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ABSTRACT. Let K be the field of fractions of a complete discrete valuation ringAwith residue field k, and
let G be a connected reductive algebraic group over K. Suppose P is a parahoric group scheme attached
to G. In particular, P is a smooth affine A-group scheme having generic fiber PK = G; the group scheme
P is in general not reductive over A.

If G splits over an unramified extension of K, we find in this paper a closed and reductiveA-subgroup
scheme M ⊂ P for which the special fiber Mk is a Levi factor of Pk. Moreover, we show that the generic
fiber M = MK is a subgroup of G which is geometrically of type C(µ) – i.e. after a separable field extension,
M is the identity component M = Co

G(φ) of the centralizer of the image of a homomorphism φ : µn → H,
where µn is the group scheme of n-th roots of unity for some n ≥ 2. For a connected and split reductive
group H over any field F , the paper describes those subgroups of H which are of type C(µ).
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1. INTRODUCTION

1.1. The connected centralizer of a µ-homomorphism. Consider a field F and a connected and re-
ductive algebraic group G over F . In sections 2 and 3 of this paper, we are going to describe a certain
class of connected and reductive subgroups of G which we call the subgroups of type C(µ).

For n ≥ 2, denote by µn the group scheme of n-th roots of unity; over the field F , µn is represented
by the F -algebra F [T]/〈Tn − 1〉. If F has characteristic 0, µn is always a smooth group scheme, but
µn is not smooth if F has characteristic p > 0 and n ≡ 0 (mod p).

We say that a connected subgroup M of G is of type C(µ) if M is the identity component of the
centralizer in G of the image of a homomorphism φ : µn → G 1. Moreover, M is geometrically of
type C(µ) if ML is of type C(µ) for some finite, separable field extension K ⊂ L; the example of
Proposition 3.6.3 exhibits a group which is geometrically of type C(µ) but not itself of type C(µ.

If µn is smooth, then M is the centralizer of some (semisimple) element ζ ∈ G(L) in the image
of φ for some finite separable field extension L of K, but for example if n = p where p > 0 is the
characteristic of K, the group µp(Falg) of points over an algebraic closure of F is trivial, and instead
M is the centralizer of a semisimple element X ∈ Lie(G).

In section 3 of this paper, we examine such connected centralizers. Among other things, we show
that the image of φ lies in a maximal torus T of G; see Proposition 3.4.1. In particular, this allows us to
deduce that a subgroup of type C(µ) is reductive and contains a maximal torus of G; if M (and thus
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1We will permit ourselves to write CG(φ) for the centralizer of the image of φ, and Co

G(φ) for the identity component of this
centralizer.
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also G) are moreover split, it follows that M is determined by a subsystem Ψ of the root system Φ of
G (relative to a split maximal torus T).

The manuscript [MS03] used the terminology pseudo-Levi subgroups of G to describe the subgroups
of the form L = Co

G(s) for semisimple elements s ∈ G 2. Any pseudo-Levi subgroup is of type C(µ),
and if F has characteristic zero, a subgroup M is pseudo-Levi if and only if it is of type C(µ). But in
general there are subgroups of type C(µ) which are not pseudo-Levi subgroups in the sense of this
older paper; see e.g. the examples in Section 3.6.

Now suppose that G is split and that T is a maximal k-split torus. We introduce an equivalence
relation on homomorphisms φ : µn → T for varying n, and we call the classes “µ-homomorphisms”.
Then the group of µ-homomorphisms with values in T may be identified with Y ⊗Q/Z where Y =
X∗(T) is the group of cocharacters of T. Let x ∈ Y ⊗ Q, write x for its class in Y ⊗ Q/Z, let φx
denote the equivalence class of a homomorphism ψ : µn → T, and let M = Co

G(φx) = Co
G(ψ) the

corresponding subgroup of G of type C(µ).
In section 2, we describe a subsystem Φx of the root system Φ determined in a natural way by

the point x ∈ Y ⊗ Q – see section 2.5. In fact, Φx can be characterized as the root system whose
Dynkin diagram is obtained by “removing certain nodes (determined by x) from the extended Dynkin
diagram of G” – see Remark 2.5.4. We show that M = Co

G(φx) has root system Φx; see Theorem 3.4.6.

1.2. Levi decomposition of the special fiber of a parahoric group scheme. Let H be a linear algebraic
group over any field F . We say that the unipotent radical of H is defined over F if there is an F -
subgroup R ⊂ H such that RF coincides with the geometric unipotent radical Ru(HF ); if moreover R
is an F -split unipotent group, we say that the unipotent radical of H is defined and split over F . If F
is imperfect, there are examples of groups H whose unipotent radical is not defined over F .

If the unipotent radical of H is defined over F , write π : H → H/Ru H for the quotient map-
ping. To say that H has a Levi decomposition (over F ) means that there is a (necessarily reductive)
F -subgroup M of H such that the restriction π|M : M→ H/RuH is an isomorphism 3

Our interest here is in linear algebraic groups which arise when considering reductive groups over
local field. Thus, suppose that K is a local field, by which we mean the field of fractions of a complete
discrete valuation ring A. Write k for the residue field of A. We make no assumptions on k - in
particular, we do not require k to be perfect.

Consider a extension field L ⊃ K of finite degree, and let B denote the integral closure of A in L;
then B is also a discrete valuation ring, say with residue field `. Recall that L is unramified over K
provided that ` is a separable extension of k with [L : K] = [` : k].

We now consider a reductive algebraic group G over the field K. Following the work of F. Bruhat
and J. Tits, one can view G as the generic fiber G = PK of various smooth affine group schemesP over
A which we will refer to as parahoric group schemes; see Definitions 4.5.3 and 4.3.4. In this manuscript,
we only consider parahoric group schemes P for which the generic fiber G = PK splits over an
unramified extension of K; under this assumption, the fibers of P are connected – see Theorem 4.2.2.

In fact, the group of K-rational points G(K) of G acts on the Bruhat-Tits building of G, and the
subgroup of A-rational points P(A) ⊂ G(K) – known as a parahoric subgroup – is very closely
related to the stabilizer of a point for this action. If the residue field k is finite, the P(A) are compact
open subgroups of the locally compact group G(K).

The special fiber Pk is a connected linear algebraic group over k which in general is not reductive.
Under the additional assumptions that the residue field k is perfect and that G splits over an unram-
ified extension of k, we proved in [McN10] that (*) the identity component Pk of the special fiber has
a Levi decomposition.

In the present work, we improve the result (*) with no assumption on the residue field k, under the
assumption that G splits over an unramified extension. We show under these assumptions that that

2This class of subgroups was viewed as a generalization of the class of all Levi factors of parabolic subgroups of G
3If the unipotent radical of H fails to be defined over F , H may still possess a Levi factor M – i.e. an F -subgroup M for

which π : MF → HF/Ru(HF ) is an isomorphism where F is an algebraic closure of F . In this paper, we only consider Levi
decompositions of groups whose unipotent radicals are defined over the ground field.
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the unipotent radical of Pk is defined and split over k – see Proposition 4.3.7(a) and Proposition 4.5.5
–, and that a Levi factor of Pk can be realized as the special fiber of a reductive subgroup scheme of
P . Let T be a maximal K-split torus, write T for “the” A-split torus with generic fiber T, and let P
be a parahoric group scheme containing T . In the final sections of this paper – see Section 4.4 and
Section 4.5 – we are going to prove:

Theorem 1. Assume that G splits over an unramified extension of K. There is a reductiveA-subgroup scheme
M ⊂ P containing T such that

(a) The special fiber Pk has a Levi decomposition with Levi factor Mk, and
(b) The generic fiber MK is a connected reductive subgroup of G of type C(µ) which contains T.

When G is split over K, a parahoric subgroup P = Px containing T is determined by the choice of
an element x ∈ V = Y⊗Q. If x is the class of x in Y⊗Q/Z, the reductive subgroup scheme M in the
Theorem is precisely the connected centralizer Co

P (φx) where φx : µ → T is the µ-homomorphism
determined by x; see Theorem 4.4.2.

We remark that Theorem 1 plays an important role in our recent manuscript [McN20] which relates
nilpotent orbits on the reductive quotient of the special fiber of a parahoric group scheme P with the
nilpotent orbits on the generic fiber PK.

Finally, we remark that after completion of this paper, an anonymous referee pointed out to us that
in the manuscript [Tit90], Jacque Tits considers split reductive groups G over the field k((t)); when P
is a maximal parahoric, Tits finds in that paper the group scheme M of Theorem 1 and shows that
Mk is a Levi factor of Pk.

1.3. Notation and terminology. By a linear algebraic group H over a field F , we mean an affine group
scheme which is smooth and of finite type over F ; this amounts to a the same thing as a (reduced)
linear algebraic group defined over F as in [Bor91] or [Spr98]. Unless otherwise indicated, by a
subgroup of H we mean a closed F -subgroup scheme.

Suppose that A is a local integral domain with fractions K and residue field k. If X is a separated
scheme of finite type over A, the generic fiber of X is the K-variety XK = X×Spec(A) Spec(K) obtained
by base change, and the special fiber of X is the k-variety Xk = X×A K = X×Spec(A) Spec(k) obtained
by base change.

If X is a group scheme over A, then XK is a K-group scheme and Xk is a k-group scheme. If X is
smooth, affine, and of finite type over A, then XK and Xk are linear algebraic groups.

1.4. Acknowledgments. I’d like to thank Brian Conrad, Philippe Gille, Jim Humphreys, Jens Carsten
Jantzen, Gopal Prasad, and Donna Testerman comments and suggestions on a preliminary version of
this manuscript; Stephen DeBacker and Richard Weiss for some useful conversations on the subject
matter; and Jean-Pierre Serre for some useful communications – especially about the material in Sec-
tion 3 – of a few years ago. Finally, I’d like to thank an anonymous referee for useful remarks and
suggestions.

2. CERTAIN SUB-SYSTEMS OF A ROOT SYSTEM

The goal of this section is to describe certain subsystems Ψ of a root system Φ. Probably most of
the material in this section is well-known, though I don’t really know of a concise account for some
of the results. Some of this material appears e.g. in the papers [Ree10] and [Ree+12].

The subsystems Ψ depend on the choice of a point x in the linear space affording the reflection
representation of the Weyl group of Ψ. They are described in section 2.5 – see especially Theorem 2.5.3.
More precisely, Ψ depends only on the facet F containing x, where the facets are defined with respect
to the affine root system. As perhaps a justification for the level of detail given here, note that our
exposition confirms that the subsystems Ψ of interest can all be obtained using points x taken from a
Q-form of the reflection representation; see especially Proposition 2.4.2.
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Suppose that G is a split reductive group over a field with root system Φ. In the terminology
used in the introduction, the subsystems we describe will be precisely the root systems of the split
reductive subgroups M of G which are of type C(µ); these subgroups will be studied in section 3.

Throughout this section, we will adopt the following notations: V will denote a finite dimensional
vector space over the field Q of rational numbers, and q will denote a positive definite quadratic
form q on V. We write 〈v, w〉 ∈ Q for the value of the associated bilinear form at v, w ∈ V; thus
q(v) = 〈v, v〉. The bilinear form provides an identification of V with its dual space V∨; in what
follows, we freely apply this identification when making reference to results from [Bou02].

Given any field extension Q ⊂ E, we form the tensor product VE = V ⊗Q E. The quadratic form
q determines by extension of scalars a non-degenerate form on VE which we also denote by q. If E
has a real embedding, then q remains positive definite on VE. In particular, the form q determines the
Euclidean metric topology on VR.

2.1. Simplicial cones and simplices. Let w0 ∈ V and let v1, . . . , vd ∈ V be Q-linearly independent
vectors in V. For a field E with an embedding in R, the rational simplicial E-cone based at w0 determined
by the vectors ~v is the subset

CF = CF(w0, v1, . . . , vd) =

{
w0 +

d

∑
j=1

ajvj | aj ∈ E>0 ∀j = 1, . . . , d

}
Lemma 2.1.1. For w0 and v1, . . . , vd as above, CQ = CR ∩ V, and CQ is dense in CR for the Euclidean
topology on VR.

Now fix points w0, w1, . . . , wd ∈ V which are affinely independent. A convex combination ∑d
i=0 tiwi

of these points is determined by positive scalars t0, t1, . . . , td for which ∑d
i=0 ti = 1.

If E is a field with a real embedding, the E-simplex determined by the points w0, . . . , wd is the set

SE = SE(w0, . . . , wd) =

{
d

∑
i=0

tiwi | ti ∈ E>0,
d

∑
i=0

ti = 1

}
.

Lemma 2.1.2. Let w0, . . . , wd affinely independent. Then SQ = SR ∩ V and SQ is dense in SR for the
Euclidean topology on VR.

Now, the results Lemmas 2.1.1 and 2.1.2 are both immediate consequences of the fact that Q is
dense in R for the Euclidean topology.

2.2. Root systems and the finite Weyl group. Let Φ ⊂ V be a (reduced) root system in the span
Ve = QΦ ⊂ V; see [Bou02, p. VI.1.1] for definitions. For α ∈ Φ, write α∨ = 2α/q(α) ∈ Ve. Recall
[Bou02, VI §1] that:

(i) the reflection sα ∈ O(V, q) given by the rule sα(v) = v− 〈v, α∨〉α is the orthogonal reflection sH
in the hyperplane H = Hα = α⊥, and

(ii) 〈Φ, α∨〉 ⊂ Z.
Write

H = {Hα = α⊥ | α ∈ Φ}
for the system of linear hyperplanes in V determined by Φ. The Weyl group of Φ is the finite reflection
group W = W(Φ) = 〈sα | α ∈ Φ〉 = 〈sH | H ∈ H〉 ⊂ O(V, q).

Proposition 2.2.1. [Bou02, VI §1.2] Write V =
d⊕

i=0

Vi where V0 = VW and V1, . . . , Vd are non-trivial

irreducible QW-representations. Then Ve =
⊕d

i=1 Vi, and if 1 ≤ i ≤ d, then:
(a) Vi is an absolutely irreducible QW-module.
(b) Φi = Φ ∩Vi is a root system in Vi.
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(c) If W(Φi) denotes the Weyl group of Φi, and if Wi is the subgroup of W acting trivially on V⊥i , then Wi
identifies with W(Φi) and W is the direct product W = W1 × · · · ×Wp.

The root systems Φi ⊂ Φ of the preceding Proposition are the irreducible components of the root
system Φ.

Remark 2.2.2. Let F be a field, and let G be a split reductive group over F . The choice of a maximal
split torus T, determines the root datum (X, Y, Φ, Φ∨) of G relative to T. Here, X = X∗(T) is the
character group of T, Y = X∗(T) is the cocharacter group of T, Φ ⊂ X is the set of roots, and Φ∨ ⊂ Y
is the set of co-roots. In this situation, the Weyl group acts on both X and on Y. We take V = Y⊗Z Q
and fix a W-invariant positive definite bilinear form on V. Then X may be identified with the lattice
{x ∈ V | 〈x, Y〉 ⊂ Z}. In particular, with these identifications, the roots Φ are contained in V, and in
this way the results described in this section can be applied to the root system of the group G.

2.3. Affine hyperplanes and affine Weyl group. Consider the group Aff(V) of all affine displacements
of V; it is the semidirect product of GL(V) and the normal subgroup of “translations by V”:

Aff(V) ' V o GL(V).

A root α ∈ Φ and an integer ` together determine an affine function

a(α, `) : V → Q by the rule a(α, `)(w) = 〈α, w〉 − `,

and an affine hyperplane

Hα,` = a(α, `)−1(0) = {w ∈ V | 〈α, w〉 = `} ⊂ V.

Write
H̃ = {Hα,` | α ∈ Φ, ` ∈ Z}

for the collection of these hyperplanes in V.
For H ∈ H̃, write sH ∈ Aff(V) for the orthogonal (affine) reflection in the hyperplane H. The affine

Weyl group is the subgroup
Waff = 〈sH | H ∈ H̃〉 ⊂ Aff(V).

The action by conjugation of Waff on its normal subgroup V determines a linear representation
U : Waff → GL(V).

Proposition 2.3.1. [Bou02, VI §2.1 Prop. 1] The image of U is the Weyl group W of the root system Φ, the
kernel of U is the subgroup ZΦ∨ of the translation subgroup V ⊂ Aff(V), and Waff is the semidirect product
of W and the subgroup ZΦ∨.

Note that H ⊂ H̃. For α ∈ Φ and ` ∈ Z, the affine function a(α, `) has a unique extension to
an affine function on VR, and its zero-locus is a hyperplane Hα,`,R in VR. We thus find systems of
hyperplanes HR and H̃R in VR determined by Φ, and bijective mappings H → HR and H̃ → H̃R
given by H 7→ HR.

2.4. Facets, chambers and alcoves. As in [Bou02, V §1], we may speak of the facets F in VR for the
system of affine hyperplanes H̃R = {Hα,`,R} in VR, and for the system of linear hyperplanes HR =
{Hα,R} in VR.

By a facet F in V relative to H̃ resp. relative to H, we shall mean the intersection F = F ∩ V of V
with a facet F in VR relative to H̃R resp. relative to HR. If F = F ∩ V, the closure of F is by definition
the set F = F ∩V where F is the closure of F for the Euclidean topology on VR.

A chamber of V is a facet C relative to H which is contained in no hyperplane H ∈ H. An alcove of
V is a facet A relative to H̃ which is contained in no hyperplane H ∈ H̃.

Proposition 2.4.1. Let F = V ∩ F be a facet in V relative to H resp. H̃, where F is a facet in VR relative to
HR resp. H̃R. Then:
(a) F is dense in F for the Euclidean topology on VR, and
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(b) If F′ is another facet in V relative toH resp. H̃, then F = F′ if and only if F = F′.

Proof. Of course, (b) is a consequence of (a).
To prove (a), first recall the decomposition V = V0 ⊕V1 ⊕ · · · ⊕Vd of Proposition 2.2.1. Write Φ as

the union of its irreducible subsystems Φi ⊂ Vi. For 1 ≤ i ≤ d, consider the systems of hyperplanes
Hi = {Hα | α ∈ Φi} and H̃i = {Hα,` | α ∈ Φi, ` ∈ Z} in V; each H in either H̃i or Hi determines a
hyperplane H ∩Vi in Vi.

If follows from [Bou02, V §3.8 Prop. 6] that FR = V0,R × F1 × · · · × Fd where Fi is a facet in Vi,R for
the system of hyperplanes determined byHi,R resp. H̃i,R.

If F is a facet relative to H̃, then Fi is a facet relative to H̃i,R, and according to [Bou02, VI §2.2
Corollary to Prop. 5], there is an affinely independent collection of points w0, . . . , wd ∈ V such that
Fi is the real simplex SR(w0, . . . , wd) determined by these points as in section 2.1. Now Lemma 2.1.2
shows that Fi is the Q-simplex SQ(w0, . . . , wd) and that Fi is dense in Fi as required.

If instead F is a facet relative to H, then Fi is a facet relative to Hi,R and according to [Bou02, VI
§1.5 Theorem 2] there is a linearly independent subset v1, . . . , vd of V such that Fi is the real simplicial
cone CR(0, v1, . . . , vd) as in section 2.1. Now, Lemma 2.1.1 shows that Fi is the Q-simplicial cone
CQ(0, v1, . . . , vd) and that Fi is dense in Fi as required. �

Proposition 2.4.2. (a) The Weyl group W acts on the set of all facets in V relative to H and preserves the
subset of all chambers. Moreover, the closure of a chamber is a fundamental domain for the action of W on
V.

(b) The affine Weyl group Waff acts on the set of all facets in V relative to H̃ and preserves the subset of all
alcoves. Moreover, the closure of an alcove is a fundamental domain for the action of Waff on V.

Proof. The analogous statements are known to hold for the actions of W and Waff on the Euclidean
space VR; see [Bou02, V §3.3 Theorem 2]. Since by Proposition 2.4.1 a facet F = V ∩ F is dense in F
for the Euclidean topology, and since the action of an element of W or Waff on VR is continuous, the
conclusion follows at once. �

2.5. The root subsystem associated to a point in V. The subset Ψ ⊂ Φ is said to be closed if whenever
α, β ∈ Ψ and α + β ∈ Φ, then α + β ∈ Ψ. The subset Ψ is symmetric if Ψ = −Ψ = {−α | α ∈ Ψ}. If Ψ
is closed and symmetric, it is again a root system.

We now fix a point x ∈ V, and we put

Φx = {α ∈ Φ | 〈α, x〉 ∈ Z}.
Note that Φx is evidently a closed and symmetric subset of Φ; hence Φx is a root system.

Verification of the following Proposition is immediate:

Proposition 2.5.1. (a) Φx depends only on the Waff orbit of x; i.e. Φwx = Φx for all w ∈Waff.
(b) If Φ = Φ1 ∪ · · · ∪Φd is the decomposition of Φ into irreducible components, then Φx is the disjoint union

of the subsystems Φi,x for 1 ≤ i ≤ d.

In view of this Proposition, in order to describe Φx it is sufficient to suppose that Φ is irreducible.
Moreover, we may even choose an “optimal” representative for the Waff-orbit of x. The following
Lemma provides a useful representative from our point of view.

Let A be an alcove in V relative to H̃. A face of A is a facet F contained in A for which F ⊂ H for
precisely one hyperplane H ∈ H̃; if F is a face of A and F ⊂ H ∈ H̃, we say that the hyperplane H is
a wall of A.

Proposition 2.5.2. Let Φ be an irreducible root system, and recall that Ve = V1 is the Q-span of Φ in V.
Let α1, . . . , α` be a system of simple roots, and let v1, . . . , v` ∈ V1 be elements with 〈αi, vj〉 = δi,j. Write
α0 = −α̃ where

α̃ =
`

∑
i=1

niαi

is the highest root in Φ for this choice of simple roots, and let v0 = 0.
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(a) The simplex A = C(v0, v1/n1, . . . , v`/n`) is an alcove for the root system H̃.
(b) The walls of A are the hyperplanes defined by the affine functions

{a(α0, 1)} ∪ {a(αi, 0) | 1 ≤ i ≤ `.}

Proof. (a) follows from [Bou02, VI.2.2 Corollary]; (b) then follows from definitions. �

If the affine hyperplane H ∈ H̃ is the zero locus of the affine function a(α, d), we say that H is
labeled by α.

Theorem 2.5.3. Suppose that Φ is irreducible, and that α1, . . . , α` is a system of simple roots. Let A be the
alcove of Proposition 2.5.2; thus A is the simplex determined by 0 and the elements vi/ni. Now suppose that
x ∈ A. Define

J = {i ∈ {0, 1, . . . , `} | x lies on the wall of A labeled by αi}.
Then {αj | j ∈ J} is a system of simple roots for Φx.

Proof. Since any proper subset of the roots {α0, α1, . . . , α`} is Q-linearly independent in V, we only
must argue that any α ∈ Φx is a Z-linear combination of the indicated roots.

Fix α ∈ Φx, let n = 〈α, x〉 ∈ Z, and consider the affine reflection sα,n – i.e. the reflection in the
hyperplane H = {y ∈ V | α(y) = n}. Then sα,n fixes x.

It follows from [Bou02, (V.3.3)] that the stabilizer Wx of x in Waff is the subgroup Wx = WJ = 〈sHj〉
where Hj is the wall of A labeled by the root αj.

Since sα,n is a reflection in the Coxeter group Wx, it follows from [Bou02, V.3.2 Corollary to Theorem
1] that sα,n is Wx-conjugate to sHj for some j ∈ J; it now follows that α is a Z-linear combination of the
roots {αj | j ∈ J}, as required. �

Remark 2.5.4. The irreducible root system Φ is determined by its Dynkin diagram; see [Bou02, (VI.4.2)].
With notation as before, the roots {α0, . . . , α`} label the nodes of the completed Dynkin diagram loc. cit.
(VI.4.3). Now, the Theorem implies that the (ordinary) Dynkin diagram of the - in general, reducible
- root system Φx is obtained by discarding those vertices of this completed diagram labeled by the
simple roots αt for t 6∈ J together with any edges connected to such a discarded vertex, where J ⊂
{0, . . . , `} is the subset found in the statement of Theorem 2.5.3.

3. µ-HOMOMORPHISMS AND THEIR CENTRALIZERS

Fix throughout Section 3 a connected and reductive algebraic group G over the ground field F .
Consider an F -homomorphism φ : µn → G, where µn is the finite group scheme of n-th roots of

unity. The main goal of this section is to describe the connected centralizer Co
G(φ) of the image of φ.

Recall from the introduction that M is a subgroup of type C(µ) if M = Co
G(φ) for some φ as above.

We are going to show that the image of φ always lies in some maximal torus T of G - see Propo-
sition 3.4.1. As a consequence, we see that M is a reductive subgroup containing T; see Proposi-
tion 3.1.2.

We define in section 3.4 an equivalence relation on the collection of homomorphisms ψ : µn → T
for varying n; the equivalence classes are called µ-homomorphisms. If T is a split torus, the collection
of µ-homomorphisms with values in T is in bijection with the group Y ⊗Q/Z, where Y = X∗(T) is
the group of cocharacters of T. Suppose that the µ-homomorphism φ = φx is determined by the class
x in Y⊗Q/Z of the point x ∈ Y⊗Q. We will show – see Theorem 3.4.6 - that the group M = Co

G(φ)
of type C(µ) has root system Φx as described in Theorem 2.5.3.

We recall that the so-called Borel-de Siebenthal procedure – first described in [BS49] – can be used
to obtain the root systems of all split reductive subgroups containing a maximal torus; it amounts to
recursive application of the procedure described in Remark 2.5.4. The subgroups of type C(µ) do not
exhaust all such subgroups.

Related results and descriptions of centralizers are studied e.g. in [Hum95, Theorem 2.15], in
[Lus95] – see especially Lemma 5.4 in that citation –, and in [MS03]. In [Ser06], J-P. Serre suggested to
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replace the “semisimple elements of finite order” by µ-homomorphisms. Finally, note that the recent
paper [PL15] has some overlap with the point of view taken here.

3.1. The centralizer of a diagonalizable subgroup scheme. The affine group scheme M is diagonaliz-
able if the Abelian group of its characters X∗(M) = HomF−gp(M, Gm) forms a basis of the coordinate
algebra F [M] as a linear space. More generally, M is of multiplicative type if there is a finite separable
extension E/F for which the E-group ME obtained by base change is diagonalizable. For example, a
torus T is of multiplicative type, and T is diagonalizable if and only if it is split.

Let M be a group scheme of multiplicative type, which is of finite type over F . Suppose given a
morphism f : M→ G over F . Then we have:

Theorem 3.1.1. The centralizer H = CG( f ) of the image of f is a closed, smooth, reductive F -subgroup
scheme of G.

Proof. This result is originally due to Richardson; see [Ric82, Prop 10.1.5]. It can also be obtained as
follows: [SGA3I I , Exp. XI, Cor. 5.3] shows that H is a closed and smooth subgroup scheme 4. Since M
is of multiplicative type, MF is diagonalizable, where F is an algebraic closure of F . It follows from
[Jan03, (I.2.11)] that all linear representations of MF are completely reducible; now [CGP15, Theorem
A.8.12] shows that the identity component of the centralizer H of M is indeed reductive. �

It is more straightforward to see that the the centralizer of the image of f is reductive when the
image of f lies in a maximal torus. Indeed, we have the following:

Proposition 3.1.2. Suppose that f factors through a maximal torus T of G. Then:
(a) The centralizer H = CG( f (M)) of the image of f is a reductive subgroup of G.
(b) Suppose that T (and hence G) is split, write Φ for the set of roots of T in Lie(G), and for α ∈ Φ, write Uα

for the root subgroup. Then the set of roots of H is Φ′ = {α ∈ Φ | f ∗α = 0}.

Proof. It suffices to prove the result after extending the ground field; thus, to prove (a) we may and
will suppose that T is a split torus and that M is diagonalizable. As in the statement of (b), let
Φ ⊂ X∗(T) be the roots of T in Lie(G). Write f ∗ : X∗(T) → X∗(M) for the mapping determined
on characters by f .

Put Φ′ = {α ∈ R | f ∗α = 0} as in (b). Since M is diagonalizable, Lie(H) = Lie(G)M. For α ∈ R, it
follows that Lie(G)α ⊂ Lie(H) if and only if α ∈ Φ′.

Now, T is contained in H. Thus, in the terminology of [SGA3I I I , Exp. XXII, §5], H is a subgroup
of type (R). Now [SGA3I I I , Exp. XXII Prop. 5.10.1] implies that H is reductive once we observe that
Φ′ = −Φ′. But by definition,

α ∈ Φ′ ⇐⇒ j∗(α) = 0 ⇐⇒ −α ∈ Φ′,

whence the Theorem. �

3.2. The group scheme µn. Fix an integer n ≥ 1 and let µn be the group scheme with coordinate ring
F [µn] = F [T]/〈Tn − 1〉. We may view µn as the scheme theoretic kernel of the mapping (t 7→ tn) :
Gm → Gm, or alternately as the Cartier dual µn = (Z/nZ)D of the cyclic group Z/nZ viewed as a
“constant group scheme” over F – see [Knu+98, §20]. It is a finite and commutative group scheme
over F , and it is smooth over F if and only if n is invertible in F ; see e.g. Example (21.11) and
Example (21.5)(4) of [Knu+98].

Let n, m ∈ Z>0 with m | n and consider the homomorphisms

Z/mZ→ Z/nZ via (a + mZ 7→ a · n
m

+ nZ)

and
Z/nZ→ Z/mZ via (a + nZ 7→ a + mZ).

4In fact, G need not be reductive for this claim; H is closed and smooth provided only that G is smooth
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Via Cartier duality, these mappings respectively induce homomorphisms of group schemes

τn,m : µn → µm and ιm,n : µm → µn.

It follows from the formalism of Cartier duality that ιm,n is a closed embedding, and that ker(τn,m) '
µn/m is the image of ιn/m,n.

3.3. The infinitesimal group scheme µq with q a power of p. Suppose now that the characteristic
of F is p > 0, and let q = ps be a power of p for some s ≥ 1. In this section, we investigate
homomorphisms φ : µq → H for a smooth affine F -group scheme H.

We first recall the following:

Proposition 3.3.1. [SGA3I I I , Cor. 4.1.7] Let M be a connected and reductive group over F . Then the center
Z(M) of M (as a group scheme) is contained in each maximal torus of M.

The main result we require is the following folk result:

Proposition 3.3.2. If φ : µq → G is a homomorphism of group schemes, the image of φ is contained in a torus
of G.

We now deduce the result in two different ways; see also Remark 3.3.6 for further discussion.

First proof of Proposition 3.3.2. It is enough to argue that the image of φ is contained in some torus
in G. Let M = Co

G(φ) be the identity component of the centralizer of the image of φ. According
to Theorem 3.1.1, one knows that M is reductive. Since µq is connected, evidently the image of φ
is contained in the center of the connected and reductive group M. Now the result follows from
Proposition 3.3.1, and the proof is complete. �

We now outline a proof that avoids use of the conclusion from Theorem 3.1.1 that the centralizer M
is reductive. To this end, we will first establish that when s = 1, such a homomorphism φ : µp → H
is completely determined by its tangent mapping.

Recall that a finite dimensional p-Lie algebra L over F has a restricted enveloping algebra U[p](L)
which is a co-commutative Hopf algebra over F with dimension pdim L as F -vector space.

Proposition 3.3.3. The coordinate algebra F [µp] is isomorphic to the dual Hopf algebra of U[p](Lie(µp)).

Proof. This follows from [SGA3I , II §4 no. 7 and II §7 no. 4].
Since the argument is straightforward, for the benefit of the reader we present the following sketch.

Write m ⊂ F [µp] for the augmentation ideal – i.e. the kernel of the augmentation mapping F [µp]→ F .
As explained in [Jan03, (I.7)], the algebra of distributions Dist(µp) consists of all linear functionals µ ∈
F [µp]∨ = HomF (F [µp],F ) for which µ vanishes on some power of m; since the ideal m is nilpotent,
Dist(µp) coincides with the dual Hopf algebra F [µp]∨. Now, the Lie algebra Lie(µ) identifies with
the space of linear functionals µ for which µ(1) = 0 and µ(m2) = 0. The inclusion Lie(µp) →
Dist(µp) induces an algebra homomorphism U[p](Lie(µp)) → Dist(µp), and it is straightforward to
see that this mapping is injective. Since dimF U[p](Lie(µp)) = p = dimF F [µp], the conclusion of the
Proposition follows. �

We are now going to produce a basis vector δ = δ1 for Lie(µp), as follows. Note that F [µp] =

F [T]/〈Tp − 1〉 = F [t]. The elements (t− 1)i form a F -basis for F [µp] for 0 ≤ i ≤ p− 1. For each
0 ≤ i ≤ p− 1, there is an element δi ∈ F [µp]∨ for which

〈δi, (t− 1)j〉 =
{

0 if i 6= j
1 if i = j.

and {δi} form a F -basis for F [µp]∨. In fact, δ0 is the mapping f 7→ f (1), and δ1 is the “point-

derivation” given by f 7→
(

t
d f
dt

)
|t=1; the element δ = δ1 spans the Lie algebra Lie(µp) as a F -vector

space, and a simple calculation shows that δ
[p]
1 = δ1.
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Proposition 3.3.4. Let H be an affine group scheme over F . Then the assignment φ 7→ dφ(δ1) determines a
bijection

Morgp scheme(µp, H)→ {Y ∈ Lie(H) | Y = Y[p]}
where Morgp scheme(µp, H) denotes the set of homomorphisms of F -group schemes from µp to H.

Proof. This follows from the result proved in [SGA3I , Exp. VII-A, 7.2 and 7.4] and also in [SGA3I , II
§7 4.2(v)]; see [CGP15, A.7.14], as well.

However, in the relatively simple situation at hand, we can give a simple proof, as follows. First,
since H and µp are affine, the group scheme homomorphisms µp → H are in one-to-one correspon-
dence with the Hopf algebra homomorphisms F [H]→ F [µp].

Let p ⊂ F [H] and m ⊂ F [µp] be the kernels of the respective augmentation mapping. Write
I = 〈 f p | f ∈ p〉 ⊂ F [H]. It follows from [Jan03, I.9.6(1)] that F [H1] = F [H]/I is a Hopf algebra
which determines an infinitesimal subgroup scheme H1 ⊂ H.

Since mp = 0, any Hopf algebra homomorphism F [H] → F [µp] must vanish on I and hence
factors through a Hopf algebra homomorphism F [H1] = F [H]/I → F [µp]. It follows from [Jan03,
I.9.6(2)] that F [H1] identifies with the dual Hopf algebra to U[p](Lie(H)).

Now, in view of Proposition 3.3.3, taking duals gives a natural bijection between Hopf algebra
mappings

U[p](Lie(µp))→ U[p](Lie(H))

and Hopf algebra mappings

U[p](Lie(H))∨ = F [H1]→ U[p](Lie(µp))
∨ = F [µp].

Finally, an algebra homomorphism U[p](Lie(µp)) → U[p](Lie(H)) is completely determined by
a homomorphism of p-Lie algebras Lie(µp)) → Lie(H); since δ1 is a basis vector for Lie(µp), such
homomorphisms of p-Lie algebras correspond bijectively with those elements Y ∈ Lie(H) for which
Y[p] = Y. �

Proposition 3.3.5. (a) If 1 ≤ m < n, the tangent mapping dτpn ,pm : Lie(µpn)→ Lie(µpm) is zero.
(b) If 1 ≤ m ≤ n, the tangent mapping dιpm ,pn : Lie(µpm)→ Lie(µpn) is an isomorphism.
(c) Suppose that H is a smooth and affine F -group scheme, that φ : µpm → H is a homomorphism of group

schemes, and that dφ = 0. Then φ factors through the homomorphism τpm ,pm−1 : µpm → µpm−1 .

Proof. We first observe that for all n ≥ 1, the inclusion µpn ⊂ Gm induces an isomorphism

Lie(µpn)→ Lie(Gm).

Now, the mapping µpn → µpm in (a) is induced by the mapping t 7→ tpn−m
: Gm → Gm, whose

tangent mapping is indeed zero. Moreover, the mapping µpm → µpn in (b) is induced by the identity
mapping Gm → Gm, whose tangent mapping is indeed an isomorphism.

As to (c), recall that we may identify µp as the image of ιp,pm in µpm , and as the kernel of the
mapping τpm ,pm−1 . Since dφ = 0, it follows from Proposition 3.3.4 that the restriction of φ to µp is
trivial, hence φ factors through the quotient µpm /µp ' µpm−1 , as required. �

We can now give the

Second proof of Proposition 3.3.2. Writing q = ps, we are going to show by induction on s ≥ 1 that the
image of φ is contained in a maximal torus of G.

Let us first treat the case s = 1. Let φ : µp → G be a homomorphism of group schemes. Let
X = dφ(δ) ∈ Lie(G). Since X[p] = X, we see for each linear representation (ρ, V) of G that the
minimal polynomial for the action of dρ(X) on V divides the separable polynomial Tp − T, and
[Spr98, Theorem 4.4.20] shows that X is a semisimple element of Lie(G).

Moreover [Bor91, Prop. 11.8] show that there is an F -torus T ⊂ G with X ∈ Lie(T). It now follows
from Proposition 3.3.4 that the image of φ is contained in T, as required. This completes the proof
when p = q.
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We remark that we now know M = Co
G(φ) to be a reductive subgroup containing a maximal torus

of G when q = p, using the more elementary result Proposition 3.1.2.
Now suppose that q = ps for s > 1 and that the result is known by induction for homomorphisms

µpt with t < s. In view of Proposition 3.3.5(c), we may suppose that dφ 6= 0.
Now let X0 = dφ(δ1) where δ1 ∈ Lie(µp) = Lie(µq) is the basis element fixed in the remarks

preceding Proposition 3.3.4. According to that proposition, X0 determines a homomorphism φ0 :
µp → G which clearly centralizes the image of φ. By the induction hypothesis (or just the case q = p),
we find a maximal torus T of G containing the image of φ0. Now let M0 = Co

G(φ0); we’ve remarked
already that M0 is a reductive subgroup of G. Since T and µq are connected, M0 contains T and the
image of φ. Moreover, the image of φ0 is contained in the center Z0 of M0.

Since X0 ∈ Lie(Z0), the composite homomorphism

φ̃ : µq
φ−→ M0 → M0/Z0

has dφ̃ = 0, so Proposition 3.3.5 implies that φ̃ factors through the homomorphism τpm ,pm−1 . It now
follows by induction on m that φ̃ takes values in a maximal torus S of M0/Z0. But then the pre-image
in M0 of a maximal torus of M0/Z0 is a maximal torus of M0 - and hence of G - containing the image
of φ, and the proof of the Theorem is complete. �

Remark 3.3.6. (a) After completing an initial version of this manuscript, I learned that Brian Conrad
recently gave a proof of Proposition 3.3.2 – see the appendix to [MT16]; the argument given in the
“Second proof of Proposition 3.3.2” is similar to the one given by Conrad.

(b) In an email communication in 2007, J-P. Serre communicated to me a proof of Proposition 3.3.2
similar to the above “second proof”.

(c) Still another proof of the proposition is given in the recent paper [Prop. 6.2 PL15].

3.4. µ-homomorphisms with values in a reductive group. In this section, we introduce the notion
of a µ-homomorphism. We begin by extending Proposition 3.3.2 to cover all µn. More precisely:

Proposition 3.4.1. Let n ∈ Z≥1. If φ : µn → G is a homomorphism of group schemes, then the image of φ
lies in a torus of G.

Proof. Write n = q · n0 where q = pm is a power of the characteristic p, and where gcd(p, n0) = 1.
Write φ0 = φ|µq and φ1 = φ|µn0

. We have seen in Proposition 3.3.2 that the image of φ0 is contained in
a maximal torus of G; in particular Proposition 3.1.2 shows that M0 = Co

G(φ0) is reductive. Proposi-
tion 3.3.1 now shows that the image of φ0 is contained in each maximal torus of M0. Thus the theorem
will follow provided we prove that the image of φ1 lies in a maximal torus of M0.

It is therefore enough to prove the Theorem in the case of a homomorphism φ : µn → G where
n satisfies gcd(n, p) = 1. Let E ⊃ F be a Galois extension containing a primitive n-th root of unity
ζ. It follows from [Spr98, Theorem 6.4.5] that s = φ(ζ) lies in a maximal torus of GE. Then Co

GE
(s)

is reductive by Proposition 3.1.2. In particular, the image of φE lies in each maximal torus of Co
GE

(s).
Since Co

GE
(s) = (Co

G(φ))E, it follows that the image of φ is contained in each maximal torus of Co
G(φ),

and this completes the proof. �

Continue to suppose that G is a reductive group over F . Given homomorphisms φ : µn → G and
ψ : µm → G, we regard φ and ψ as equivalent provided that for some d ∈ Z with m | d and n | d, the
mappings φ ◦ τd,n and ψ ◦ τd,m coincide.

Definition 3.4.2. By a µ-homomorphism with values in a reductive group G, we mean an equivalence
class of a homomorphism φ0 : µm → G of group schemes. We will denote such an equivalence class
symbolically by φ : µ→ G.

The following is an immediate consequence of Proposition 3.4.1:

Corollary 3.4.3. If φ : µ → G is a µ-homomorphism, there is a maximal torus T of G such that any homo-
morphism µn → G representing φ has image in T.
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For each integer N, we identify Z/NZ with the subgroup
1
N

Z/Z ⊂ Q/Z by the assignment a +

NZ 7→ a
N

+ Z. If T is a split torus, we write Hom(µ, T) for the group of all µ-homomorphisms with
values in T. The next result describes this group.

Proposition 3.4.4. Let T be a split torus. The assignment

Hom(µ, T)→ HomZ(X, Q/Z) ' Y⊗Q/Z

given by φ 7→ φ∗0 is bijective, where φ0 : µn → T represents φ, where φ∗0 : X → Z/nZ =
1
n

Z/Z ⊂ Q/Z is

the map on character groups that φ0 determines via Cartier duality, where X = X∗(T) is the character group
of T, and where Y = X∗(T) ' X∨ is the cocharacter group of T.

Proof. Let φ, ψ : µ → T be µ-homomorphisms, represented respectively by the homomorphism φ0 :
µn → T and ψ0 : µm → T. Recall that τ∗an,n : Z/nZ = 1

n Z/Z → Z/anZ = 1
an Z/Z is given by

t
n
+ Z 7→ at

an
+ Z. It is thus easy to see that φ0 and ψ0 are equivalent if and only φ∗0 and φ∗1 coincide

as homomorphisms X → Q/Z; this shows that the indicated mapping is well-defined and injective.
If now f : X → Q/Z is any group homomorphism, the image of f is finitely generated hence

contained in the subgroup
1
N

Z/Z = Z/NZ for some N. Then f determines a homomorphism φ f :
µN → T via Cartier duality, and it is clear that the above mapping assigns f to the µ-homomorphism
represented by φ f ; thus the indicated mapping is surjective. �

Remark 3.4.5. Let A denote an integral domain with field of fractions K, and let T be a split torus
over K. Write T for the canonical A-group scheme associated to T as in [BT84, p. I.2.11]. Thus T is
a split torus over A and X∗(T ) = X∗(T). Using Proposition 3.4.4, the discussion in [BT84, p. I.2.11]
shows that the assignment φ 7→ φ∗0 determines a bijection between the collection HomA(µ, T )of
µ-homomorphisms φ : µA → T over A and the group HomZ(X∗(T), QZ)

If φ is a µ-homomorphism with values in the split torus T, we write φ∗ = φ∗0 for the corresponding
element of Y ⊗ Q/Z, with notation as in Proposition 3.4.4. Conversely, if x ∈ V = Y ⊗ Q and
x ∈ Y⊗Q/Z the image of x, we write φx = φx for the corresponding homomorphism µ→ T.

We now give a description of the centralizer of a µ-homomorphism with values in a maximal split
torus of G, and thus describes the subgroups M of G of type C(µ) as discussed in the introduction to
this paper.

Theorem 3.4.6. Assume that G is split reductive over F , and write T for a maximal split F -torus. Suppose
that ψ be a µ-homomorphism with values in T, and write M = Co

G(ψ).
(a) M is a reductive subgroup of G containing the maximal torus T.
(b) Let Φ ⊂ X∗(T) be the set of roots of G with respect to T, and let Y = X∗(T) be the cocharacter group of

T. For α ∈ Φ, write Uα for the corresponding root subgroup of G. Choose y ∈ Y ⊗Q representing the
element ψ∗ ∈ Y⊗Q/Z, and let Φy denote the corresponding closed and symmetric system of roots

Φy = {α ∈ Φ | 〈α, y〉 ∈ Z}
as in section 2.5. Then

M = 〈T, Uα | α ∈ Φy〉.
In particular, Φy is the root system of M.

Proof. (a) just restates proposition 3.4.1(b).
Now for α ∈ Φ, it is easy to see that µ acts trivially on Uα if and only if 〈α, x〉 ∈ Z. Thus the

characterization of M in (b) follows immediately from Proposition 3.1.2. �

Remark 3.4.7. (a) The Theorem now shows that section 2.5 describes the root systems Φx for the con-
nected centralizer M of the image of a µ-homomorphism. In particular, Theorem 2.5.3 describes
a simple system of roots for Φx, and thus Remark 2.5.4 describes the Dynkin diagram of M.
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(b) The root system Φy is of course independent of the choice of representative y ∈ Y⊗Q represent-
ing ψ∗ ∈ Y ⊗Q/Z. Moreover, the above description shows that subgroup M only depends on
the (Waff-orbit of the) facet of V containing y.

(c) Following [Ser06], one can describe µ-homomorphisms using Kac coordinates, as follows. Suppose
that G is simple and that {α1, . . . , αr} is a system of simple roots. After replacing y ∈ Y⊗Q by an
Waff-conjugate point and thus we may suppose - in the terminology and notation of section 2.5
- that y is contained in the Q-simplex with vertices 0 = v0, v1/n1, . . . , vr/nr. In particular,
y = ∑r

i=1 aivi/ni for certain ai ∈ Q with 0 ≤ ai ≤ 1 for each i, and 0 ≤ ∑ ai ≤ 1. The rational
numbers (a1, . . . , ar) are known as the Kac coordinates of the µ-homomorphism.

If F is algebraically closed, the Kac coordinates determine the µ-homomorphism up to conju-
gation in G(F ); see [Theorem 6.3 PL15].

3.5. Some automorphisms of subgroups of type C(µ). Keep the notations of section 3.4; thus G is a
split reductive group over F , T is a maximal split torus of G, X = X∗(T), and Y = X∗(T).

Fix y ∈ Y ⊗Q, and let φ = φy : µ → T be the µ-homomorphism determined by y ∈ Y ⊗ (Q/Z).
As before, consider the identity component M = My of the centralizer in G of the image of φy.

Let Z denote the center of M, and write Mad = M/Z for the adjoint quotient of M. Then the image
T1 = T/Z of T in Mad is a maximal torus of Mad.

Proposition 3.5.1. (a) The character group of T1 is given by X∗(T1) = ZΦy.
(b) y determines a cocharacter ψy ∈ X∗(T1) with

〈γ, ψy〉 = 〈γ, y〉 for γ ∈ Φy.

(c) For any t ∈ F×, ty = Int(ψy(t)) determines a F -automorphism of M. Moreover, if α ∈ Φy and
xα : Ga → Uα is any isomorphism such that Ad(s)xα(u) = xα(α(s)u) for s ∈ T(F ) and u ∈ F , then
tyxα(u) = xα(t〈α,y〉u) for u ∈ F

Proof. Indeed, (a) follows since M/Z is an adjoint semisimple group with root system Φy. Since
X∗(T1) is dual to X∗(T1) = ZΦy, the existence of the cocharacter ψy in (b) follows from (a). Now (c)
follows from definitions. �

3.6. Examples of subgroups of type C(µ). In this section, we present some examples to illustrate
some features of subgroups of type C(µ). We begin by pointing out that there are subgroups of type
C(µ) which are not the centralizer of any semisimple element of G. Note the following:

Proposition 3.6.1. Assume that G is F -split, absolutely simple of adjoint type with split maximal torus T, let
α1, . . . , α` ∈ Φ ⊂ X∗(T) be a system of simple roots, let v∨i ∈ X∗(T) be the fundamental dominant co-roots,
and let α̃ be the highest root. Write

α̃ =
`

∑
i=1

niαi for ni ∈ Z>0.

For 1 ≤ i ≤ `, vi/ni ∈ Y⊗Q determines a µ-homomorphism, and we write Mi for its connected centralizer.
If ni = p, the center of Mi is an infinitesimal group scheme, so that Mi is not the connected centralizer of any
semisimple element of G.

Proof. For each i, the root system of Mi with respect to T has ∆i = {α0 = −α̃} ∪ {αj | j 6= i} as a
system of simple roots. It follows from [SS70, §4: 4.5] that if ni is prime, Z∆/Z∆i ' Z/niZ. Now the
Proposition follows from the fact that the center of Mi is the F -group scheme which is the Cartier dual
– see Section 3.2 – of Z∆/Z∆i. �

Remark 3.6.2. Keep the notations of Proposition 3.6.1.
(a) When Φ = G2, then α̃ = 3α1 + 2α2. And indeed, the group M1 with root system A2, has infin-

itesimal center in characteristic 3, and the group M2 with root system A1 × A1 has infinitesimal
center in characteristic 2.

(b) When Φ = E8, the coefficient of α5 in α̃ is 5. The subgroup M5 with root system A4 × A4 indeed
has infinitesimal center in characteristic 5.



14 GEORGE MCNINCH

We now demonstrate that a reductive subgroup H of G may have the property that HE is of type
C(µ) for some finite separable field extension, but that H is not of type C(µ).

Proposition 3.6.3. Let G = Sp4(F ) be the split symplectic group of rank 2. There is a reductive F -subgroup
H ⊂ G containing a maximal torus of G with the following properties:
(a) H is an F -form of SL2× SL2.
(b) There is a separable quadratic field extension E such that HE is of type C(µ).
(c) H is not the centralizer of the image of any homomorphism µ→ G defined over F .

Sketch. Let F ⊂ E be a separable quadratic field extension. and write x 7→ x for the action of the
non-trivial element of Gal(E/F ). Consider the alternating form β on the F -vector space V = E⊕ E
given by the formula β(v, w) = trE/F (v1w2 − w1v2) where trE/F is the trace mapping. Since E is a
separable extension of F , the alternating pairing β is non-degenerate.

Thus we may identify G with Sp(V, β). If we write A = EndF (V) ' Mat4(F ), there is a symplectic
involution σ on A determined by the property β(Xv, w) = β(v, σ(X)w) for v, w ∈ V; then G =
Iso(A, σ) and we may describe G “functorially” by the rule

G(Λ) = {X ∈ A⊗F Λ | X · σ(X) = 1}
for a commutative F -algebra Λ.

Viewing V as an E-vector space, we find the F -subalgebra B = EndE(V) ⊂ A = EndF (V).
Evidently B ' Mat2(E) and one readily checks that B is σ-invariant; in fact, σ|B is the “standard”
involution of the quaternion E-algebra B. The algebra B determines a subgroup H of G defined
functorially by the rule

H(Λ) = {b ∈ B⊗F Λ | b · σ(b) = 1} ⊂ G(Λ);

thus H = Iso(B, σ|B) is a semisimple subgroup of G; moreover, H ' RE/F SL2 is a F -form of
SL2× SL2. This proves (a)

Now, the center of HE is µ2× µ2. Since VE = V⊗F E is the direct sum of two copies of the “natural”
four dimensional representation of SL2× SL2 and is a faithful representation of GE, it follows that HE
is the centralizer of any homomorphism µ→ Z(HE) = µ2× µ2 whose image is not central in G. There
are precisely two such µ-homomorphisms, and they are interchanged by the action of the non-trivial
element of the Galois group Γ = Gal(E/F ). �

Remark 3.6.4. With H ⊂ G as in the proof of Proposition 3.6.3, the given arguments show also the
following:

• If the characteristic of F is not 2, then H is the centralizer of a semisimple element in G(E).
• If the characteristic of F is 2, the H is the centralizer of a semisimple element

X ∈ Lie(G)(E) = Lie(GE) = Lie(G)⊗F E,

and if Z = Z(H) denotes the center of H, then the group of points Z(Falg) is trivial where
Falg is an algebraic closure of F .

We finally demonstrate that the property that a reductive subgroup H ⊂ G is of type C(µ) is in
general affected by isogeny.

Proposition 3.6.5. Keep the notations of Proposition 3.6.3, let G1 = PSp4,F , and write

π : G = Sp4 → G1 = PSp4

for the isogeny. There is a semisimple subgroup H ⊂ G such that H is not of type C(µ) while H1 = π(H) ⊂
G1 is of type C(µ).

Sketch. Let H be as in the proof of Proposition 3.6.3. The center of H = RE/F SL2 is RE/Fµ2, which is
an F -form of µ2× µ2. In fact, F -homomorphisms µ2 → RE/Fµ2 correspond bijectively to Gal(E/F )-
equivariant maps Z/2Z× Z/2Z → Z/2Z where Gal(E/F ) acts trivially on the target, and the non-
trivial element of Gal(E/F ) acts on the domain group by switching the factors.



REDUCTIVE SUBGROUP SCHEMES OF A PARAHORIC GROUP SCHEME 15

Thus there are precisely two F -homomorphisms µ2 → RE/Fµ2, and the non-trivial such homo-
morphism corresponds to the inclusion of the center of G = Sp4 in the center of H = RE/F SL2. It
follows that the center of H1 is F -isomorphic to (RE/Fµ2/µ2) ' µ2. Since H – and hence also H1 – is
the connected centralizer of its center, the result follows. �

4. REDUCTIVE GROUPS OVER A LOCAL FIELD

Throughout this section, A will denote a complete discrete valuation ring with field of fractions K
and residue field k. Consdier a connected and reductive algebraic group G over K. We are going to
consider the parahoric group schemes P attached to G. In particular, P is a smooth, affine A-group
scheme, and its generic fiber PK coincides with the given group G.

In [BT84], the authors describe the parahoric group schemes for quasisplit G using schematic root
data; we begin by recalling this notion in Section 4.1 and the associated construction in Theorem 4.3.1.
In case G is split over K with maximal split torus T, those parahoric group schemes P = Px which
“contain T” (in a suitable sense) arise from points x in V = X∗(T)⊗Q; we recall this description in
Section 4.3.

Suppose that G is split with root system Φ ⊂ X∗(T), and consider the parahoric group scheme
Px corresponding to x ∈ V. Then x determines a subsystem Φx as in Section 2.5; in Theorem 4.4.2
we show that Φx determines a “Chevalley schematic root datum” for the subgroup M = Co

G(φx) of
type C(µ) where φx is the µ-homomorphism determined by the image x of x in X∗(T) ⊗Q/Z; see
Theorem 3.4.6. In particular, we find a Chevalley group scheme M with generic fiber M, and we see
M as a closed subscheme of Px.

Existence of this subgroup scheme M settles the proof of our main result – Theorem 1 – in case
G is split. Finally, when G splits over an unramified extension, the result is obtained by descent in
Section 4.5.

4.1. A Chevalley system for a split reductive group. Suppose that the group G is split over K. Fix a
maximal split torus T of G, and let (X, Y, Φ, Φ∨) denote the root datum of G with respect to T.

Thus Φ ⊂ X = X∗(T) is the set of roots of T in Lie(G). For each α ∈ Φ, there is a corresponding
1-dimensional K-subgroup Uα - the root subgroup - normalized by T. Write Gα = 〈U±α〉.

Let us fix an isomorphism between the diagonal maximal torus S of SL2 and the 1-dimensional
split torus Gm, and write U+ ⊂ SL2 for the upper triangular unipotent subgroup. For a root α, a
pinning of α will mean a central K-isogeny ψα : SL2 → Gα such that:

(P1) ψα maps S to T and the restriction of ψα to S identifies with the co-root α∨ ∈ X∗(T) (for the fixed
identification of S and Gm), and

(P2) ψα maps U+ isomorphically to Uα.

We fix an identification U+ ' Ga. Then upon restriction to the root subgroups of SL2, ψα determines
K-isomorphisms ψα,± : Ga → U±α.

For a fixed system of simple roots ∆ ⊂ Φ, a pinning of G relative to T is a collection of pinnings
(φα)α∈∆.

Proposition 4.1.1. [SGA3I I I , XXIII Prop. 6.2] A pinning (ψα)α∈∆ of G relative to T determines a Chevalley
system (ψα)α∈Φ+ for G prolonging it.

Remark 4.1.2. (a) Recall [BT84, (3.2.2)] that a Chevalley system is a collection of pinnings (ψα) for
each root α ∈ Φ+ satisfying an additional “compatibility” property spelled out e.g. in [BT84,
(3.2.2) condition (Ch 2)]].

(b) See the discussion following [CGP15, Defin A.4.12] to see that the definitions we have given
of “pinning” and “Chevalley system” encode the same information as the definitions given in
[SGA3I I I , XXIII Defn 1.1 and 6.1].

(c) If (ψα)α∈Φ+ is a Chevalley system, then (Xα = dψα(1))α is a Chevalley basis for Lie(G); see e.g.
[Hum78, §25] for the definition.
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4.2. Schematic root data for a split reductive group G. Following [BT84, §3.1], we consider the no-
tion of a schematic root datum

D = (T , (Ua)a∈Φ)

for G. In loc. cit. the case of quasi-split G is considered; we have simplified the definition somewhat
since we only consider this notion when G is split over K.

According to [BT84, (1.2.11)], there is an essentially unique A-split torus T with generic fiber
T = TK. By a schematic root datum, we mean a collection (Ua)a∈Φ where Ua is a A-group scheme for
each a ∈ Φ, such that

(♦1) Ua is affine, flat and of finite type over A for each a,
(♦2) Ua = Ua,K for each a,
(♦3) for a, b ∈ Φ with a 6= −b, for a suitable ordering on Φ ∩ (a, b) the commutator mapping

γa,b : Ua ×Ub → ∏
c∈Φ∩(a,b)

Uc

arises by base change from an A-morphism Ua ×Ub → ∏c∈Φ∩(a,b) Uc.
(♦4) for a ∈ Φ, the mapping ((z, u) → zuz−1) : T × Ua → Ua arises by base change from an A-

morphism T ×Ua → Ua.

Remark 4.2.1. In condition (♦3) we have been vague about the notion “suitable ordering”; see [BT84,
p. 3.1.2] for details. In this paper, we will not have occasion to verify the conditions (♦1)–(♦4) directly.

A schematic root data D determines a group scheme with generic fiber G, according to the follow-
ing important result:

Theorem 4.2.2. [BT84, Théorèmes 3.8.1 and 3.8.3] Let D = (Ua)a∈Φ be a schematic root datum for G, and
suppose that all Ua are smooth over A. Then there is an group scheme P = PD which is affine, smooth and of
finite type over A with connected fibers such that the following hold:

(S1) the inclusion T → G (resp. Ua → G for a ∈ Φ) prolongs to a isomorphism from T (resp. Ua) to a closed
A-subgroup scheme of P ;

(S2) for each system of positive roots Φ+ of Φ and for each order of Φ+ (resp. of Φ− = −Φ+), the product
mapping is an isomorphism of schemes from ∏a∈Φ+ Ua to a closed subgroup scheme U + (resp. U −) of
P ;

(S3) The product mapping determines an isomorphism of schemes from U −×T ×U + to an open sub-scheme
of P .

Moreover, P is up to isomorphism the uniqueA-group scheme with generic fiber G = PK having the properties
(S1), (S2) and (S3).

Let us fix a root α ∈ Φ, and consider the rank 1 split reductive K-subgroup Gα = 〈T, U±α〉. We
observe:

Proposition 4.2.3. If D is a schematic root datum for G as above, then Dα = (Uα, U−α) is a schematic root
datum for Gα. If Pα is the A-group scheme determined by this schematic root datum, then Pα is a closed
subgroup scheme of P .

Proof. It is immediate from definitions that Dα is a schematic root datum. It only remains to argue
that Pα is a closed subgroup scheme of P . For this, we choose a faithful linear representation L of P ,
where L is a free A-module of finite rank; see [BT84, §1.4.5].

Since L is a faithful P-module, it is clear that L is a D-module in the sense of [BT84, §3.1.4]
and hence also L is a Dα-module. We apply [BT84, §3.8.1] to find a closed embedding Pα as a
subgroup scheme of GL(L ). Now our assertion follows since it is immediate that this embedding
factors through the embedding P ⊂ GL(L ). �
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4.3. Schematic root data and parahoric group schemes. In this section, we first describe how one
obtains split reductive groups over A using Chevalley schematic root data, essentially constructed
from a Chevalley system for G as in Proposition 4.1.1 and Remark 4.1.2.

The parahoric group schemes are paramterized by points in the affine building associated with
G. Since the affine building is the union of apartments each determined by a maximal split torus of
G and since each maximal split torus is conjugate by an element of G(K), it suffices to describe the
parahoric subgroups associated with such an apartment. In the remainder of this section, we describe
the groups schemes.

Recall that a finitely generated free A-module M determines an A-group scheme Madd whose
generic fiber Madd,K is the vector group determined by the K-vector space M⊗A K.

Let U be a 1 dimensional commutative unipotent group scheme over K, and let Ga
ψ−→ U be a

fixed isomorphism. For n ∈ Z, consider the fractional ideal I = πnA ⊂ K. Then Iadd is a smooth
A-group scheme with generic fiber GaK, and by transport of structure along ψ, one finds a smooth
A-group scheme Un with an identification Un,K = U. Moreover, the isomorphism ψ determines an

isomorphism I = πnA ψ−→ Un(A). Compare [BT84, (4.3.2)]
More generally, for r ∈ Q, write dre = min{n ∈ Z | n ≥ r} for the “ceiling function”, and write

Ur = Udre. Thus Ur(A) = {ψ(a) | ν(a) ≥ r} where ν : K× → Z is the (normalized) valuation of K,
and Ur = (πdreA)add. 5

Consider now a Chevalley system (ψα) for the group G and the split torus T, as in Proposition
proposition 4.1.1. For each α ∈ Φ, recall that ψα determines isomorphisms ψα,± : Ga → U±α. We
write U±α = U±α,0 for the A-group schemes obtained as above by transport of structure along ψα,±
from the unit ideal A.

Theorem 4.3.1. (a) The collection (Uα)α∈Φ determines a schematic root datum DChev(Φ), called a Chevalley
schematic root datum.

(b) The group scheme G = PD determined by the Chevalley schematic root datum D = DChev(Φ) as in
Theorem 4.2.2 is a split reductive group scheme over A.

Proof. The result amounts to the description of a split reductive group scheme over A, and thus
essentially follows from [SGA3I I I]. Using the language of schematic root data, (a) follows from [BT84,
Prop. 3.2.7], and (b) follows from [BT84, (3.2.13)]. �

We immediately obtain:

Proposition 4.3.2. Let α ∈ Φ be a root, and let Gα be the group scheme determined by the schematic root
datum (Uα, U−α) as in Proposition 4.2.3. Then Gα ⊂ G is a split reductive group with Gα,K = Gα.

Now recall that we write V = X∗(T)⊗Q. We point out that V ⊗Q R is the apartment of the affine
building of G determined by T. We are going to describe the parahoric group schemes determined by
points in V.

Fix x ∈ V. For α ∈ Φ, consider the group scheme Uα,x = (Uα)〈α,x〉. Thus Uα,x is obtained via ψα,+

from the A-group scheme Iadd where I denotes the ideal πd〈α,x〉eA.

Theorem 4.3.3. The collection Dx = (Uα,x)α∈Φ is a schematic root datum.

Proof. Use [BT84, (4.6.26)] to see that the function Φ → R given by α 7→ 〈α, x〉 is concave. Now the
assertion follows from [BT84, Theorem 4.5.4]. �

We write P = Px for the group scheme obtained via Theorem 4.2.2 from the schematic root datum
Dx for G. For a facet F in V, write PF = Px for some (any) point x ∈ F.

Definition 4.3.4. When G is K-split, the parahoric group schemes attached to G are the G(K)-conjugates
of the group schemes PF of Theorem 4.3.3 for F a facet in V.

5Of course, the notation Ur can be made meaningful for r ∈ R, but we only require this notion for rational r.
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Remark 4.3.5. We have assumed G = PK to be connected. Since G is split, the special fiber Pk is
always connected; see Theorem 4.2.2.

In [BT84], the parahoric subgroups of G(K) are the “connected stabilizers” in G(K) of facets of
the building of G. It follows from [BT84, (5.2.6)], the parahoric subgroups are precisely the G(K)-
conjugates of the subgroups Px(A) for some x as above. See also [BT84, Prop.4.6.28]. Note that
from the point of view of the action of G(K) on its affine building, when G is simply connected, the
subgroup Px(A) is precisely the stabilizer of the point x, but not in general – see e.g. the example
G = PGLn in [Tit79, §3.10].

The main results of this paper apply only to reductive groups G which split over an unramified
extension of K. As we note below in Proposition 4.5.2, the parahoric group schemes in this setting –
see Definition 4.5.3 – are obtained by descent from the split case. On the other hand, for a quasisplit
group G which splits only over a ramified extension of K, in general a group scheme arising from the
appropriate notion of schematic root datum for G need not have connected fibers; we don’t consider
these group schemes in this manuscript.

In Section 4.4, we are going to obtain a Levi decomposition of the special fiber of Px. In order to
do so, we require results about the reductive quotient of this special fiber. Recall that we introduced
in section 2.5 the subsystem Φx. Here is an alternative description which will be useful below.

Lemma 4.3.6. Φx = {α ∈ Φ | d〈α, x〉e+ d〈−α, x〉e = 0}.

Proof. Indeed, for any rational (or real) number r, dre+ d−re = 0 if and only if r ∈ Z. �

Proposition 4.3.7. (a) The unipotent radical of the special fiber Px,k – a linear algebraic k-group – is defined
and split over k.

(b) The reductive quotient of the special fiber Px,k of P is a split reductive group over k with root system Φx.

Proof. For (a), note first that if k is perfect, the unipotent radical of any linear algebraic k-group – and
in particular, that of Pk – is defined and split over k; see e.g. [Spr98, Prop 14.4.5(v)]. Thus for the
proof of (a) we may and will suppose that the characteristic of k is p > 0.

To proceed, we first suppose that the characteristic of K is also p > 0. In particular, there is an
inclusion Fp ⊂ A where Fp denotes the field with p elements. Let v ∈ A be a uniformizer; in
particular, v is transcendental over Fp. Since A is complete, the inclusion Fp[v]〈v〉 ⊂ A prolongs to
an inclusion of the completion B = Fp[[v]] in A. Writing L = Fp((v)) for the field of fractions of B,
we find an embedding L ⊂ K.

Now consider the split reductive group H over L with the same root datum as G; cf. e.g. the
Existence Theorem found in [CGP15, Theorem A.4.6]. We may and will identify the split reductive
K-groups G and HK.

With the identification of the preceding paragraph, the torus T is - up to G(K)-conjugacy - obtained
by base change from a split maximal L-torus T′ of H. Identifying V = X∗(T) with V′ = X∗(T′), we
denote byQ the parahoric B-group scheme withQL = H determined by (the point in V′ correspond-
ing to) x. It is then clear that P = QA - i.e. that P arises by base change from Q. Since Fp is the
residue field of B, it follows that Pk arises by extension of scalars from QFp . Since Fp is perfect, the
unipotent radical of QFp is defined and split over Fp and the result now follows.

If instead K has characteristic zero, one must make a different choice of B. In this case, it follows
from [Ser79, II.§5 Theorem 4] that there is an injective homomorphism W(k) → A where W(k) de-
notes the ring of Witt vectors having residue field k. Setting B = W(Fp) = Zp, functoriality of the
construction of Witt vectors yields a canonical mapping B → W(k). Now one argues as before to see
that P arises by base change from a smooth group scheme Q over B; since the residue field of B is
perfect, this completes the proof of (a).

For (b), combine Lemma 4.3.6 with [BT84, Cor. 4.6.12(a)]. �

Remark 4.3.8. In fact, the previous result remains valid when A is only Henselian rather than com-
plete. The proofs of (b) and (c) require no change; in the proof of (a), one instead takes for B either the
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Henselization of Fp[v]〈v〉 in the equal characteristic case, or the Henselization of Z〈p〉 in the mixed-
characteristic case.

Proposition 4.3.9. If x, x′ ∈ V and x − x′ ∈ X∗(T) ⊂ V, then Dx′ is obtained from Dx via the inner
automorphism Int(h) for some h ∈ G(K). In particular, h determines an isomorphism of A-group schemes
Px′ ' Px

Proof. φ = x − x′ ∈ X∗(T) ⊂ V. Then φ : Gm → T is a cocharacter. For each α ∈ Φ, the element
h = φ(π) ∈ T(K) satisfies

Int(h)Uα,x′ = Int(φ(π))Uα,x′ = Uα,x′+φ = Uα,x.

Thus indeed Dx′ = Int(h)Dx. Now the isomorphism Px′ ' Px follows from the uniqueness in
Theorem 4.2.2. �

Proposition 4.3.10. Suppose that the split reductive G has semisimple rank 1, let T be a split maximal torus
of G, and write α,−α for the roots. Let x ∈ X∗(T)⊗Q. After choosing a Chevalley system, x determines a
schematic root datum (Uα,x, U−α,x) as in Theorem 4.3.3 and thus an A-group scheme P = Px as in Theo-
rem 4.2.2. Suppose that

d〈α, x〉e+ d〈−α, x〉e = 0
Then P = Px is (split) reductive over A.

Proof. Consider the reductive K-group H = G/Z where Z is the center of G. Then H is a rank
1 adjoint group. Consider the 1-dimensional split maximal torus S = T/Z ⊂ H. Of course, the
roots ±α ∈ X∗(T) are in the image of the natural mapping X∗(S) → X∗(T). There is a cocharacter
φ ∈ X∗(S) for which 〈α, φ〉 = 1; in fact X∗(S) = Zφ.

Now, the action of G on itself by inner automorphisms determines an action of H on G. Write
r = d〈α, x〉e. The automorphism of G determined by the element φ(πr) ∈ S(K) ⊂ H(K) yields A-
isomorphisms U±α

∼−→ U±α,x, hence this automorphism of G determines an isomorphism G ∼−→ P of
A-group schemes. �

4.4. Reductive subgroup schemes of a parahoric group scheme for split G. We keep the assump-
tions and notations of the Section 4.3; in particular, G is a split reductive group over K with split
maximal torus T, and x ∈ V = X∗(T)⊗Q.

Our goal in this section is to prove the validity of the conclusion of Theorem 1 for the split group
G. Thus, we must exhibit a suitable reductive subgroup scheme of the parahoric group scheme Px
which was described in Section 4.3.

We are going to require the following result which provides a condition for a linear algebraic group
to be reductive. To state the result, consider any field F and let H be a linear algebraic group over F .
Let T ⊂ H be a non-trivial F-split torus, let ∆ ⊂ X∗(T) be a linearly independent subset, and for each
α ∈ ∆ suppose that there is a reductive F -subgroup Hα ⊂ H containing T as a maximal torus and
having roots α,−α. Write V±α for the root subgroups of Hα.

Proposition 4.4.1. Suppose for each pair α, β ∈ ∆ with α 6= β that V−α and Vβ commute, and that H =
〈Hα | α ∈ ∆〉. Then H is reductive.

Proof. Our formulation is essentially that found in [Ste99, Theorem 5.4], though Steinberg works there
over an algebraically closed base field. The result in the required generality is a consequence of
[CGP15, Theorem C.2.29]. �

We now return to the study of the parahoric group scheme P = Px. Recall that the image of x in
X∗(T)⊗Q/Z = Y⊗Q/Z determines a µ-homomorphism with values in T as in section 3.4. In fact,
as in Remark 3.4.5, the class of x determines a µ-homomorphism φx : µA → T which is defined over
A, where T is the split A-torus with generic fiber T used in the construction of Px.

Let M = C0
G(φx,K) denote the identity component of the centralizer in G of the image of the µ-

homomorphism φx,K; thus M is a subgroup of G of type C(µ) described in Theorem 3.4.6. We now
consider the scheme-theoretic centralizer CPx (φx) of the image of φx, and - as in [BT84, §1.3.5] - we
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consider the identity component M = C0
Px
(φx) of this centralizer. Thus the fibers MK and Mk are

connected linear algebraic groups over K resp. k.
We are going to prove:

Theorem 4.4.2. Let P = Px.
(a) M is a locally closed subgroup scheme of P which is smooth over A and has generic fiber MK = M.
(b) M is a split reductive A-group scheme.
(c) The special fiber Mk is a Levi factor of Pk.

Proof. In (a), the assertion that MK = M is immediate from definitions. Since µn,A is a diagonalizable
group scheme, [SGA3I , Exp XI, Cor 5.3] shows the centralizer CG(φx) to be a closed subgroup scheme
of Px which is smooth over A. Now, according to [BT84, §1.3.5], the identity component M is an
open subgroup scheme of this centralizer, so indeed M is smooth overA and locally closed in Px; (a)
is now proved.

Since M is smooth over A with reductive generic fiber MK, (b) will follow if we argue that the
special fiber Mk is reductive.

Fix a pinning (ψα)α∈∆ for G and hence a Chevalley schematic root datum DChev(Φ) = (Uα)α∈Φ as
in Theorem 4.3.1. Now let Dx = (Uα,x)α∈Φ be the schematic root datum obtained from DChev(Φ) using
x, as in Theorem 4.3.3, so that P is the parahoric group scheme determined by Dx, as in section 4.3.

Recall that according to Proposition 4.2.3, the schematic root datum Uα,x, U−α,x) determines a
closed A-subgroup scheme Pα of P . When α ∈ Φx it follows from Lemma 4.3.6 together with Propo-
sition 4.3.10 that the subgroup scheme Pα is A-reductive. Moreover, it clear from the construction
that Pα is centralized by φx, so that Pα is contained in M .

Fix a basis ∆ for the root system Φx – see e.g. Theorem 2.5.3. Now let H ⊂Mk be the k-subgroup
generated by the subgroups Pα,k for α ∈ ∆. Writing U±α ⊂ Pα for the subgroup schemes determined
by our schematic root data, one knows that Uα commutes with U−β for α, β ∈ ∆ with α 6= β; indeed,
it suffices to observe that these subgroups commute on the generic fiber.

Now Proposition 4.4.1 implies that the subgroup H ⊂ Mk is reductive. Now write π for the
quotient mapping from the k-group Pk to its reductive quotient Pk,red. It is clear for β ∈ Φx that
π maps Uβ,k onto the corresponding root subgroup of Pk,red. According to Proposition 4.3.7, Pk,red
has root system Φx. It follows that π maps H onto Pk,red. Since ker π is unipotent, it follows that
H is a Levi factor of Pk and in particular H is isomorphic to Pk,red. In particular, the dimension of H
coincides with the dimension of the generic fiber MK. Since M is smooth with connected fibers, and
since H ⊂Mk, it follows that H = Mk; (b) and (c) are now proved. �

Remark 4.4.3. (a) In the proof of Theorem 4.4.2, one can actually avoid the use of Proposition 4.4.1 as
follows.

With notation as in the Theorem, let M = CG(φx,K). One first argues that Dx,M = (Uα,x)α∈Φx
is a schematic root datum for M. By an argument like that in Proposition 4.3.10, one now argues
that Dx,M is conjugate by an element of T(K) to a Chevalley schematic root datum for M. Thus
Dx,M determines a reductive subgroup scheme Q of P = Px. Evidently Q is centralized by φx. It
remains to argue thatQ coincides with the centralizer M subgroup scheme; this holds essentially
for dimension reasons.

(b) I thank Gopal Prasad for communicating to me the suggestion to use the result Proposition 4.4.1
to prove that the centralizer M in Theorem 4.4.2 is reductive.

(c) As a referee pointed out to me, the preceding Theorem can be nicely stated using the affine building
of G. Namely, the parahoric group scheme P is determined by a point x in the building. Now,
each apartment D of the building which contains x determines a split A-torus TD in P – see
[BT84, Prop. 5.1.10]. The point x determines a µ-homomorphism φx : µ→ TD and the connected
centralizer of the image of φx yields a reductive subgroup scheme MD ⊂ P determined by D.

4.5. Reductive subgroup schemes of a parahoric group scheme. Now suppose that G splits over an
unramified, separable field extension of K. The following result provides more precise information:
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Proposition 4.5.1. [BT84, §5.1.12] There is a finite, unramified, Galois extension L of K, a maximal K-split
torus S of G and a maximal K-torus T of G containing S for which TL is L-split.

Fix an extension L as in the preceding proposition, and write B for the integral closure of A in L.
Let us fix a maximal K-split torus S. Also write Γ = Gal(L/K). For any maximal K-torus T, note that
Γ acts on the cocharacter X∗(TL) and hence on VL = X∗(TL)⊗Q.

Certain parahoric group schemes for GL descend to A-group schemes, as follows:

Proposition 4.5.2 (Étale descent). Let T be a maximal K-torus of G which contains S and splits over L, and
let VL = X∗(TL) ⊗ Q. Let F be a Γ-invariant facet in VL, and let Q = QF = Qx be the corresponding
parahoric group scheme for GL determined by any point x ∈ F. There is a smooth, affine A-group scheme P
with connected fibers such that

(i) generic fiber PK may be identified with G, and
(ii) Q ' P ⊗A B.

Proof. Since K ⊂ L is unramified, this follows from [BT84, §4.6.30 and §5.1.8]. �

Definition 4.5.3. Assume that G splits over an unramified extension L of K. The parahoric group schemes
attached to G are the G(K)-conjugates of group schemes P obtained by étale descent – see Proposi-
tion 4.5.2 – from parahoric group schemes Q = QF determined by a Γ-stable facet F ⊂ X∗(TL)⊗Q
for some maximal K-torus T of G containing S which splits over L.

Remark 4.5.4. Let P be a parahoric group scheme for G which arise by étale descent as in Proposi-
tion 4.5.2. Thus PB = QF for some Γ-stable facet F in VL = X∗(T)⊗Q. It follows from [BT84, Cor.
5.1.21] that there is a point x ∈ F ∩ X∗(S) ⊗ Q – i.e. a point in F fixed by the action of Γ. Thus
QF = Qx.

The analogue of Proposition 4.3.7(a) remains valid for parahoric group schemes in this more gen-
eral setting, as follows:

Proposition 4.5.5. Let P = Px be a parahoric group scheme with generic fiber G = PK, and suppose that
G splits over an unramified extension of K. Then the unipotent radical of the linear algebraic k-group Pk is
defined and split over k.

Proof. Indeed, in view of Proposition 4.3.7(a), the Proposition follows from the following more gen-
eral statement, which may be deduced from [Spr98, Prop. 14.4.5]: Suppose that k ⊂ ` is a separable
field extension and that H is a linear algebraic k-group, and assume moreover that the unipotent
radical of H is defined and split over `. Then the unipotent radical of H is defined and split over
k. �

We now prove Theorem 1 from the introduction. Recall the statement:

Theorem 4.5.6. Assume that G splits over an unramified extension of K. There is a reductive A-subgroup
scheme M ⊂ P containing T such that
(a) the special fiber Pk has a Levi decomposition with Levi factor Mk, and
(b) the generic fiber MK is a connected reductive subgroup of G containing T, and ML is a subgroup of GL of

type C(µ) .

Proof. In case G is already split over K, the Theorem is an immediate consequence of Theorem 4.4.2.
Otherwise, using Remark 4.5.4 the parahoric group scheme P arises via étale descent from the B-
group scheme Qx for some point x ∈ X∗(S)⊗Q ⊂ X∗(T)⊗Q; thus x is Γ-stable.

Via étale descent, one finds A-group schemes S ⊂ T for which SK = S and TK = T; thus
S is a split A-torus, and TB is a split B-torus. Using Remark 3.4.5, we see that the image of x in
x ∈ X∗(S )⊗Q/Z determines a µ-homomorphism φx : µ→ S over A.

Now let M1 denote the B-subgroup scheme of Qx which is the centralizer of the image of the
µ-homomorphism φx,B : µB → SB ⊂ TB . Thus M1 is the subgroup scheme of Qx described by
Theorem 4.4.2.



22 GEORGE MCNINCH

Since T and x remain invariant under the action of the Galois group Γ, and since M1 is uniquely
determined by T and x, it is clear that M1 remains invariant under this action; more precisely, the
algebra B[M1] ⊂ L[M1,L] is invariant under the semilinear Γ-action on L[M1,L].

It now folows by étale descent – see [BT84, §5.1.8] – that there is a smooth group scheme M over
A with MB = M1. The group scheme M has the required properties �

Remark 4.5.7. Assume that the residue field k is perfect. If G is an “inner form” (by which I mean: an
inner form of a split reductive group K-group), then G splits over an unramified extension of K.

Indeed, suppose that G is an inner form of a split group, and write L for the maximal unramified
extension contained in a some separable closure of K. Since k is perfect, the residue field of L is an
algebraic closure of k. Thus, a theorem of Lang implies that L has cohomological dimension ≤ 1;
see [Ser94, Ch. II, §3.2 and §3.3]. Now a theorem of Steinberg implies that H1(L, H) is trivial for
every connected linear algebra group over L; see [Ser94, Ch. III, Thm. 1 0 and Remark (1) in §2.3]. In
particular, it follows that every reductive L-group is quasisplit – i.e. contains a Borel subgroup defined
over L. Since by assumption the reductive group GL is an inner form of a split group, and on the
other hand, a reductive group is an inner form of a unique quasisplit group – see e.g. [Knu+98, Prop.
27.8] –, it follows that G splits over L – i.e. G splits over an unramified extension.

5. EXAMPLES

In this section, we give an example illustrating Theorem 4.5.6 in case G is not split but has an
unramified splitting field; see section 5.1. And we show by example that in general the conclusion of
Theorem 4.5.6 does not hold when G fails to split over an unramified extension; see section 5.3 and
section 5.4.

5.1. An inner form of SL(V). Let d ≥ 1, and let E be a central K-division algebra with dimK E = d2.
Suppose that the ramification index e of E is given by e = d; this is e.g. immediate if k is finite – see
[Ser79, XIII.4 Exer 1]. Write E for the integral closure of A in E; according to [Rei03, Theorem 12.8], E
is the unique maximal A-order in E.

Suppose that there is a maximal subfield L of E which is an unramified extension of K (necessarily
of degree d); if k is perfect, this assumption follows from [Ser79, XII.2 Prop 2.].

Now, if πE denotes a prime element of E, then ` = E/πEE is a commutative field and is an exten-
sion of k of degree d. Let B be the integral closure ofA in L. Since L ⊃ K is unramified, πEE ∩B = πB
where π is a uniformizer of A and hence also of B. Now deduce that B/πB embeds in E/πEE = `,
hence B/πB ' ` since [B/πB : k] = [` : k].

Let G be the “unit group scheme” E×; thus G is a reductive group over K which is an inner form of
the group GLd; we have GL ' GLd,L. Let T ' RL/KGm denote the maximal K-torus of G determined
by the maximal subfield L ⊂ E.

Since G is anisotropic modulo its center, there is a unique parahoric group scheme over A associ-
ated to G; it is the unit group scheme P = E×.

Since B is integral over A, we have B ⊂ E . Thus T = RB/AGm is a smooth A-subgroup scheme
of P = E× with special fiber Tk ' R`/kGm. Since E/πE ' `, we conclude that the reductive quotient
of the special fiber Pk is isomorphic to the k-torus Tk.

In fact, the parahoric group scheme P arises by étale descent from an Iwahori group scheme Q
over B with generic fiber GLd,L. The reductive quotient of the special fiber Q` is a split torus of
dimension d. Evidently, the conclusion of Theorem 4.5.6 holds by taking the reductive subgroup
scheme M = T , which arises by étale descent from a maximal split B-torus of Q.

5.2. A Lemma. Suppose that P is a smooth group scheme over A whose generic fiber G = PK is
reductive, and suppose that M is a reductive subgroup scheme of P whose generic fiber MK is a
subgroup of PK which is geometrically of type C(µ). We write k and K for algebraic closures of k and
K.

Lemma 5.2.1. (a) The root system of Mk identifies with the root system of MK.
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(b) Let Φ denote the root system of GK. Then the root system of Mk is a subsystem of Φ of the form Φx as in
Theorem 2.5.3.

Proof. (a) is proved in [SGA3I I I , Exp. XXII Prop. 2.8]. Since by assumption MK is geometrically of
type C(µ), the assertion of (b) follows from (a) together with Theorem 3.4.6. �

5.3. A unitary group. Let G = SU(V, h) be a quasisplit unitary group which splits over the separable
quadratic extension K ⊂ L with dimL V = n, so that the reductive K-group G is a form of SL2n; in
fact, GL ' SL2n,L.

Invoking some observations in our earlier manuscript [McN10, §7.2], we note the following:

Proposition 5.3.1. Assume that K ⊂ L is a ramified extension.
(a) There is a parahoric group scheme P attached to G for which the reductive quotient of Pk is isomorphic to

Sp2n,k, the split symplectic group of rank n over k.
(b) The conclusion of Theorem 1 is invalid for the parahoric group scheme P .

Proof. (a) follows from the description in [McN10, §7.2].
For (b), suppose by way of contradiction that H ⊂ P is a reductive subgroup scheme satisfying

the conditions of Theorem 1. Then Lemma 5.2.1(a) shows that the root system Ψ ofHk identifies with
that ofHK.

According to the preceding Proposition, the special fiber Pk is a simple k-group whose root system
is of type Cn. Since Pk ' Hk, it follows that the root system Ψ is of type Cn.

By assumption HK is a reductive subgroup of G containing a maximal torus, and in particular HL
is a reductive subgroup of GL = SL2n,L containing a maximal torus. Lemma 5.2.1(b) now shows that
Ψ has the form Φx where Φ is the root system of GL – i.e. Φ is of type A2n−1.

It is clear that any subsystem Φx of Φ is simply laced. Since Ψ is not simply laced, we have arrived
at a contradiction; this completes the proof of (b). �

5.4. Triality D4. Let G be a simply connected, quasisplit group of type 3D4 with splitting field L, a
cubic Galois extension of K – see e.g. [Spr98, §17.9]. Let us suppose that L is a ramified (and hence
totally ramified) extension of K; write B for the integral closure of A in L.

According to [BT84, Thm. 4.2.3], the choice of a Chevalley system for GL determines a “Chevalley-
Steinberg valuation” for G and in particular – see [BT84, §4.3] – this choice determines group schemes
Uα for each α in the set Φ of K-roots of G.

Since G is quasisplit and simply connected, the torus T is “induced”; in fact, T ' RL/K(Gm)×Gm.
Thus we may take T = RB/A(Gm)×Gm/A and then D = (T , Uα)α∈Φ is a schematic root datum; see
[BT84, Thm. 4.5.4]. Let P be the parahoric group scheme determined by the schematic root datum D
as in Theorem 4.2.2. We first observe that since L ⊃ K is totally ramified, we have

B ⊗A k ' k[τ]/〈τ3〉;
it follows that a maximal torus of the special fiber of the A-group scheme RB/A(Gm) is k-split and 1
dimensional. In particular, the special fiber of the group scheme T is split and of dimension 2.

Proposition 5.4.1. (a) The reductive quotient of the special fiber Pk is a split simple k-group of type G2.
(b) The conclusion of Theorem 1 is invalid for the parahoric group scheme P .

Proof. We’ve remarked already thatPk has a torus which is split and of dimension 2. Since the relative
root system of G is of type G2, [BT84, Cor. 4.6.12] shows that the reductive quotient of Pk is a split
simple k-group of type G2.

As to (b), first note that the the absolute root system Φ of G is of type D4. Suppose there is a sub-
group scheme M of the parahoric satisfying the conclusion of Theorem 1. According to Lemma 5.2.1,
the root system Ψ has the form Φx where Φ is the root system of G. Since Φ is a root system of type
D4, any root system of the form Φx is simply laced.

But the root system Ψ of Mk identifies with that of the reductive quotient of Pk; since a root system
of type G2 isn’t simply laced, we have arrived at a contradiction. Assertion (b) now follows. �
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Remark 5.4.2. Suppose p > 2. Let U denote the unipotent radical of Pk. One can argue that as a
module for Pk, the Lie algebra Lie(U) has as composition factors two copies of the 7 dimensional
irreducible representation V7 for the reductive quotient group of type G2. Since the representation
V7 is a standard highest weight module for G2 – i.e. in the notation of [Jan03, §II.2], V7 is isomorphic to
the highest weight module H0(λ) for some dominant weight λ – it follows from [Jan03, Prop. II.4.13]
that Hi(G2, V7) = 0 for i ≥ 0. It now follows from [McN10, Theorems 5.1 and 5.2] that Pk indeed
has a Levi decomposition that is uniquely determined up to U(k)-conjugation. The conclusion of
Proposition 5.4.1 simply means that this Levi factor can’t arise as the special fiber of a reductive
subgroup scheme satisfying the stipulations found in Theorem 1.
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