direct product of simply connected, quasisimple algebraic groups,
and T is a torus. It follows from [Jan96, §3] that aGmoduleW is semisimple if and only
if W is a semisimple module for each Gi (and for T , which is trivial).

Hence, we may assume that G is simply connected, and quasisimple.

3.3. The simply connected, quasisimple case. Let T be a maximal torus of G, let X
denote the character group of T , and let Φ denote the set of roots of T . Choose a Borel
subgroup B of G containing T ; this choice determines a system of positive roots. Pick
a system of simple roots ∆ and for α ∈ ∆, let $α ∈ X denote the corresponding fun-
damental dominant weight.

A weight λ =
∑

α∈∆ nα$α ∈ X is called dominant if nα ≥ 0 for every α, and a
dominant weight λ is called restricted if nα < p for every α. The subset of dominant
weights is denoted X+ and the subset of restricted weights is denoted X1.

For each dominant weight, there is a corresponding simple rational G module de-
notedL(λ); furthermore, any simple rationalGmodule is isomorphic to a uniqueL(λ).

For a dominant weight λ, we have a (finite) p-adic expansion

λ = λ0 + pλ1 + p2λ2 + · · ·
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with each λi restricted. The importance of representing weights in this way is the fol-
lowing result:

3.3.1. (Steinberg’s Theorem) For λ as above, there is a G-module isomorphism

L(λ) '
⊗
i≥0

L(λi)
[i]

where W [d] denotes the d-fold Frobenius twist of a rational G module W .

As a consequence, note that if λ = piλ′ for λ′ ∈ X1, then for any m

(3.3.e)
∧mL(λ) '

∧m (L(λ′)[i]
)
'
(∧mL(λ′)

)[i]

.

According to 2.4.3 we may assume that each Vi is simple; thus there are dominant
weights λi such that Vi ' L(λi). By 2.4.5 we need consider only tensor indecomposable
simple modules, so we may assume, in view of Steinberg’s Theorem, that λi = pNiµi
where µi is restricted and Ni ≥ 0.

We will prove the following

3.3.2. Assume that Ni = 0, i.e. that λi ∈ X1, for each i. Then
∧mV is semisimple and

each composition factor has restricted highest weight.

For the moment, though, let us observe that 3.3.2 suffices to prove 3.1.1. Indeed, if
s = 1, (3.3.e) permits one to reduce to the case λ1 ∈ X1, so we may suppose s > 1 and
proceed by induction on s.

Without loss of generality, we may suppose that λ1, . . . , λt ∈ X1 and λt+1, . . . , λs ∈
pX. For any m ∈ N (V), one has∧mV '

∧m′
V′ ⊗ (

∧m′′
V′′)[1]

wherem′ = (m1, . . . ,mt), m′′ = (mt+1, . . . ,ms), V′ = (V1, . . . , Vt), andV′′ = (V
[−1]
t+1 , . . . , V

[−1]
s ).

If t = 0, it suffices to prove that
∧m′′

V′′ is semisimple; working by induction on the
minimal value of Ni, one may reduce to the case t > 0.

This being done, 3.3.2 shows that
∧m′

V′ is semisimple and all its composition fac-
tors have restricted highest weight. By induction on s, the module

∧m′′
V′′ is semisim-

ple, and (3.3.e) shows that all of its composition factors have highest weight in pX.
Steinberg’s Theorem now shows that

∧mV is itself semisimple.
In the remainder of this section, we finish the verification of 3.1.1 by proving 3.3.2.

3.4. The linkage principle. Let C ⊂ X+ denote the closure of the lowest dominant
alcove for the dot action of the affine Weyl groupWp. Then C is a fundamental domain
for this action of Wp. The dominant weights in this set can be described as follows:

C+ = C ∩X+ = {λ ∈ X+ : 〈λ+ ρ, β∨〉 ≤ p}

where β is the highest short root in Φ. Denote by Ĉ the set C+ ∪ {0}.
The following gives for us a useful criteria for membership in Ĉ.
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3.4.1. [Ser94, Prop. 3, Prop. 5] Let λ ∈ X1. If dimK L(λ) < p then λ = 0 or 〈λ+ρ, β∨〉 < p;

equivalently, λ ∈ Ĉ.

The linkage principle (see [Jan87, II.6]) implies the following:

3.4.2. [Jan87, II.6.13,II.5.10] If λ ∈ Ĉ, then dimK L(λ) is equal to the value d(λ) of the
Weyl degree formula:

d(λ) =
∏
α>0

〈λ+ ρ, α∨〉
〈ρ, α∨〉

.

Let the character of aGmoduleM be the element ofZ[X] given by ch(M) =
∑

µ∈X dimKMµe
µ,

where Mµ denotes the µ weight space of M and the eµ are basis elements for Z[X]. For
λ ∈ X+, let LQ(λ) denote the simple module with highest weight λ for the split simple
Q Lie algebra gQ with root system Φ; we denote ch(LQ(λ)) by χ(λ) (the character of a
gQ module is defined via the weights of a maximal toral subalgebra on the module).
For m ≥ 1, it follows from the representation theory of gQ that there is a finite subset
H(λ,m) ⊂ X+ such that

(3.4.f) ch(
∧mLQ(λ)) =

∑
µ∈H(λ,m) mµχ(µ)

for suitable multiplicities mµ > 0.
For λ ∈ Ĉ, [Jan87, II.6.13] actually shows that ch(L(λ)) = ch(LQ(λ)); it follows from

[Bou72, VIII §7, exerc. 11] that:

3.4.3. For λ ∈ Ĉ and m ≥ 1, ch(
∧mL(λ)) = ch

∧mLQ(λ). In particular, any weight ν of∧mL(λ) satisfies ν ≤ µ for some µ ∈ H(λ,m).

The significance of the linkage principle for semisimplicity is demonstrated by:

3.4.4. [Jan87, II.6.17,II.2.12 (1)] If λ, µ ∈ Ĉ, then Ext1
G(L(λ), L(µ)) = 0.

After one notes Ĉ ⊂ X1, 3.4.4 has the immediate consequence:

3.4.5. Suppose that 〈ν + ρ, β∨〉 ≤ p for each weight ν of the G module M . Then M is
semisimple and each composition factor of M has restricted highest weight.

3.5. Weight considerations. Let us say that an admissible pair (λ,m) consists in λ ∈
X+ and 1 ≤ m ≤ d(λ)/2 such that

(3.5.g) 〈ν + ρ, β∨〉 ≤ m(d(λ)−m)

for each weight ν ∈ H(λ,m).

Remark 3.1. Let (λ,m) be a pair as above. Since each weight ν ∈ H(λ,m) satisfies
ν < mλ, one knows that (λ,m) is admissible in case 〈mλ+ ρ, β∨〉 ≤ m(d(λ)−m).

Define a partial order relation on X+ by the following simple rule: say that µ → λ
provided λ− µ ∈ X+.

3.5.1. Let c > 0 be a real number. Suppose that d(µ) ≥ c〈µ + ρ, β∨〉. If µ → λ, then
d(λ) ≥ c〈λ+ ρ, β∨〉.
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Proof. For any positive root α, we have

〈λ+ ρ, α∨〉 − 〈µ+ ρ, α∨〉 = 〈λ− µ, α∨〉 ≥ 0

since λ− µ ∈ X+. Inspecting the Weyl degree formula, it is then clear that

d(λ) ≥ d(µ) · 〈λ+ ρ, β∨〉
〈µ+ ρ, β∨〉

≥ c〈µ+ ρ, β∨〉〈λ+ ρ, β∨〉
〈µ+ ρ, β∨〉

≥ c〈λ+ ρ, β∨〉,

as desired. �

Remark 3.2. The numberings of the fundamental dominant weights used in the fol-
lowing result, and throughout this paper, are those used in the tables in [Bou72].

3.5.2. Suppose the rank of the root system is at least 2, and let λ ∈ X+. Then

(3.5.h) d(λ) ≥ 2〈λ+ ρ, β∨〉,
unless λ is among the set of weights E = E(Φ) indicated in the following table:

Φ E
A2 $1,$2, 2$1, 2$2

A3 $1,$2,$3

Ar, r ≥ 4 $1,$r

B2 $1,$2

B3 $1,$3

Br, r ≥ 4 $1

Φ E
Cr, r ≥ 3 $1

Dr, r ≥ 5 $1

D4 $i, i = 1, 3, 4
G2 $1,$2

Remark 3.3. In [McN98], the author proves a slightly stronger estimate of this sort;
namely, that dimK L(λ) ≥ r〈λ + ρ, β∨〉 for almost all λ. However, the list of exceptional
λ is larger, and the techniques used are somewhat more unwieldy than the argument
given here due to the fact that dimK L(λ) 6= d(λ) in general.

Sketch of proof. Initially, let λ be a fundamental dominant weight. In [Bou72] Table 2,
the value of d(λ) is recorded for each indecomposable root system and each funda-
mental dominant weight. A straightforward computation of 〈λ + ρ, β∨〉 in each case
yields immediately the assertion that λ satisfies (3.5.h) unless λ is among the specified
exceptions.

In view of 3.5.2, the assertion holds for Φ = E6, E7, E8, F4. Furthermore, it suffices
to prove that (3.5.h) is valid for λ = µ1 + µ2 for all possible fundamental weights µ1

and µ2 which fail to satisfy (3.5.h); in most cases this is true. We list below those λ for
which one must check (3.5.h), and we indicate the value of d(λ) for each such λ; it is
then straightforward to verify (3.5.h). For unbounded rank, we provide references for
the dimension assertions; in low rank the calculation of d(λ) is straightforward (note
that some labor may be avoided in case Φ = A2, B2, G2, as d(λ) is given in closed form
in [Hum80, §24.3] for those Φ).

• Φ = Ar, r ≥ 4: λ = 2$1, 2$2,$1 + $r. According to [McN98, Props. 4.2.2,4.6.8]
one has (for r ≥ 1):

d(2$1) = d(2$r) =

(
r + 2

2

)
and d($1 + $r) = r(r + 2).
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• Φ = A3: λ = 2$2. d(2$2) = 20.
• Φ = A2: λ = 3$1, 3$2, 2$1 + 2$2. d(λ) = 10, 10, 27 respectively.
• Φ = Br, r ≥ 4; Φ = Cr, r ≥ 3; Φ = Dr, r ≥ 5: λ = 2$1. According to [McN98,

Props. 4.2.2,4.7.3,4.8.1] one has:

d(2$1) =

(
2r + 2

2

)
− ε where ε = 1, 0, 1 for Φ = Br, Cr, Dr respectively

• Φ = Br: r = 2, 3, λ = 2$1, 2$r,$1 + $r. When r = 2, d(λ) = 14, 10, 16 respec-
tively. When r = 3, d(λ) = 27, 35, 48 respectively.
• Φ = D4: λ = $2,$i + $j for all pairs i, j ∈ {1, 3, 4}. d($2) = 28, d($i + $j) = 56

for i 6= j. d(2$i) = 35 for each i ∈ {1, 3, 4}.
• Φ = G2: λ = 2$1, 2$2,$1 + $2. d(λ) = 27, 77, 64 respectively.

�

Our goal is to list those pairs (λ,m) which fail to be admissible. Towards this end, we
introduce the subset E ′ ⊂ E as follows.

Φ E ′

Ar (r ≥ 2) $1,$r

Br (r ≥ 2) $1

Cr (r ≥ 2) $1

Φ E ′

Dr (r ≥ 5) $1

D4 $1,$3,$4

3.5.3. Let λ ∈ X+ and let 1 ≤ m ≤ d(λ)/2. Then (λ,m) is admissible unless one of the
following holds:

(1) Φ = A1

(2) m = 1, λ ∈ E ′ and Φ is one of Ar (r ≥ 2), Br (r ≥ 2), or Cr (r ≥ 2).
(3) m = 2, λ = $1 and Φ = C2.

If (λ,m) is not admissible, then

(3.5.i) 〈µ+ ρ, β∨〉 ≤ m(d(λ)−m) + 1.

for any µ ∈ H(λ,m).

Proof. We first verify (3.5.i) when Φ has rank 1. In this caseX may be identified with Z,
and X+ with Z≥0. For a ∈ X, one has d(a) = a + 1; if 1 ≤ m ≤ a + 1, the gQ = sl2(Q)
module

∧mLQ(a) has highest weight given by

b = a+ (a− 2) + · · ·+ (a− 2(m− 1)) = ma− 2
m−1∑
j=1

j = m(a+ 1−m)

whence b + 1 = 〈b + ρ, β∨〉 = m(a + 1 − m) + 1. The remaining assertions of 3.5.i are
straightforward to verify for the indicated inadmissible pairs; we omit the details.

For the remainder of the proof, we assume that the rank of Φ is at least 2; assume first
that λ 6∈ E , i.e. that λ satisfies (3.5.h). As noted in Remark 3.1, one may test admissibility
by considering ν = mλ; for such a λ one has

〈mλ+ ρ, β∨〉 ≤ m〈λ+ ρ, β∨〉 ≤ m · d(λ)

2
≤ m(d(λ)−m).
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Thus (λ,m) is admissible.
Now let λ ∈ E \ E ′; in this case one deduces the admissibility of (λ,m) for each

1 ≤ m ≤ d(λ)/2 via Remark 3.1 and the following data:

Φ λ d(λ) 〈mλ+ ρ, β∨〉
A2 2$1, 2$2 6 2m+ 2
A3 $2 6 m+ 3
B3 $3 8 m+ 5
G2 $1 7 2m+ 5
G2 $2 14 3m+ 5

Finally suppose that λ ∈ E ′. It follows from constructions in [Bou72, VIII] that in the
expression (3.4.f) one has mµ = 1 for each µ ∈ H(λ,m), and thatH(λ,m) is as specified
in the following table (3.5.j). (For type Ar, Br, and Cr, see loc. cit. VIII.§13 no. 1,2,3
respectively; for type Dr, see loc. cit. VIII.§13 no. 4 and exerc. VIII.§13.10. Note that
a description of the character

∧mL($i) for type D4 and i = 3, 4 is easily obtained by
triality from the given description of

∧mL($1).)

(3.5.j) Φ λ d(λ) Conditions H(λ,m)

Ar $1 r + 1 1 ≤ m ≤ r $m

Ar $r r + 1 1 ≤ m ≤ r $r+1−m
Br, r ≥ 2 $1 2r + 1 1 ≤ m ≤ r − 1 $m

Br, r ≥ 2 $1 2r + 1 m = r 2$r

Cr, r ≥ 2 $1 2r 1 ≤ m ≤ r,m ≡ 0 (mod 2) $m,$m−2, . . . ,$2, 0
Cr, r ≥ 2 $1 2r 1 ≤ m ≤ r,m ≡ 1 (mod 2) $m,$m−2, . . . ,$3,$1

Dr, r ≥ 4 $1 2r 1 ≤ m ≤ r − 2 $m

Dr, r ≥ 4 $1 2r m = r − 1 $r + $r−1

Dr, r ≥ 4 $1 2r m = r 2$r, 2$r−1

To complete the proof, fix λ ∈ E ′ and let d = d(λ), 2 ≤ m ≤ d/2. Suppose ν ∈
H(λ,m). One has m(d − m) ≥ m(d/2) ≥ d, so in this case the admissibility of (λ,m)
follows provided 〈ν + ρ, β∨〉 ≤ d; the data in table (3.5.j) permits one to verify this latter
condition holds if Φ 6= Cr (and m ≥ 2).

Supose now that Φ = Cr; we only must consider λ = $1. Using table (3.5.j), one
checks that 〈ν+ρ, β∨〉 ≤ 2r+1 for each ν ∈ H(λ,m). Assume first that 3 ≤ m ≤ d/2 = r;
in that case m(d −m) ≥ 3r ≥ 2r + 1 and the result holds. When m = 2 and r ≥ 3, one
gets the desired result by noting m(d−m) = 2(2r − 2) = 4(r − 1) ≥ 2r + 1.

The above handles m ≥ 2. When m = 1, we only must consider Φ = Dr and the
weight λ = $1. The table shows that 〈ν + ρ, β∨〉 = 2r − 2 < 2r − 1 = d − 1 for each
ν ∈ H(λ, 1) = {$1}, whence the admissibility of ($1, 1) in this case. �

We are now is a position to complete the proof of 3.3.2 (and hence of 3.1.1). Let
V = (L(λ1), . . . , L(λs)) with each λi restricted, and let m ∈ Ñ (V). In view of (3.4.1),
λi ∈ Ĉ for each i.

Any weight ν of
∧mV has the form ν = ν1 + · · ·+ νs where νi is a weight of

∧miL(λi).
According to 3.4.3, there is a weight µi ∈ H(λi,mi) with νi ≤ µi; since 〈νi, β∨〉 ≤ 〈µi, β∨〉,
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we may as well assume that νi ∈ H(λi,mi) for each i. We will verify 3.3.2; in most cases
we will do this by checking that 3.4.5 holds.

After re-ordering, we may suppose that for some 1 ≤ i ≤ s+ 1, (λj,mj) is admissible
if and only if j < i.

Suppose first that i > 1; in this case note that (3.5.i) yields 〈λk, β∨〉 ≤ mk(d(λk)−mk)
for i ≤ k. Combining this with the admissibility of the first i− 1 weights yields

〈ν + ρ, β∨〉 ≤
i−1∑
j=1

〈νj + ρ, β∨〉+
s∑
k=i

〈νj, β∨〉 ≤
s∑
`=1

m`(d(λ`)−m`) < p,

as desired.
Now suppose that i = 1, i.e. that no pair (λj,mj) is admissible. If Φ = A1, we have by

(3.5.i)

b = 〈ν, β∨〉 ≤
s∑
i=1

mi(d(λi)−mi) < p

whence b + 1 = 〈ν + ρ, β∨〉 ≤ p, as asserted. So we now assume that the rank of Φ is at
least 2. If s = 1, the semisimplicity of

∧mV is trivial in case m1 = 1; the only situation
not handled by this observation is m1 = 2, λ1 = $1, Φ = C2. A straightforward com-
putation shows that

∧2L($1) is semisimple with restricted composition factors unless
p = 2; see [McN98, Lemma 4.5.3] and note that p = 2 is ruled out by the condition
m ∈ N (V).

Finally, suppose s > 1. Using (3.5.i), one has

〈ν + ρ, β∨〉 ≤
s∑
i=1

〈νi + ρ, β∨〉 − (s− 1)〈ρ, β∨〉 ≤
s∑
i=1

mi(d(λi)−mi) + s− (s− 1)〈ρ, β∨〉

< p− (h− 2)s+ h− 1,

where h − 1 = 〈ρ, β∨〉 ≥ 2 (h is the Coxeter number). Since s ≥ 2, one has s ≥ h−1
h−2

and
3.4.5 is verified in this case.

This completes the proof of 3.1.1.

Remark 3.4. Let V = L(λ), λ ∈ E ′. More can be said about theGmodule
∧mV . If Φ = Br

or Dr, assume p 6= 2. If Φ = Cr, assume p > r. Then one has
∧mV '

⊕
µ∈H(λ,m) L(µ).

These assertions are verified in [McN98, Prop. 4.2.2] in the following situations: Φ =
Ar; Φ = Br and m < r; Φ = Dr and m < r − 1. For Φ = Br, the assertion for

∧rV
follows from [Sei87, 8.1]; for Φ = Dr, the assertion for

∧r−1V follows from [Sei87, 8.1].
When Φ = Cr, see [McNa, Prop. 6.3.5.] where the indecomposable summands of

∧mV
are worked out for all p. The only remaining situation is

∧rV for type Dr. As a suitable
reference was not located, we sketch an argument.

Let F be a field of characteristic p ≥ 0, p 6= 2, and let (V, q) be a non-degenerate
quadratic F -space with dimF V = 2r, r ≥ 3. Let G = SO(V, q); then G is the group
of F points of an algebraic group G of type Dr, and V is an F -form of the rational G-
moduleL($1). Assume that V has an orthogonal basis {ei} for which q(ei) = αi, and let
∆ = ∆(q) = (−1)rα1 · · ·α2r; of course a different choice of orthogonal basis results in a
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different value of ∆, but any choice yields the same element inF×/(F×)2. In particular,
the field extension F ′ = F (

√
∆) is well defined.

In [KMRT98, Proposition (10.22)], a G-automorphism τ of
∧rV is constructed with

the property that τ 2 is given by multiplication with 1/∆. Let V ′ = V ⊗F F ′; then
∧rV ′

is the direct sum of eigenspaces E± for τ with eigenvalues ±1/
√

∆. These eigenspaces
are F ′G submodules of

∧rV ′ (in fact, they are even F ′SO(V ′, q′) submodules).
Write V = Fe⊕W as an orthogonal sum with e non-singular, and let H = SO(W ) ≤

G. Then H is the group of F points of an algebraic group of type Br−1. Evidently

resGH(
∧rV ) '

∧r−1W ⊕
∧rW.

Using (2.2.a), we have
∧rW '

∧r−1W , and we have already seen that this module is
absolutely simple for FH. Since resGH(

∧rV ′) has length 2, it follows at once that the
F ′G modules E± are simple. Working over an algebraic closure F̄ (or over any field
which splits q), one finds that the highest weights of

∧rV ⊗F F̄ are 2$r and 2$r−1;
since these weights are incomparable, it follows by length considerations that

∧rV ⊗F
F̄ ' L(2$r) ⊕ L(2$r−1). In particular, E+ and E− are non-isomorphic. This gives the
claimed result. We have shown that

∧rV is an absolutely semisimple FG module of
absolute length 2; if ∆ ∈ (F×)2 then EndFG(

∧rV ) ' F×F , otherwise EndFG(
∧rV ) ' F ′

and
∧rV is simple for FG.

4. THE PROOF FOR AN ARBITRARY GROUP

The argument presented in this section follows very closely that given in [Ser94]. For
completeness we outline the entire argument.

4.1. Saturation. Let V be a vector space of dimension n over K, and let u ∈ GL(V ) be
an element of order p. Then x = u − 1 is a nilpotent endomorphism of V satisfying
xp = 0.

One defines a homomorphism φs : K → GL(V ) by using a truncated exponential.
More precisely, for t ∈ K, define φu(t) = ut ∈ GL(V ) to be

(4.1.k) ut =

p−1∑
i=0

(
t

i

)
xi = 1 + tx+

t(t− 1)

2
x2 + · · ·

4.1.1. [Ser94, §4.1] The homomorphism φu : K → GL(V ) is uniquely characterized by
the following properties:

P1. φu(1) = u.
P2. φu has degree < p, (i.e. t 7→ ut is polynomial in t of degree < p).

A subgroupH ≤ GL(V ) is called saturated if every unipotent element u ofH satisfies
up = 1 and ut ∈ H for every t ∈ K.

From our point of view, the important fact about saturated subgroups of GL(V ) is
the following:

4.1.2. [Ser94, Proposition 11] Let H ≤ GL(V ) be an algebraic subgroup which is satu-
rated. Then [H : H0] 6≡ 0 (mod p), where H0 denotes the identity component of H.
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4.2. The proof of Theorem 3. Let G by a group, let V be a sequence of semisimple G-
modules of dimension ni, and let m ∈ N (V). Let H denote the subgroup of GL(V) =
GL(V1)× · · · ×GL(Vs) consisting of all elements x so that

∧m(x) =
∧m1x1⊗ · · · ⊗

∧msxs
leaves stable each subspace of

∧mV which is stable under G. Then H is an algebraic
subgroup of GL(V), and

∧mV is a rationalH module. Furthermore,
∧mV is a semisim-

ple G module if and only if it is a semisimple module for H.
In view of the results of section 3, Theorem 3 will follow provided that we argue

[H : H0] 6≡ 0 (mod p). To verify this property, we invoke 4.1.2; we must verify that H is
saturated.

4.2.1. Let u ∈ H be unipotent. Then up = 1.

Proof. This follows (as noted in [Ser94, 4.2]) since every unipotent in GL(Vi) has this
property when dimK Vi ≤ p. �

4.2.2. Let u ∈ H be a unipotent element. Then ut ∈ H for all t ∈ K.

Proof. We must verify that
∧m(ut) leaves stable each G-invariant subspace of

∧mV. It
is straightforward to see that (

∧mu)
t leaves stable each G-invariant subspace of

∧mV,
so it suffices to show that

∧m(ut) = (
∧mu)

t. In view of the uniqueness in 4.1.1 and the
fact that

∧m(u1) = (
∧mu)

1, it suffices to show that t 7→
∧m(ut) is polynomial of degree

f < p.
Let fi denote the degree of the map t 7→

∧miuti; evidently f =
∑s

i=1 fi. Thus we are
reduced to showing the following:

4.2.3. If V is a K vector space and u ∈ GL(V ) is unipotent, then the degree f of t 7→∧m(ut) satisfies f ≤ m(dimK V −m).

Let e1, e2, . . . , en be a basis of V chosen so that the unipotent element u fixes the
“standard flag”

E0 = 0 ⊂ E1 = Ke1 ⊂ E2 = Ke1 +Ke2 ⊂ · · · ⊂ En = V.

It follows that x = u− 1 satisfies x(Ei) ⊆ Ei−1.
We adopt the convention that ei = if i ≤ 0 or i > n. For each m-tuple of integers ~a,

let
e(~a) = ea(1) ∧ ea(2) ∧ · · · ∧ ea(m) ∈

∧mV.

Of course e(~a) = 0 if any two components of~a coincide, or if any a(i) fails to lie between
1 and n. Put |~a| =

∑
i a(i). It is straightforward to verify that:

4.2.4. If ~a is an m-tuple such that e(~a) 6= 0, then m(m+1)
2
≤ |~a| ≤ mn− m(m−1)

2
.

Fix ~a with e(~a) 6= 0, and consider the morphism

f~a : K →
∧mV

given by t 7→
∧m(ut) · e(~a). The degree of the polynomial map t 7→

∧m(ut) is equal to
sup{deg(f~a)}, the sup taken over all choices of ~a as above.

In view of the definition of ut and the fact that∧m(ut)e(~a) = (utea(1)) ∧ (utea(2)) ∧ · · · ∧ (utea(n)),
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it suffices to show the following:

4.2.5. Let ~a be such that e(~a) 6= 0. Whenever ~b is an m-tuple of positive integers with
|~b| > m(n−m), then e(~a−~b) = 0.

To prove this, we note that 4.2.4 gives an upper bound for |~a|, so we have

|~a−~b| = |~a| − |~b| < |~a| −m(n−m) ≤ mn− m(m− 1)

2
−m(n−m) =

m(m+ 1)

2
,

whence e(~a−~b) = 0 by the lower bound given in 4.2.4. We have thus verified 4.2.2. �

The fact thatH is saturated now follows; as noted above, this completes the proof of
Theorem 3.
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1998.


