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1. INTRODUCTION

Let k be an algebraically closed field of characteristic p > 0, and let G be a connected,
reductive algebraic group over k. In [8] and [11], conditions on the dimension of rational G
modules were seen to imply semisimplicity of these modules. In [8], certain of these conditions
were extended to cover the finite groups of Lie type. In this paper, we extend some of the results
of [11] to cover these finite Lie type groups. The main such extension is the following result:

Theorem 1. Let q = pr, where p is a prime number. Let G(Fq) be a finite group of Lie type,
arising as the fixed points of an automorphism of an almost simple algebraic group G of rank
` with root system Φ, and let V be a kG(Fq) module. Assume that (Φ, p, r) does not appear in
Table 1 below. If dimk V ≤ `p, then V is semisimple.

Table 1. Restrictions on q.

Φ p r

A1 any any
A2 2 1
A` ` ≥ 2 3 1, 2
C` ` ≥ 2 5 1

The proof of this theorem proceeds roughly as follows. As in [11], the proof involves studying
the group

Ext1G(Fq)(L,L
′)

whereL,L′ are simple modules forG(Fq) with the property that dimk L+dimk L
′ ≤ `p; Theorem

1 follows provided that this Ext group, which measures extensions between L and L′, vanishes
in all cases.

The main idea of the proof of Theorem 1 is to compare the rational representation theory of
the algebraic group G with the representation theory of kG(Fq). In Section 2, we point out some
of the basic features of the representation theory of kG(Fq). One of the chief aspects of interest
is the fact that simple modules for kG(Fq) “lift” to the algebraic group G. Much of the notation
for the remainder of the paper is fixed in this section.

We utilize two main results from the work in [11]. The first is the rational analogue of Theorem
1, namely Theorem 1 of [11]. The second is the “combinatorial” work establishing the list I of
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weights which fail to be allowable. We summarize much of this combinatorial work in Section
3.

In Section 4, we collect some of the methods for studying extensions betweenG(Fq) represen-
tations. Proposition 4.1 states Jantzen’s adaptation of the generic cohomology conditions given
in [5]. Together with Theorem 1 of [11], these conditions form the basis for proof of the main
theorem for “most” of the finite groups of Lie type; they imply that one has an isomorphism

Ext1G(L,L′) ' Ext1G(Fq)(L,L
′),

for sufficiently large q and for fixed L,L′.
In Section 5.4 we utilize the results of Section 4 together with work in [11] to obtain some key

reductions involved in the proof of Theorem 1. In particular, Proposition 5.6 provides a reduction
to the case where p is small; this Proposition establishes the vanishing of the appropriate Ext
group whenever p > pmax, where pmax is specified in Table 5. Furthermore, the assertion of Theo-
rem 1 is verified when L′ is the trivial module; see Proposition 5.13. Finally, we obtain the crucial
reduction to the situation where the highest weights of L and L′ are “tensor indecomposable;”
see 5.12. The section concludes with Theorem 2. This theorem implies Theorem 1 for most q,
though some additional restrictions on q beyond those in Table 1 are made; see Table 3.

Section 6 describes the generic cohomology conditions given in [5] and [2] (for first cohomol-
ogy groups); these results are then applied in 6.2 to establish the required vanishing of Ext when
(Φ, p, r) is among the triples listed in Table 3.

The paper concludes with Section 7; here we provide the proof of Theorem 1. We also describe
some small indecomposable modules which necessitate certain of the restrictions from Table 1.

Remark 1.1. For exceptional-type groups, the bound `p can be improved somewhat; see Table 4
and the statement of Theorem 2.

Remark 1.2. One should refer to sections 6 and 7.2 for discussion concerning the values of q
ruled out by Table 1 and 3. For some of these q, there are indecomposable modules violating the
dimension condition of Theorem 1; these modules are described in section 7.2. For the remaining
values of q, we provide no answer here. In some cases the existing techniques are inadequate to
verify the theorem; remarks concerning this inadequacy are given in section 6.

2. NOTATION

Let r ≥ 1, and let q = pr. Denote by Fq the finite field with q elements. We assume that the
group G is defined over Fp; furthermore, assume that G is split over Fp, i.e. that G contains a
maximal torus T defined over Fp. Let F be the corresponding Frobenius endomorphism of G.

Let σ denote a fixed (and possibly trivial) automorphism of the Dynkin diagram. Abusing
notation slightly, we denote also by σ the corresponding map G → G and X → X . Let G(Fq)
denote the group of fixed points of the map F r ◦ σ.

Let X = Hom(T, k×) denote the weight lattice of G; X is isomorphic to Z` where ` is the
rank of G. Let Φ ⊂ X denote the root system of G, and let Φ+ ⊂ Φ, X+ ⊂ X denote a fixed
choice of positive roots and corresponding positive region in X . A weight λ ∈ X+ is called
dominant; we recall that the dominant weights parametrize the simple rational G modules L(λ).
Let α1, α2, . . . , α` ∈ Φ+ denote the simple roots, and let $1,$2, . . . ,$` ∈ X+ denote the
corresponding fundamental dominant weights.
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For t ≥ 1, let Xt = {λ ∈ X | 0 ≤ 〈λ, αi〉 < pt for i = 1, 2, . . . , `}. It is known that
the restrictions L(λ)|G(Fq) for λ ∈ Xr form a complete set of simple kG(Fq) modules; see for
example Theorem 43, [13].

Any weight λ ∈ Xr may be uniquely expressed as

λ = λ0 + pλ1 + p2λ2 + · · ·+ pr−1λr−1 (2.a)

where λi ∈ X1 is a restricted weight. The structure of L(λ) can be understood in part from such
a decomposition; Steinberg’s tensor product theorem asserts that

L ' L(λ0)⊗ L(λ1)
[1] ⊗ · · · ⊗ L(λr−1)

[r−1]. (2.b)

Here, L[d] denotes the dth Frobenius twist of the module L; namely the representation resulting
from twisting the representation L by the dth power of the Frobenius map F . Note in particular
that

dimk L(λi) ≤ dimk L(λ) (0 ≤ i ≤ r). (2.c)

Remark 2.1. Let λ ∈ Xr be the highest weight of the simple G(Fq) module L. Then L[d] has
highest weight pd′λwhere d′ is determined by the conditions 0 ≤ d′ ≤ r−1 and d ≡ d′ (mod r).

For a dominant weight λ, recall that Π(λ) denotes the saturated set of weights with highest
weight λ. Suppose that λ is restricted and that p is not a special prime (see [11] Definition
(2.2.2)). Premet’s theorem, [12] (see also [11] (2.2.3) for a statement consistent with the notation
used here) gives the following dimension estimate:

|Π(λ)| ≤ dimk L. (2.d)

Remark 2.2. In this paper, the only twisted groups of Lie type that we consider are those arising
from automorphisms of the Dynkin diagram. The twisted groups which do not arise in this way
are as follows:

2F4(2
r), 2G2(3

r), and 2B2(2
r).

See [4], 1.19, for a discussion of the classification of finite Lie type groups, as well as for the
values of r for which the above notations have meaning. For these groups, the parameters ` and p
are fixed (and are small). One observes that `p exceeds the minimal non-trivial module dimension
in each case; thus Theorem 1 is vacuous for these groups.

Remark 2.3. The semisimple algebraic groups are classified by their root systems Φ. In this
paper, we shall refer to root systems of type A`, B`, C`, and D` as being of classical type, and
those of type E`, 6 ≤ ` ≤ 8, F4, and G2 as being of exceptional type. Similarly, we may refer to
a semisimple algebraic group as being either classical or exceptional.

3. ALLOWABLE WEIGHTS

Throughout this section, Φ denotes an irreducible root system of rank `. Let α̃ (respectively α0) ∈
Φ+ be the long (respectively short) root of maximal height, and let

C = C(Φ) = max

{
|Wα̃|

2
,
|Wα0|

2

}
.
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Computation of the quantity C is straightforward. One uses the tables in [3] to determine the
long and short root of maximal height; they are simply the long and short root which are dominant
weights. It is then a simple matter to apply the definition of C to obtain the following

For type A`, C =

(
`+ 1

2

)
. For type C`, C = 2

(
`

2

)
= `(`− 1).

For type B`, C = `(`− 1). For type D`, C = `(`− 1).
For type E6, C = 36. For type E7, C = 63.
For type E8, C = 120. For type F4, C = 12.
For type G2, C = 3.

(3.a)

Definition 3.1. A weight λ ∈ X+ will be called allowable provided that

|Π(λ)| > C · 〈λ+ ρ, α0̌ 〉.

The notion of an allowable weight is important because, combined with (2.d), it permits us to
relate the size of 〈λ, α0̌ 〉 with dimk L(λ). In Table 2 below, we specify a set I of weights for
each irreducible root system Φ. The following result was an important tool used in the results of
[11]; its proof can be found in [11] 3.2.

Proposition 3.2. Let Φ be an irreducible root system of rank ` ≥ 2, and let I be the set specified
in table 2. Suppose that λ is a non-0 weight. If λ ∈ X+ \ I, then λ is allowable.

Table 2. The set I.
Exceptional Types

Type E6. I = {$2, $1 +$6, $1, $6, $5, $3, 2$1, 2$6}.
Type E7. I = {$1, $6, 2$7, $7, $2}.
Type E8. I = {$1, $8}.
Type F4. I = {$1, $3, $4, 2$4}.
Type G2. I = {$1, $2, 2$2, 3$2}.
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For the classical types of root systems, I consists of the diagram automorphism conjugates of
the following weights.

The classical types.
Type A`, ` ≥ 2 Type B`, ` ≥ 3 Type C`, ` ≥ 2 Type D`, ` ≥ 4

$i, ` > 2i $i, ` > i $i, ` > i $i, ` > i+ 1

(i = 1, 2, 3) (i = 1, 2, 3) (i = 1, 2, 3) (i = 1, 2, 3)

$4, 7 ≤ ` ≤ 15 $`, 3 ≤ ` ≤ 11 $4, 4 ≤ ` ≤ 6 $4, ` = 6

$5, 9 ≤ ` ≤ 11 $5, ` = 5, 6 $`, 4 ≤ ` ≤ 12

$6, ` = 6

r$1 r$1 r$1 2$1

(r = 2, 3) (r = 2, 3) (r = 2, 3)

4$1, ` = 4, 5

$1 +$2, ` ≥ 3 $1 +$2 $1 +$2 $1 +$2, ` ≥ 5

2$1 +$`, ` ≥ 3 $2 +$`, ` = 3, 4 2$2, ` = 2, 3 2$4, ` = 5

$i +$`, ` > i 2$`, ` = 3, 4 $1 +$3, ` = 3 $1 +$`, 4 ≤ ` ≤ 7

(i = 1, 2, 3)

2$2, 3 ≤ ` ≤ 6 $1 +$`, 3 ≤ ` ≤ 5 $4 +$5, ` = 5

2$1 +$2, 2 ≤ ` ≤ 5

3$1 +$2, ` = 2
$4 +$6, ` = 6
$2 +$3, ` = 4

We make the following additional technical observations which will be exploited later.

Proposition 3.3. Let Φ = A`.
(a) Let λ ∈ I, and assume that p ≤ 7, and that dimk L(λ) < `p. Then

〈λ, α0̌ 〉 = 1 (3.b)

unless λ is one of the following:

` p λ

2, 3 7 3$1

≤ 11 7 2$1

≤ 7 5 2$1

3 7 $1 + $2

2, 3, 4 7 $1 + $`

2, 3 5 $1 + $`

3 7 $2 + $3

3 7 2$2

(b) Let p = 2, let λ ∈ I be a restricted weight, assume that dimk L(λ) < `p = 2`. Then
λ = $1 or $`.

Proposition 3.4. Let Φ = B` with ` ≥ 3.
(a) Assume that p ≤ 13, λ ∈ I, and dimk L(λ) < `p. Then 〈λ, α0̌ 〉 ≤ 2 unless λ = 2$1,
` = 3, 4, 5, and p > 2`+ 3.
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(b) Assume that p = 3, λ ∈ I, dimk L(λ) < 3`. Then either λ = $1 or ` = 3 and
λ = $3.

Proposition 3.5. Let Φ = C`, ` ≥ 2.
(a) Suppose that λ ∈ I is a restricted weight. If ` ≥ 4, suppose that p ≤ 7, while if
` = 2, 3 suppose that p ≤ 11. If dimk L(λ) < `p then 〈λ, α0̌ 〉 ≤ 2.

(b) Let p = 3. If λ ∈ I is restricted and dimk L(λ) < 3`, then λ = $1.

Proposition 3.6. Let Φ = D`, ` ≥ 4.
(a) Suppose that λ ∈ I is a restricted weight, and assume that p ≤ 7. If dimk L(λ) < `p
then 〈λ, α0̌ 〉 ≤ 2.

(b) Let p = 2, 3. If λ ∈ I is restricted and dimk L(λ) < p`, then p = 3 and, up to diagram
automorphism, λ = $1.

Sketch of proof for Propositions 3.3, 3.4, 3.5, and 3.6. The proof of each of these four results is
similar. For (a) of each result, the dimensions of the modules L(λ) for λ ∈ I were determined
or estimated in [11]; see in particular Table 4.5.2, Proposition 4.2.2. For type A`, one also needs
Proposition 4.6.8 of [11], and for types B`, C`, and D`, one should refer to Proposition 4.9.2,
Remark 4.9.3, Proposition 4.7.4, and Lemma 4.8.2 of [11].

It is straightforward to check that when p satisfies the indicated condition and dimk L(λ) > `p,
then 〈λ, α0̌ 〉 exceeds the indicated bound.

As to (b) when Φ = A`, one can apply [11] Lemma 5.4.4 to obtain restrictions on the possible
support of λ; the result then follows by consideration of the dimensions of the simple modules
corresponding to the weights in I having the indicated support.

For (b), when Φ 6= A` is one of the remaining possibilities, the argument proceeds much as
for A`. Since |Wλ| ≤ dimk L(λ) ≤ `3 ≤ 2C, Lemma 5.4.4 applies and one obtains restrictions
on the support of λ. It is then straightforward to verify that the listed weights are the only
possibilities. �

4. GENERIC COHOMOLOGY CONDITIONS

In this section, we describe certain conditions proved in [8] which guarantee that the natural
map

H1(G, V )→ H1(G(Fq), V ) (4.a)
is an isomorphism. We point out that the arguments in [8] are proved using the techniques of [5];
for more discussion of the latter techniques, see section 6. Let r ≥ 1, and let

f(r, p) =

{
pr − 3pr−1 − 3 if Φ = G2

pr − 2pr−1 − 2 otherwise (4.b)

Proposition 4.1. Fix q = pr.
(a) Let V be a finite dimensional rational G-module such that each weight λ of V satisfies
〈λ, α0̌ 〉 ≤ f(r, p). Then the map in (4.a) is an isomorphism.

(b) Let λ and µ be dominant weights satisfying

〈λ+ µ, α0̌ 〉 ≤ f(r, p). (4.c)
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Then the natural map

Ext1G(L(µ), L(λ))→ Ext1G(Fq)(L(µ), L(λ)) (4.d)

is an isomorphism.

Proof. This result is 2.2 of [8]. �

Proposition 4.2. Let G be a finite group, and let φ be an automorphism of G. For any kG module
M , denote by Mφ the kG module which is M as a vector space, but with G action twisted by φ.
Then H i(G,Mφ) ' H i(G,M).

Proof. The functor M 7→Mφ is an automorphism of the category; the result follows at once. �

Corollary 4.3. Let G = G(Fq) be a finite group of Lie type, and let M be a kG module. Then
(a) H1(G,M [d]) ' H1(G,M) for all d ∈ Z, where M [d] denotes the d-th Frobenius twist
of the module M .

(b) If M is simple, H1(G,M∗) ' H1(G,M), where M∗ denotes the dual or contragredi-
ent module.

Proof. This result follows from Proposition 4.2 where for (a) we take φ = F d, the d-th power of
the Frobenius automorphism of G, and for (b) we take φ to be the “diagram automorphism” of G
given by the action of −w0 where w0 is the longest word in the Weyl group of Φ. �

5. THE PROOF FOR ALMOST ALL CASES

We shall first provide a proof of Theorem 1 when (Φ, p, r) is not among the triples listed in
Tables 1, 3.

Table 3. Temporary Restrictions on q = pr.

Φ p r

A` ` ≥ 2 5 1
B` ` ≥ 3 5 1
D` ` ≥ 4 5 1
G2 7 1

We shall also require a constant, c, defined as follows: If Φ is of classical type, take c = `. If
Φ is of exceptional type, let the number c be given by Table 4. Note that in all cases c ≥ `.
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Table 4. Value of c for Exceptional Groups

Φ E6 E7 E8 F4 G2

c
53

7

31

2

495

7

51

11
2

Actually, we first prove the following theorem:

Theorem 2. Let Φ be an irreducible root system and let σ be a fixed automorphism of Φ. Let
q = pr, and let G(Fq) denote the corresponding finite group of Lie type. Assume that (Φ, p, r)
does not appear in Table 1 or 3. If λ, λ′ ∈ Xr and

dimk L+ dimk L
′ ≤ cp

then Ext1G(Fq)(L,L
′) = 0, where L = L(λ), L′ = L(λ′).

Theorem 2 implies Theorem 1 for the triples (Φ, p, r) which are not listed in either Table 1 or
3. We concentrate first on proving Theorem 2. However, unless otherwise stated, the results we
prove hold for the triples in Table 3. The only results which exploit the exclusions of the triples
in Table 3 are Proposition 5.13 and the proof of Theorem 2.

Fix L,L′ non-0 simple modules for kG(Fq). Let

λ =
r−1∑
i=0

piλi, λ′ =
r−1∑
i=0

piλ′i, λi, λ
′
i ∈ X1 (5.a)

denote the highest weights of these simple modules, written in their p-adic expansions.
We shall be interested in representations L,L′ for kG(Fq) satisfying the following:

Condition 5.1. The inequality
dimk L+ dimk L

′ ≤ cp

holds, where c = ` when Φ is classical, and c is given in Table 4 when Φ is exceptional.

Proposition 5.2. Let L,L′ be simple rational modules for the algebraic group G. If L,L′ satisfy
Condition 5.1, then Ext1G(L,L′) = 0.

Proof. For Φ of classical type, this follows from [11], Corollary 1. When Φ is exceptional, one
uses [11] Theorem 1 together with the observation that every indecomposable module described
in [11] Proposition 5.1.1 for exceptional groups has dimension exceeding cp. �

Proposition 5.3. If L = L′ = L(0), then Ext1G(Fq)(L,L
′) = 0.

Proof. The standing rank assumption ` > 1 guarantees that the group G(Fq) contains a subgroup
H which is a central extension of a simple group; furthermore, [G(Fq) : H] is prime to p. Thus,
restriction induces an injection 0→ H1(G(Fq), k)→ H1(H, k). One knows as well thatH = H ′

is its own derived group. Now, a 1-cocycle on H with coefficients in k is nothing more than a
group homomorphism from H to the additive group of k; since H = H ′, all such are trivial. �
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Remark 5.4. Of course, the assumption on the rank of G is much stronger than necessary for
Proposition 5.3; the result holds for rank 1 provided that q ≥ 4.

Proposition 5.5. Let p be a special prime. If Condition 5.1 holds, then

Ext1G(Fq)(L,L
′) = 0.

Proof. By proposition 5.3, it suffices to show that L = L′ = L(0) whenever Condition 5.1
holds. Let m be the minimal dimension for a non-trivial G(Fq)-module. Evidently, one need
only observe that m ≥ cp; the following data immediately yield this inequality.

Φ p c m

B` 2 ` 2`
C` 2 ` 2`
G2 3 2 6

F4 2
51

11
26

�

We assume from now on that p is not special.

Proposition 5.6. Let λ, λ′ ∈ Xr, and consider their corresponding p-adic expansions as in 2.a.
(a) Suppose for every 0 ≤ i ≤ r that the following condition holds:

〈λi + λ′i, α0̌ 〉 ≤

 p− 3 if Φ = A2

p− 6 if Φ = G2

p− 4 for all other root systems
. (5.b)

Then 〈λ+ λ′, α0̌ 〉 ≤ f(r, p).
(b) Assume that dimkL(λ) + dimk L(λ′) ≤ cp. Suppose that each p-adic term of λ and
λ′ is an allowable weight. Then

〈λ+ λ′, α0̌ 〉 ≤ f(r, p).

(c) Assume that dimkL(λ)+dimk L(λ′) ≤ cp. Suppose that 〈λ+λ′, α0̌ 〉 > f(r, p). Then
p ≤ pmax where pmax is given in Table 5.

Table 5. Possibilities for p.

Φ A` B` C` C` D` E6 E7 E8 F4 G2

` ` ≥ 2 ` ≥ 3 ` ≥ 4 ` = 2, 3 ` ≥ 4

pmax 7 13 7 11 7 7 7 7 11 17

Proof. (a) is proved in [8], 2.1(3). (b) will follow from (a) after we verify that (5.b) holds when-
ever λi, λ′i are allowable. We first observe that since p is not special and λi is restricted, (2.d)
together with (2.c) yield

|Π(λi)| ≤ dimk L.
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Since λi is allowable, we deduce that C〈λi + ρ, α0̌ 〉 ≤ dimk L. Recall that the Coxeter number
is given by h = 〈ρ, α0̌ 〉+ 1. We thus obtain

C〈λi, α0̌ 〉 ≤ dimk L− C(h− 1).

Combining this inequality with the corresponding statement for λ′i, we get

C〈λi + λ′i, α0̌ 〉 ≤ dimk L+ dimk L
′ − 2C(h− 1),

or, applying Condition 5.1,
〈λi + λ′i, α0̌ 〉 ≤ p− 2(h− 1). (5.c)

Suppose first that Φ 6= A2, G2. One has in this situation h ≥ 4. This implies that 2(h− 1) ≥ 6
so that p− 2(h− 1) ≤ p− 4; this verifies (5.b).

When Φ = G2, h = 6. The right-hand side of (5.c) is thus p − 10, which is less than p − 6;
this again verifies (5.b).

Finally, when Φ = A2, h = 3. The right-hand side of (5.c) is p− 4 which is less than p− 3 as
required by (5.b).

To prove (c), note that by (a) there is some 0 ≤ i ≤ r so that (5.b) fails. After possibly
interchanging the roles of λ and λ′, we may suppose that λi satisfies

〈λi, α0̌ 〉 >
1

2

p− 3 if Φ = A2

p− 6 if Φ = G2

p− 4 for all other root systems
(5.d)

Furthermore, by the proof of (b), we may suppose that λi is not allowable, whence λi ∈ I by
Proposition 3.2.

Let n = n(Φ) = maxµ∈I(〈µ, α0̌ 〉). In order that (5.d) hold, one must have

n ≥ 1

2

p− 3 if Φ = A2

p− 6 if Φ = G2

p− 4 for all other root systems

Upper bounds on p may now be obtained by computing n(Φ) for each Φ. One finds, for Φ 6=
A2, G2, that 2n(Φ) + 4 ≥ pmax for Φ = B` (` ≥ 4), C`(` ≥ 4), D`, E`, F4. When Φ = A`, one
has 2n(Φ) ≥ pmax unless ` ≤ 5. When Φ = A` and ` ≤ 5, one has 2n(Φ) = 8. However, one
easily checks that every µ ∈ I with 〈µ, α0̌ 〉 ≥ 4 satisfies dimk L(µ) ≥ `p whenever p ≤ 11. It
follows that we may take pmax as indicated by Table 5.

The arguments establishing the bound pmax for Φ = B2, B3, C3, G2, A2 are similar; the details
are omitted. �

Corollary 5.7. Let λ, λ′ ∈ Xr. If dimk L+ dimk L
′ ≤ cp and

Ext1G(Fq)(L,L
′) 6= 0

then p ≤ pmax.

Proof. Assume that p > pmax. By (c) of Proposition 5.6 we deduce that that 〈λ + λ′, α0̌ 〉 ≤
f(r, p). Proposition 4.1 then shows that

Ext1G(Fq)(L,L
′) ' Ext1G(L,L′)

The result now follows from Proposition 5.2. �
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5.1. The set I(p). Proposition 5.6 reduces the proof of Theorem 1, or Theorem 2, to the situation
where p ≤ pmax. Furthermore, we may evidently assume that at least one p-adic term of one of
the weights λ, λ′ fails to be allowable. However, more is true. In this section, we verify that all
of the p-adic terms of each weight λ, λ′ actually lie in the set I.

Definition 5.8. For Φ an indecomposable root system, and p a prime, put

I(p,Φ) = I(p) = {µ ∈ X1 | dimk L(µ) < cp}.

Proposition 5.9. Suppose that p ≤ pmax, where pmax is given in Table 5. If 0 6= λ ∈ I(p), then
λ ∈ I.

Proof. Suppose that λ 6∈ I. If p is not special, we have then

〈λ+ ρ, α0̌ 〉 < dimk L(λ)/C ≤ cp/C (5.e)

In particular, since λ 6= 0, we have

1 + 〈ρ, α0̌ 〉 < cp/C (5.f)

One now examines this inequality for each indecomposable root system Φ.

When Φ = A`, 〈ρ, α0̌ 〉 = ` and C =

(
`+ 1

2

)
; (5.f) thus yields

(`+ 1)2 < 2p.

Since p ≤ 7, we deduce ` = 2. When ` = 2, (5.e) yields 〈λ, α0̌ 〉 ≤
2p− 6

3
; since p ≤ 7 this

shows that 〈λ, α0̌ 〉 ≤ 8/3 < 3. The result now follows since λ ∈ I for every λ ∈ X+ with
〈λ, α0̌ 〉 < 3.

When Φ = B` or C`, (5.f) yields
2`(`− 1) < p

When ` ≥ 4, we have in all cases p ≤ 13 and 2`(` − 1) ≥ 24. When ` = 3, 2`(` − 1) = 12; if
Φ = C3, the result follows since p ≤ 11. If Φ = B3, one has p ≤ 13. In this case, (5.e) yields
〈λ, α0̌ 〉 ≤ 1, hence λ = $3 ∈ I.

Finally, when Φ = C2, p ≤ 11; thus (5.e) shows that 〈λ, α0̌ 〉 < p − 3 ≤ 8. This inequal-
ity shows that λ is in the “lowest dominant alcove”; thus, Corollary 4.4.3 of [11] shows that
L(λ) = V (λ), where V (λ) is the Weyl module. In particular, dimk L(λ) is given by Weyl’s
degree formula – see (2.1.a) of [11]. For type C2, this formula yields

dimk L(a$1 + b$2) =
(a+ b+ 2)(b+ 1)(a+ 2b+ 3)(a+ 1)

6
Using this formula, one immediately verifies that dimk L(λ) > 2p whenever 〈λ, α0̌ 〉 ≤ 8 and
λ 6∈ I.

If Φ = D`, we have p ≤ 7. As in the analysis for Φ = B`, C`, (5.f) yields 2`(`− 1) < p; since
` ≥ 4, this inequality is impossible and the result follows.

Finally, assume Φ is exceptional. One determines the following values.
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Table 6.

Φ E6 E7 E8 F4 G2

1 + 〈ρ, α0̌ 〉 12 19 30 12 6

c/C ≤ 53

252

16

63

62

105

13

33
1

Let Φ = E`, ` = 6, 7, 8, or Φ = F4; one immediately sees that (5.f) fails for all p in Table

5. When Φ = G2, one applies (5.e) to learn that 〈λ, α0̌ 〉 ≤
19

3
< 7. If λ = a$1 + b$2, then

〈λ, α0̌ 〉 = 2a + 3b. One immediately sees that a ≤ 3 and b ≤ 2. As in the case for C2, (5.e)
shows that λ is in the lowest alcove, so that dimk L(λ) is given by the Weyl degree formula. In
this case, d = dimk L(λ) is given by

d =
(a+ 1)(b+ 1)(a+ b+ 2)(a+ 2b+ 3)(a+ 3b+ 4)(2a+ 3b+ 5)

5!

Using this formula, it is straightforward to verify that d > 2p if λ 6∈ I. �

Proposition 5.10. Let Φ be an indecomposable root system of exceptional type, and let p ≤ pmax

be a prime number which is not special. Then the set I(p,Φ) is given in Table 7.

Table 7. The set I(p) for exceptional types.

Φ p I(p)

E6 5, 7 $1,$6

2, 3 ∅
E7 5, 7 $7

2, 3 ∅
E8 5, 7 $8

2, 3 ∅
F4 7, 11 $4

2, 3, 5 ∅
G2 17 $1,$2, 2$2

5, 7, 11, 13 $1,$2

2, 3 ∅

Sketch: Let λ ∈ I(p). We have seen that λ ∈ I. The tables in [7] list the dimensions of certain
irreducible modules for exceptional groups; the dimensions computed handle all of the weights
in I with the single exception of the weight 2$7 for typeE7. It was shown in the proof of Lemma
4.10.1 of [11] that dimk L(2$7) exceeds cpmax. It is a simple matter to exploit the computations
for the remainder of the weights in I to deduce that the indicated weights are the only possibilities
for λ. �
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5.2. Tensor products. Examining Steinberg’s tensor product theorem (2.b), we are motivated
to say that a weight λ is tensor indecomposable if p−jλ ∈ X1 for some j ≥ 0 and tensor
decomposable otherwise.

For each indecomposable root system Φ, the minimal dimension of a non-trivial module is
given by the following: (see [10], 5.4.13)

Table 8. Minimal module dimensions.

Φ A` B` C` D` E6 E7 E8 F4 G2

m `+ 1 2`+ 1 (p 6= 2) 2` 2` 27 56 248 26 7 (p 6= 3)
2` (p = 2) 6 (p = 3)

Proposition 5.11. Let L = L(λ) be a simple module with dimk L ≤ cp. Assume that p ≤ pmax

where pmax is given in Table 5. Then λ is tensor indecomposable unless pjλ or pjλ∗ appears on
the following list for some j ≥ 0.

Φ λ p

A2 (1 + pi)$1, 1 ≤ i ≤ r − 1 p = 5, 7
A2 $1 + pi$3, 1 ≤ i ≤ r − 1 p = 5, 7
A3, A4 (1 + pi)$1, 1 ≤ i ≤ r − 1 p = 5, 7
A3, A4 $1 + pi$`, 1 ≤ i ≤ r − 1 p = 5, 7

Proof. Let m be the minimal non-trivial module dimension; this quantity is given in Table 8. If
λ is tensor decomposable, (2.b) shows that

dimk L ≥ m2.

If Φ = C`, D`, then m = 2`; the hypothesis thus leads to 4`2 ≤ `p or 4` ≤ p. Since pmax ≤ 7,
and since ` ≥ 2, this is impossible.

If Φ = B`, then m = 2`+ 1; the hypothesis thus leads to 4`2 + 2`+ 1 ≤ `p, or 4`+ 2 + 1
`
≤

pmax = 13. Since ` ≥ 3, this inequality can not hold.
For the exceptional groups, we record m2 and the value for cpmax here; the reader may observe

that m2 ≥ cpmax in all cases.
Φ m2 cpmax

E6 729 54
E7 24, 192 112
E8 61, 504 496
F4 676 52
G2, p 6= 3 49 34

When Φ = G2 and p = 3, one has cp = 6, and m2 = 36; so the result holds in this case as well.
Finally, suppose that Φ = A`. Then m2 = `2 + 2`+ 1, so that `+ 2 + 1

`
≤ pmax = 7. It follows

that ` = 2, 3, 4. It is straightforward to see that m3 ≥ `pmax, thus λ has no more than two distinct
non-zero p-adic terms. Suppose that µ, µ′ are two such; one has then

dimk L(µ) ≤ 7`/ dimk L(µ′).
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If ` = 4, then m2 = 25. Evidently, m2 ≤ 4p only when p = 7. In this case, we get
dimk L(µ) ≤ 28/ dimk L(µ′) ≤ 28/5 < 6. Using the bound dimk L(µ) ≥ |Wµ|, and Lemma
5.4.4 from [11], one immediately sees that µ = n$1 or n$4 for some n ≥ 0, since |Wµ| exceeds
6 for other weights. It is then a simple matter to deduce that µ = $1 or $`. This argument is
symmetric in µ, µ′; the result now follows for ` = 4

Completely similar arguments when ` = 2, 3 show that {µ, µ′} ⊆ {$1,$2}, resp. {$1,$3}.
The result now follows.

�

Proposition 5.12. Assume that p satisfies (5), and that λ is tensor decomposable. Let L = L(λ),
and let L′ = L(µ) for µ ∈ Xr; assume that Condition 5.1 holds for the pair L,L′. Then

Ext1G(Fq)(L,L
′) = 0.

Proof. By proposition 5.11, we have Φ = A` with ` = 2, 3, 4. We must show that

H1(G(Fq), L(λ)⊗ L(µ)∗) = 0.

Since dimk L(λ) = (`+ 1)2 in all cases, Condition 5.1 gives immediately the following upper
bound B for dimk L(µ):

` 2 2 3 4
p 5 7 7 7

B 1 5 5 3

It is immediate that µ must in all cases be tensor indecomposable. For the configurations
` = 2, p = 5, and ` = 4, p = 7, the minimal non-trivial module dimension exceeds B, hence
µ = 0. For the remaining cases, application of [11], Lemma 5.4.4 shows that µ = n$1 or n$`

for some n ≥ 0. It is then straightforward to check that n = pj for some j.
In view of Corollary 4.3, it suffices to assume that λ is either (1+pi)$1 or $1+pi$`, and that

µ is one of 0, pj$1, or pj$`, for 1 ≤ i < r and 0 ≤ j < r. Proposition 5.2 gives cohomology
vanishing for the algebraic group, i.e. we have H1(G,L(λ) ⊗ L(µ)∗) = 0. The result will now
follow from Proposition 4.1 if we argue that 〈λ+ µ, α0̌ 〉 < f(r, p). But 〈λ, α0̌ 〉 ≤ 1 + pi + pj ≤
1 + 2pr−1; since p = 5, 7 and r ≥ 2, we have

f(r, p)− 2pr−1 − 1 = pr − 4pr−1 − 3 = pr−1(p− 4)− 3 > 0

and the result follows. �

5.3. Extensions involving the trivial representation.

Proposition 5.13. Assume that (Φ, p, r) is not on the list of Table 1 or 3. Suppose that λ ∈ Xr,
and assume dimk L(λ) ≤ cp− 1. Then

H1(G(Fq), L(λ)) = 0. (5.g)

Proof. By Proposition 5.12, we may suppose that λ is tensor indecomposable. Since we are
interested in the vanishing of H1, Proposition 4.3 shows that we may suppose λ ∈ X1, and that
we may replace L(λ) with its dual, i.e. we may replace λ with its conjugate under the diagram
automorphism σ (note that we are excluding the root system D4).
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Furthermore, by Corollary 5.7 we may assume that p ≤ pmax where pmax is given in Table 5.
By (b) of Proposition 5.6 we may assume that

〈λ, α0̌ 〉 ≤

 p− 3 if Φ = A2

p− 6 if Φ = G2

p− 4 for all other root systems
(5.h)

Furthermore, we know that λ ∈ I(p) ⊆ I.
We consider first the classical root systems; we verify in most cases that (5.h) is incompatible

with the dimensional hypotheses on L(λ); the remaining cases will be handled by results in [9].
First, suppose p = 2. Since p = 2 is special for Φ = B`, C`, we only need to consider this

prime when Φ = A`, D`. However, when Φ = D`, the minimum non-trivial module dimension
is 2` so the result is vacuous in this case. When Φ = A`, (b) of Proposition 3.3 shows that (up
to diagram automorphism) λ = $1. The vanishing of the cohomology then follows from [9] 6.B
unless ` = 2 and q = 2; this situation was excluded in Table 1 (see section 7.2 below.)

Next suppose that p = 3. When Φ = A`, Table 1 excludes q = 3, 9. Hence f(r, p) ≥ 7.
Examining the weights in I, it is evident that 〈λ, α0̌ 〉 ≤ 13. When Φ = B`, C`, D`, Propositions
3.4 (b), 3.5 (b), and 3.6 (b) give the possibilities for λ explicitly. For these λ, the vanishing of
cohomology was verified in [9] 6B.

Now assume p = 5. For all classical root systems, we have excluded q = 5 in Table 3. In
particular, f(r, p) ≥ 13. Examining each possible weight λ ∈ I, one sees that 〈λ, α0̌ 〉 ≤ f(r, p).

Now suppose that p ≥ 7. When Φ = A` we must consider only p = 7. Of the weights µ ∈ I,
all satisfy 〈µ, α0̌ 〉 ≤ 3 = p − 4 with the exception of µ = 4$1 or 4$`. These weights occur
only when ` = 4, 5. By [11], Proposition 4.2.2 (b), one knows that dimk L(4$1) = 35, 70 when
` = 4, 5; these dimensions exceed the required bound. Thus, the result holds in case p = 7.

Now consider Φ = B`, ` ≥ 3. We must consider 7 ≤ p ≤ 13. When p = 13, 11, observe that
p− 4 ≥ 7 ≥ 〈λ, α0̌ 〉 for all λ ∈ I. When p = 7, Proposition 3.4 (a) shows that dimk L(λ) > 7`
whenever 〈λ, α0̌ 〉 > 2.

Next suppose that Φ = C`. We only need consider p = 7 when ` ≥ 4, and 7 ≤ p ≤ 11 when
` = 2, 3. According to (a) of Proposition 3.5, 〈λ, α0̌ 〉 ≤ 2 when dimk L(λ) ≤ `p; this verifies
the result for p ≥ 7.

Finally, suppose that Φ = D`. It only remains to consider p = 7. According to (a) of
Proposition 3.6, 〈λ, α0̌ 〉 ≤ 2 whenever dimk L(λ) ≤ 7`.

Assume now that Φ is of exceptional type. We have listed in Table 7 the set I(p) for the
exceptional groups; by definition, I(p) contains the weight λ. We now verify the proposition by
considering the weights in I(p) for each Φ.

If Φ is of type E` for ` = 6, 7, 8, then I(p) = ∅ if p = 2, 3. For p = 5, 7, (5.g) is verified for
each λ ∈ I(p) in [9], see especially 6.B,C (Tables).

If Φ is of type F4, then I(p) = ∅ if p = 2, 3, 5. When p = 7, 11, (5.g) is verified for each
λ ∈ I(p) in [9], 6.B.

Let Φ = G2. Then I(p) = ∅ if p = 2, 3. When 7 ≤ p ≤ 17, we have always $1,$2 ∈ I(p);
(5.g) is verified for these λ in [9], 6.B. When p = 5, 7, 11, 13, these two weights exhaust I(p);
when p = 17, however, we have also 2$2 ∈ I(p). Notice that 〈2$2, α0̌ 〉 = 6, whereas p− 6 ≥
11. Thus, (5.g) follows in this case from Proposition 5.6 (a). �
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5.4. Establishing Theorem 2.

Proof of Theorem 2. By Corollary 5.7, we may suppose that p ≤ pmax where pmax is given in
Table 5. By Proposition 5.12, we may suppose that λ, λ′ are tensor indecomposable. According
to Proposition 5.13, we may suppose that λ 6= 0 and λ′ 6= 0.

Invoking Corollary 4.3, we may apply a power of the Frobenius automorphism F to the mod-
ules L and L′ without changing the dimension of Ext1G(Fq)(L,L

′); thus, we may assume that

λ ∈ X1 and λ′ = psλ′′ ∈ Xs with 1 ≤ s ≤ r

2
. Furthermore, λ, λ′′ are by definition in I(p); by

Proposition 5.9, we have thus λ, λ′′ ∈ I.
Finally, invoking 5.d, we may assume if s 6= 0,

〈µ, α0̌ 〉 >

p− 3 when Φ = A2

p− 6 when Φ = G2

p− 4 otherwise
for µ = λ, λ′′ (5.i)

while if s = 0,

〈λ+ λ′, α0̌ 〉 >

p− 3 when Φ = A2

p− 6 when Φ = G2

p− 4 otherwise
(5.j)

We first handle Φ of classical type. We consider all primes p ≤ pmax.
Consider p = 2. By Propositions 3.6(b) and 5.5, we need only consider Φ = A`. Since ` + 1

is the minimal dimension of a non-trivial module, we obtain dimk L + dimk L
′ ≥ 2` + 2 > 2`,

contrary to the hypothesis.
Now suppose p = 3. If Φ is classical but different than A`, then the minimum dimension of a

non-trivial module is at least 2`; whence dimk L + dimk L
′ ≥ 4` > 3`, contrary to hypothesis.

Thus we need only consider p = 3 when Φ = A`. The restrictions in Table 1 then require that
r ≥ 3. Since we have 〈µ, α0̌ 〉 ≤ 3 for µ = λ, λ′′, we obtain

〈λ+ λ′, α0̌ 〉 ≤ 3(1 + 3r/2) = 3 + 3(r+2)/2.

When r ≥ 4, we have 3(r+2)/2 ≤ 3r−2 so that

f(r, p)− 〈λ+ λ′, α0̌ 〉 ≥ 3r − 2 · 3r−1 − 3r−2 − 5 ≥ 0.

When r = 3, it is straightforward to verify that the condition f(3, 3)−〈λ+λ′, α0̌ 〉 ≥ 0 continues
to hold. The result now follows when p = 3 by Proposition 4.1 and 5.2.

When p = 5 and Φ is classical, we have in all cases ruled out q = 5. Applying Propositions
3.3, 3.4, 3.5, 3.6, one has 〈λ, α0̌ 〉 ≤ 2 for all λ ∈ I. Thus the result holds when s 6= 0 by (5.i).
When s = 0, one observes that f(r, 5) ≥ 13 and that 〈λ+ λ′, α0̌ 〉 ≤ 13 for every pair λ, λ′ ∈ I.
Thus, the result follows in this case from Propositions 4.1 and 5.2.

When p = 7 and Φ is classical, Propositions 3.3, 3.4, 3.5, 3.6 show that 〈λ, α0̌ 〉 ≤ 2 for
all λ ∈ I with the exception of 3$1 when Φ = A2, A3. When s 6= 0, the result now follows
immediately from (5.i). When s = 0 and Φ 6= A2, A3, the result follows from (5.j). When Φ =
A2, A3, suppose that λ = 3$1. Then dimk L(λ) = 10, 20 resp.; it follows that dimk L(λ′) ≤ 4, 1
resp. Since λ′ 6= 0 we are reduced to consideration of ` = 2 It is then straightforward to check
that the only weights λ′ ∈ I with dimk L(λ′) ≤ 4 are λ′ = $1,$2; one then verifies easily that
(5.j) holds.



SEMISIMPLE MODULES FOR FINITE GROUPS OF LIE TYPE 17

Let us now suppose that Φ is of exceptional type. Let M denote the minimal non-trivial
module dimension for the group. Then dimk L + dimk L

′ ≥ 2M . For the root systems Φ =
E6, E7, E8, F4 one sees, by comparing the value of M with the definition of c, that 2M > pmaxc
contrary to our assumption.

When Φ = G2, the dimensional condition implies that 7 ≤ p since 7 is the minimum non-
trivial module dimension (for p 6= 3). Thus we consider 7 ≤ p ≤ 17. For p ≥ 7, every weight
µ ∈ I(p) satisfies

〈µ, α0̌ 〉 ≤ 3

with the exception of 2$1 ∈ I(17). Thus (5.i) yields the result when s 6= 0 (even when p = 17).
When s = 0, one observes that (5.j) holds unless: p = 11 and λ = λ′ = $2, p = 17 and
λ = λ′ = 2$2. One easily checks in each case that dimk L + dimk L

′ > 2p, and the result
follows. �

6. HANDLING THE SMALL FIELD CASES.

In this section, we provide the proof of Theorem 1 for the triples (Φ, p, r) which appear in
Table 3. The essential tools here are the “generic cohomology” arguments of [5] and [2]. We
state the results for first cohomology groups (see Conditions 6.1 and 6.2 and Proposition 6.4),
and provide some techniques for applying these results (see Remarks 6.7 and 6.3). In section 6.2,
we apply these results to deal with those triples in Table 3. Applying Conditions 6.1 and 6.2 can
be fairly labor intensive; we do not provide all details here.

We first formulate the conditions from [5] which guarantee that (4.a) is an isomorphism. Fix
a G module V .

Condition 6.1. Assume for every dominant weight µ of V that whenever

µ ≡ piα (mod (q − σ)X) where α ∈ Φ, 1 ≤ pi < q,

then µ = piα.

Condition 6.2. Assume for every dominant weight µ of V that whenever either

µ = piα (α ∈ Φ, 1 ≤ i)

or
µ = piα + pjβ (α, β ∈ Φ, wα, wβ ∈ Φ+for some w ∈W, 0 ≤ i, j)

then pi < q and (if applicable) pj < q.

Remark 6.3. Observe that Condition 6.2 is independent of σ. Furthermore, we remark that Con-
dition 6.2 is automatic when µ = 0. For µ 6= 0 and q = p, Condition 6.2 is equivalent to the
following two conditions:

µ 6∈ pX
and

µ− α 6∈ pX \ {0} for any α ∈ Φ

Proposition 6.4. Let V be a rational G module. Assume that p 6= 2. Suppose that Condition 6.1
and 6.2 hold. Then the homomorphism (4.a) is an isomorphism.
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Proof. Condition 6.1 is the isomorphism condition 5.5 of [5] (or its twisted analogue in [2]) for
n=1. Condition 6.2 is the injectivity condition 5.4 of [5] resp [2] for n = 2. (We have here
rephrased the conditions in terms of dominant weights rather than positive roots.)

According to lemma 5.1 of [5] these conditions yields an isomorphism

H1(B, V )→ H1(B(q), V ). (6.a)

The proposition then follows by [5] Lemma 5.6. �

6.1. The image of q− σ. Suppose that σ 6= 1; we would like to characterize the image of q−σ.
First consider the case where the order is 2. Then σ has eigenvalues ±1 on XQ = X ⊗Z Q.

We describe maps from X to the eigenspaces of σ: for any x ∈ X , define sym(x) = x + σ(x)
and alt(x) = x− σ(x). Observe that these maps are not projections; indeed, sym(x+) = 2x+ if
x+ is in the 1-eigenspace.

Suppose now that x = (q − σ)(y). It is then a simple matter to check that

sym(x) = (q + 1) sym(y) and alt(x) = (q − 1) alt(y). (6.b)

We thus get the following result:

Lemma 6.5. Let σ have order 2. In order that x ∈ X be in the image of q − σ, it is necessary
that sym(x) ∈ (q + 1)X and alt(x) ∈ (q − 1)X

Let us now consider the case where σ has order 3. Let K = Q(ζ) where ζ is a primitive 3rd
root of unity. Let A = Z[ζ]; the ring A is a free Z-module with basis 1, ζ . The eigenvalues of σ
on XK = X ⊗Z K are 1, ζ, ζ2. We define maps θi : XA → XA, i = 0, 1, 2, by the rule

θi(x) = x+ ζ iσ(x) + ζ2iσ2(x). (6.c)

It is clear that θi(X) lies in the ζ i eigenspace of σ on XA ⊂ XK . Suppose that x = (q − σ)(y)
for y ∈ X . One then has

θi(x) = (q − ζ i)θi(y) (6.d)
The following result is now evident:

Lemma 6.6. Let σ have order 3. In order that x ∈ X be in the image of q − σ, it is necessary
that θi(x) ∈ (q + ζ i)XA for i = 0, 1, 2.

Remark 6.7. Suppose that µ = 0 and that σ is trivial or has order 2. Then Condition 6.1 is
immediate. Indeed, this is easy to see when σ = 1, since piα ∈ (q − 1)X is clearly impossible.
When σ has order 2, note that

sym(piα) = pi sym(α) 6∈ (q + 1)X;

the assertion now follows from Lemma 6.5.
When σ has order 3, assume that p > 3. Note that

θ0(p
iα) = piθ0(α).

Observe that, for x ∈ X , pix ∈ (p + 1)XA if and only if x ∈ (p + 1)X , and that θ0(α) =
α + σ(α) + σ2(α) 6∈ (p + 1)X for any α (since p > 3). The result now follows by applying
Lemma 6.6.
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6.2. Some of the remaining values of q.

Proposition 6.8. Let Φ = G2, q = p = 7. Suppose that λ, λ′ ∈ X1 satisfy

dimk L(λ) + dimk L(λ′) ≤ 14

Then Ext1G2(F7)
(L(λ), L(λ′)) = 0.

Proof. According to Propositions 5.3 and 5.13, the result is known if either λ = 0 or λ′ = 0;
thus, we may suppose that neither weight is 0. The prime 7 is less than pmax; it follows from
5.9 that λ, λ′ ∈ I. The dimensions of the simple modules L(λ) for λ ∈ I are known; see [7].
It is straightforward, using this data, to deduce that λ = λ′ = $1. The result will follow from
Proposition 5.2 and Proposition 6.4 provided we check that Conditions 6.2 and 6.1 hold for the
weights µ ∈ Π+, where Π+ = {2$1,$2,$1, 0}.

One can easily check by hand (or using a computer) that µ − α 6≡ 0 (mod 6X) for µ ∈ Π+

and for any root α. We point out that the tables in [3], Planche IX, are useful references for these
verifications. Condition 6.1 follows immediately from these observations.

To verify 6.2, one employs the techniques described in Remark 6.3. One checks the following
for each 0 6= µ ∈ Π+:

µ 6∈ 7X;

µ− α 6∈ 7X \ {0} for any root α.

Condition 6.2 now follows at once. �

Proposition 6.9. Let Φ be a classical root system other than C`, and let q = p = 5. Suppose that
λ, λ′ ∈ X1 satisfy

dimk L(λ) + dimk L(λ′) ≤ 5`.

Then Ext1G(F5)
(L(λ), L(λ′)) = 0.

Proof. As in the G2 result above, Propositions 5.3 and 5.13 give the result unless λ 6= 0 and λ′ 6=
0; thus, we assume these conditions hold. Furthermore, Proposition 5.6 shows that λ, λ′ ∈ I. We
verify Conditions 6.2 and 6.1; the result then follows from Propositions 6.4 and 5.2.

Assume first that Φ = A`. We discuss here the case where ` ≥ 9. Then dimk L ≤ 4`− 1 and
dimk L

′ ≤ 4`− 1. When ` ≥ 4, one can apply Lemma 5.4.4 of [11] to λ and λ; one has

2C ≥ 5` ≥ dimk L ≥ |Wµ| (µ = λ, λ′.)

Now applying the condition ` ≥ 9, it is routine to verify that the only possibilities for λ are $1

and $`.
Now let µ = λ+ λ′, so µ ∈ {2$1,$1 + $`, 2$`}. Let

Π+ = {2$1,$1 + $`, 2$`,$2,$`−1, 0}.

If γ ∈ X1 satisfies γ ≤ µ, one knows that γ ∈ Π+.
The tables in [3], Planche I, show that we may view X as a lattice in a Euclidean space

E ' ⊕`+1
i=1Rεi. Let e =

1

`+ 1

∑`+1
i=1 εi and ε̃i = εi − e for i = 1, 2, . . . , ` + 1; one knows that
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{ε̃i | i = 1, 2, . . . , `} is a Z basis of X . Observe that
∑`+1

j=1 ε̃j = 0. One has expressions for the
fundamental dominant weights and the roots in terms of this basis:

$i =
i∑

j=1

ε̃i

Φ = {ε̃i − ε̃j | 1 ≤ i 6= j ≤ `+ 1}

Let φi : X → Z ' Zε̃i be the projection on Zεi, for i = 1, 2, . . . `. Evidently, for k ∈ Z,
x ∈ kX if and only if φi(x) ∈ kZ for i = 1, 2, . . . , `.

Observe that Conditions 6.2 and 6.1 are invariant with respect to the diagram automorphism,
and are automatic for γ = 0. Hence we need only consider γ = 2$1,$2,$1 + $`.

We describe the argument fully for γ = 2$1; we leave the verification for the remaining γ
for the interested reader. Let α = ε̃i − ε̃j where i 6= j. We claim that γ − α 6∈ (5 − σ)X . Let
k = max{i, j}. Suppose first that σ = 1. When k < `+ 1, notice

φk(γ − α) = ±1.

If k = `+ 1, then
φ`(γ − α) = ±1.

When σ = 1, Condition 6.1 now follows. When σ 6= 1 we utilize Lemma 6.5 to verify Condition
6.1. Notice that for all k

|φk(sym(γ − α))| ≤ 4.

If sym(γ − α) 6= 0, it is now clear that sym(γ − α) 6≡ 0 (mod 6X). If sym(γ − α) = 0, one
easily sees that α = $1 +$`; in this case one observes that alt(γ− ($1 +$`)) 6≡ 0 (mod 4X).
Condition 6.2 follows from Remark 6.3 and the following observations:

γ 6∈ 5X |φ1(γ − α)| ≤ 4 for all α ∈ Φ.

When 2 ≤ ` ≤ 9, in addition to the weights $1 and $`, one must also consider the weights
$2 and $`−1. Arguing as above, one can verify that Conditions 6.2 and 6.1 hold in all needed
cases. Since here the rank is bounded, computer verification of this result is straightforward to
implement and easily yields the required result.

Now suppose that Φ = B` or Φ = D`. We treat here the case where ` ≥ 5 for D` and
` ≥ 4 for B`. Since dimk L + dimk L

′ ≤ 5`, and since L and L′ are non-trivial, one deduces
that dimk L ≤ 3` and dimk L

′ ≤ 3`; it then follows from Propositions 3.4 and 3.6 that {λ, λ′} =
{$1}. The dominant weights lying below 2$1 are Π+ = {2$1,$2,$1, 0} for type B` and
Π+ = {2$1,$2,$1} for type D`.

Once again, [3] Planches II,IV may be used to realize X as a Z lattice in the Euclidean space
E = ⊕`i=1Rεi. In these cases X is spanned over Z by the εi and the additional element

1

2
(ε1 + ε2 + · · ·+ ε`).

One has in each case $1 = ε1; furthermore, the root system has a simple description in terms of
the εi.
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For x ∈ X , let φi(x) be the projection of x on Zεi. Given an integer d, in order to show that
x 6∈ dX it suffices to check that 2φi(x) 6≡ 0 (mod d); this is actually a rather crude estimate.
However, using this test, it is routine to check for every γ ∈ Π+ \ {0} and every root α that

γ − α 6≡ 0 (mod 4X)

γ 6≡ 0 (mod 5X)

γ − α 6≡ 0 (mod 5X)

sym(γ − α) 6≡ 0 (mod 6X) when Φ = D` and σ has order 2

Conditions 6.2 and 6.1 now follow from Remarks 6.3 and 6.7 and Lemma 6.5.
The situations where Φ = D4 and Φ = B3 are more complex. For typeD4 there are 3 possible

simple modules which must be considered, and for type B3 there are 2. Note also that for type
D4, there are 3 possibilities for σ; when σ has order 1 or 2, the argument proceeds as above.
When σ has order 3, one may use Lemma 6.6. Using these techniques, it is routine to verify the
results by computer in these cases. �

Remark 6.10. We now describe some cases where Condition 6.1 fails to hold. In these case,
one knows that the algebraic group G possesses no length two indecomposable rational modules
with dimensions smaller than `p; however, different techniques would be required to compute the
relevant Ext groups for G(Fq).

Let Φ = A` and let q = p = 3 so that q − 1 = p − 1 = 2. In this situation, there are
non-trivial simple modules L and L′ with the property that dimk L + dimk L

′ ≤ 3`. However,
the conditions given in Proposition 6.4 above, i.e. the conditions from [5], do not provide enough
data to demonstrate that Ext1G(F3)

(L,L′) = 0. Indeed, take for L the simple module with high
weight $1 and for L′ the simple module with high weight $`. Then $1 +$` = α̃ ∈ Φ. Observe
that $1 + $` − (−α̃) ∈ 2X whence $1 + $` ≡ −α̃ (mod 2X), but $1 + $` 6= −α̃. Thus,
Condition 6.1 fails to hold.

Let Φ = C`, and q = p = 5. Let L = L($1), then dimk L = 2` so that 2 dimk L < 5`. Now,
2$1 − (−α̃) = 4$1 ∈ 4X so Condition 6.1 fails to hold.

7. CONCLUSIONS

7.1. Proof of Theorem 1. We are now in a position to prove the main result of this paper.

Proof of Theorem 1. Suppose that V is a kG(Fq) module with dimk V ≤ cp. Noting the restric-
tions made in Table 1, we may suppose that ` > 1.

Assume (Φ, p, r) is not among the triples listed in Table 3. If L,L′ are any two composition
factors of V , then Ext1G(Fq)(L,L

′) = 0 by Theorem 2; it follows immediately that V is completely
reducible.

For the remaining triples (Φ, p, r), i.e. those appearing in Table 3 but not in Table 1, the
Theorem follows from Propositions 6.8 and 6.9. �

7.2. Extensions occurring for small fields. We conclude with some remarks discussing low di-
mensional indecomposable modules. These indecomposables necessitate some of the restrictions
on q given in Table 1.
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Remark 7.1. Let p be any prime and consider the group G = SL2(Fp). It was pointed out in [8]
that G possesses indecomposable modules of length two with dimension p − 1; see [8] Remark
2.3 and [1], p. 49.

Remark 7.2. Let p = 2, and consider the group G = SL3(F2). We claim that G possesses
indecomposable modules of length two with dimension less than `p = 4. It is known that
SL3(F2) ' PSL2(F7); see [13], §10, especially the remarks in the Exercise on p. 168. G is a
simple group of order 168 = 3 · 7 · 8.

Regarding G as a projective linear group in characteristic 7, one obtains an action of G on the
8 element set Ω = P2F7, the set of lines through 0 in F7

2. Let B7 be the stabilizer of an element
ω ∈ Ω; then |B7| = 21. Denote by V = kΩ = IndGB7

(k) the permutation representation (over the
field k of characteristic 2) of this G-set.

Let P2 < G be a 2-Sylow subgroup of G. Since P2 ∩ B7 = {1}, it is clear that P2 is a full set
of coset representations for G/B7. In particular, the restriction of the permutation representation
resGP2

(V ) affords the regular representation for kP2. Applying [6], Proposition 19.5 (ix) and (viii),
one deduces that V is projective as a kG module.

It is straightforward to verify that the lattice of submodules of V is as follows:

S
S
S
S

k

�
�
�
�

L L′�
�
�
�

L′

S
S
S
S

L

k t

t
t

t t
t

where k denotes the trivial representation, L is a 3 dimensional simple representation, and L′ is
the dual of L. Thus, V = P (0) = I(0) is the projective cover, and the injective hull, of the trivial
module k. According to [9], H1(G, L($1)) ' k, hence we have

Ext1G(k, L) ' Ext1G(k, L
′) ' Ext1G(L, k) ' Ext1G(L

′, k) ' k;

thus, sections of V give all of the indecomposable length 2 modules with composition factors
{k, L} or {k, L′}.

We remark that one can locate the projective covers P ($1) and P ($2) for L and L′ as sum-
mands of P (0)⊗k L and P (0)⊗k L′. Using these modules, one can compute the first few terms
of a projective resolution of k and verify the cohomology calculation from [9] cited above.
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