
ON THE DESCENT OF LEVI FACTORS

GEORGE MCNINCH

ABSTRACT. Let G be a linear algebraic group over a field k of characteristic p > 0, and suppose that the unipotent
radical R of G is defined and split over k. By a Levi factor of G, one means a closed subgroup M which is a
complement to R in G. In this paper, we give two results related to the descent of Levi factors.

First, suppose ` is a finite Galois extension of k for which the extension degree [` : k] is relatively prime to
p. If G/` has a Levi decomposition, we show that G has a Levi decomposition. Second, suppose that there is a
G-equivariant isomorphism of algebraic groups R ' Lie(R) – i.e. R is a vector group with a linear action of the
reductive quotient G/R. If G/ksep has a Levi decomposition for a separable closure ksep of k, then G has a Levi
decomposition.

Finally, we give an example of a disconnected, abelian, linear algebraic group G for which G/ksep has a Levi
decomposition, but G itself has no Levi decomposition.
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1. INTRODUCTION

Let k be a field and let G be a linear algebraic group over k; thus G is a smooth group scheme over k of
finite type. For any field extension k ⊂ ` we write G/` for the linear algebraic group over ` obtained from G
by base-change. In this note, we are interested in Levi decompositions of G. In our investigations, we always
impose the following condition:

(RS) there is a split unipotent subgroup R ⊂ G such that R/kalg
is the unipotent radical of G/kalg

.

Recall that a connected unipotent group U is split provided that there is a filtration

U = U0 ⊃ U1 ⊃ · · · ⊃ Ur = 1

by closed normal subgroups for which each subquotient Ui/Ui+1 is a vector group. When k is perfect, this
condition always holds, but it can fail for imperfect k; see e.g. [CGP 10, Example 1.1.3]. We note that if (RS)
holds, the quotient G/R is a reductive algebraic group over k.

1.1. Levi factors. A Levi factor of G is a closed k-subgroup M of G such that the product mapping

(x, y) 7→ xy : M n R→ G

is a k-isomorphism of algebraic groups, where M n R denotes the semidirect product (for the action of M on
R by conjugation); groups possessing a Levi factor are said to have a Levi decomposition. Of course, to give a
Levi factor of G is the same as to give a k-homomorphism G/R→ G of algebraic groups which is a section to
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the natural quotient mapping G → G/R. For more on these matters in the setting of linear algebraic groups
see [Mc 10, §4.3].

Remark (1.1.1). If the unipotent radical of G/kalg
fails to arise by base-change from a subgroup of G (so in

particular, (RS) fails to hold) then of course G has no Levi decomposition. But in this case, G may well have
a Levi factor in the sense that G may possess a closed subgroup M ⊂ G for which G/kalg

is the semidirect
product of M/kalg

and R, where kalg is an algebraic closure of k and R is the unipotent radical of G/kalg
; for

examples, see e.g. [CGP 10, Theorem 3.4.6]. Since we require (RS) to hold, we don’t distinguish between
Levi factors and Levi decompositions in this paper.

If the characteristic of k is 0, any linear algebraic group has a Levi factor; see [Mc 10, §3.1]. However, for
any field k of characteristic > 0, there are linear algebraic groups over k having no Levi factor; see e.g. the
example in loc. cit., §3.2. We assume for the remainder of the paper that the field k has characteristic p > 0.

1.2. Descent of Levi factors. Suppose that G is a linear algebraic group over k and that (RS) holds; write
M = G/R for the reductive quotient of G.

Let ksep be a separable closure of k, and suppose that the group G/ksep has a Levi decomposition. The
question we face is this: among all Levi factors of G/ksep , are any stable under the action of the absolute
Galois group Gal(ksep/k)? Otherwise said, does the group G have a Levi factor? In this paper, we give
some partial answers to this question.

We first study the action of a finite group Γ on G. In this context, we find the following result; see Theorem
(3.3.1).

Theorem A. Suppose that G satisfies (RS) and that the finite group Γ acts on G. Assume that the order of Γ is
invertible in k. If G has a Levi decomposition, there is a Levi factor M ⊂ G invariant under the action of Γ. In
particular, MΓ is a Levi factor of GΓ.

If now k ⊂ ` is a finite, galois extension and if G/` has a Levi factor, we observe in §3.4 that the k-group
R`/kG/` obtained from G/` by restriction of scalars has a Levi factor. Moreover, there is a natural action of
Γ = Gal(`/k) by k-automorphisms on R`/kG/`, and G may be identified with the group of fixed points
(R`/kG/`)

Γ; see (3.4.2).
These observations together with Theorem A now allow us to obtain our first main result concerning the

descent of Levi factors; in Theorem (3.4.3) we prove the following:

Theorem B. Suppose that G satisfies (RS). Let k ⊂ ` be a finite Galois extension for which [` : k] is not divisible p.
If G/` has a Levi decomposition, then G has a Levi decomposition.

Finally, in §4 we consider linear algebraic groups G which are extensions of a linear algebraic group H
by a vector group V. If H acts on V by automorphisms of algebraic groups, then Lie(V) determines an
H-module, i.e. a linear representation of H. We say that the action of H on V is linear if there is an H-
equivariant isomorphism of algebraic groups V ' Lie(V). There are vector groups V with G-action for
which there is no G-equivariant isomorphism Lie(V) ' V – see e.g. the examples in [Mc 12]. When H is
reductive and the action of H on V is linear, we find unconditional “descent” results for Levi factors. More
precisely, we have the following result, proved in Corollary (4.5.2).

Theorem C. Suppose that G satisfies (RS) and suppose that there is a G-equivariant isomorphism of linear algebraic
groups R ' Lie(R) – i.e. the unipotent radical R is a vector group and the action of G/R on R is linear. If G/ksep has
a Levi decomposition then G has a Levi decomposition.

In a final section §5, we give an example of a disconnected group G for which G/ksep has a Levi decompo-
sition while G has no Levi decomposition.

2. COHOMOLOGY AND AUTOMORPHISMS OF EXTENSIONS

2.1. Some generalities. Let k be a field, choose a separable closure ksep of k and write Γ = Gal(ksep/k) for
the absolute Galois group of k.

As in [Se 97, §I.1], we consider functors defined on the category of E separable algebraic field extensions
of k. Let T : E → Sets be such a functor, and impose the following conditions:
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(G1) T(K) = lim
→

T(Ki) for Ki running over the set of sub-extensions of K having finite type over k.

(G2) If K → K′ is an injection of fields, the corresponding morphism T(K)→ T(K′) is injective.
(G3) If K′/K is a Galois extension, then T(K) = T(K′)Gal(K′/K).
These conditions guarantee for any choice of separable closure ksep of k that the action of the profinite
absolute Galois group Γ = Gal(k) on T(ksep) is continuous when T(ksep) is given the discrete topology.

By a group-functor, we mean a functor A : E → Groups with values in the category of groups such that

the composite E
A−→ Groups F−→ Sets satisfies conditions (G1)–(G3), where F is the forgetful functor; cf. [Se

97, §II.1.1]. Conditions (G1)–(G3) imply that the Galois cohomology set

H1(k, A) := H1(Gal(ksep/k), A(ksep))

is independent of the choice of separable closure of k.
We say that a functor T : E → Sets satisfying (G1)–(G3) is a torsor for the group-functor A, or simply an

A-torsor, if
(i) for each separable algebraic field extension K of k, the group A(K) acts on T(K),

(ii) the actions in (i) are compatible (in an obvious sense) with extensions K → K′, and
(iii) T(ksep) is a principal homogeneous space for A(ksep) for any separable closure ksep of k.

(2.1.1) ([Se 97, §I.5.2]). (a) There is a bijection between the elements of the set H1(k, A) and isomorphism classes of
A-torsors under which the trivial class 1 ∈ H1(k, A) corresponds to the trivial A-torsor A.

(b) Assume H1(k, A) = 1. Then every A-torsor is trivial. Put another way, if T is an A-torsor, then T(k) is
non-empty and is a principal homogeneous space for the group A(k).

Remark (2.1.2). Of course, if ` ⊃ k is a finite Galois extension, the bijection of (2.1.1) yields a bijection
between the cohomology set H1(Gal(`/k), A(`)) the isomorphism classes of those A-torsors T for which
T(`) is a principal homogeneous space for A(`).

2.2. Galois twists of extensions of linear algebraic groups. Recall that a sequence

(∗) 1 i−→ N → G π−→ M→ 1

of linear algebraic groups is strictly exact if the sequence of groups

1→ N(ksep)
i−→ G(ksep)

π−→ M(ksep)→ 1

is exact and dπ : Lie(G)→ Lie(M) is surjective. Then i induces an isomorphism of N onto a closed, normal
subgroup of G, and π induces an isomorphism G/i(N) ' M.

By an extension of M by N we mean a strictly exact sequence of the form (∗). Given a second extension

(∗∗) 1→ N i′−→ G′ π′−→ M→ 1

of M by N, by an isomorphism of extensions between (∗) and (∗∗) we mean a commuting diagram

(∗) 0 −−−−→ N i−−−−→ G π−−−−→ M −−−−→ 1∥∥∥ yφ

∥∥∥
(∗∗) 0 −−−−→ N i′−−−−→ G′ π′−−−−→ M −−−−→ 1

where φ : G → G′ is an isomorphism of linear algebraic groups over k.
Fix an extension of M by N given by a strictly exact sequence of linear algebraic groups (∗). For each field

extension K of k, let A (K) be the group of automorphisms of the extension (∗)/K of M/K by N/K obtained
from (∗) by extension of scalars; thus the group A (K) consists in those automorphisms φ of G/K such that
φ ◦ i = i and π = π ◦ φ.

(2.2.1). A is a group-functor (in the sense of §2.1).

Proof. First note of course that if K ⊂ K′ is a field extension, an automorphism of the extension (∗)/K de-
termines by base-change an automorphism of the extension (∗)/K′ ; with the resulting morphisms A (K) →
A (K′), A (−) is indeed a functor A : E → Groups. Conditions (G1)–(G3) are standard and left to the
reader. �
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We say that the extension (∗∗) of M by N is a k-form of the extension (∗) if there is separable algebraic
field extension K ⊃ k and a isomorphism of extensions defined over K between (∗)/K and (∗∗)/K.

(2.2.2). Fix an extension (∗).
(a) There is a bijection between H1(Γ, A ) and the set of isomorphisms classes of k-forms of (∗); under this bijection,

the class of the k-form (∗) corresponds to the neutral element of the pointed set H1(Γ, A ).
(b) Let ` ⊃ k be a finite Galois extension of fields. The bijection of (a) induces a bijection between the cohomology set

H1(Gal(`/k), A (`)) and the set of isomorphism classes of k-forms (∗∗) of (∗) for which the extensions (∗)/`
and (∗∗)/` are isomorphic.

Proof. Assertion (b) follows at once from (a); see (2.1.2)
Given a k-form (∗∗) of (∗), let T : E → Sets be the functor whose value at an object K of E is the set

T(K) = Isom((∗)/K, (∗∗)/K) of all isomorphisms of extensions (∗)/K → (∗∗)/K. Fix a separable closure
ksep of k. Since (∗∗) is a k-form of (∗), there is an isomorphism φ : (∗)/ksep

∼−→ (∗∗)/ksep ; it follows that
T(ksep) = φ.A (ksep) is a principal homogeneous space for the group A (ksep) so that T is an A -torsor.

On the other hand, given an A -torsor T, choose a separable closure ksep of k. A choice of an element
of T(ksep) leads to a 1-cocycle σ ∈ Z1(Γ, A (ksep). Using this co-cycle, one constructs a twisted k-form σG
of the linear algebraic group G. The action of the group Γ on the group of points σG(ksep) is obtained by
“twisting” the given action of Γ on G(ksep) by the co-cycle σ. Since each γ ∈ Γ determines an automorphism
of the extension (∗)/ksep one finds that the homomorphisms

i : N/ksep → G/ksep = σG/ksep and π : G/ksep = σG/ksep → M/ksep

commute with the action of Γ on N(ksep), M(ksep) and σG(ksep) and hence descend to yield a strictly exact
sequence of

([) 1→ N i−→ σG π−→ M→ 1;

it is immediate that ([) is a k-form of the extension (∗).
The reader is left to verify that the indicated assignments determine the required bijection. �

2.3. A cohomological lemma. Let A be a (“concrete” ) group. Recall that the lower central series Zi(A) of
A is defined as follows: Z1(A) = Z(A) is the center of A, and

Zi(A) = π−1(Z(A/Zi−1(A))) for i > 1

where π : A → A/Zi−1(A) denotes the quotient mapping (for each i). Recall that A is nilpotent if its lower
central series terminates with Zj(A) = A for some j ≥ 1. If A is nilpotent, the nilpotence class of A is the
minimal j ≥ 1 for which Zj(A) = A.

(2.3.1). Let Γ be a finite group whose order is not divisible by the prime number p, and let A be a nilpotent group on
which Γ acts by group automorphisms such that for some N = NA ≥ 1, each element of A has order dividing pN .
Then H1(Γ, A) = 1.

Proof. Write m for the number of elements in Γ.
We give the proof by induction on the nilpotence class j of A. If j = 1, the group A is abelian; in that

case A is a Γ-module, and we apply the standard result from the cohomology of finite groups which shows
that multiplication by m annihilates each Hi(Γ, A) for all i ≥ 1 [Se 79, VIII §3 Cor. 1]. Now, the group
A is annihilated by pN , so also each Hi(Γ, A) is annihilated by pN . Since gcd(m, pN) = 1, it follows that
Hi(Γ, A) = 0 for i ≥ 1. In particular, H1(Γ, A) is trivial.

Now suppose that the nilpotence class of A satisfies j > 1, and that the result is know for all nilpotent
groups of class s < j. Write Z = Z(A) for the center of A, and observe that the nilpotence class of the group
A/Z is j− 1.

Since Z is a normal subgroup of A, one finds an exact sequence of pointed sets

1→ ZΓ → AΓ → (A/Z)Γ → H1(Γ, Z)→ H1(Γ, A)→ H1(Γ, A/Z)

cf. [Se 97, I.§5]. By induction one knows that H1(Γ, Z) and H1(Γ, A/Z) are trivial, and it follows at once that
H1(Γ, A) is trivial. Thus the required result indeed follows by induction on j. �
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Remark (2.3.2). Rather than invoking group cohomology in the case of abelian A, the preceding result may
perhaps be seen more directly using a “barycenter” argument. Indeed, if Γ is a finite group whose order m
is prime to p and if Γ acts on an Abelian group A having pN-torsion, then every A-torsor A0 on which Γ acts
(compatibly with its action on A) is trivial. Indeed, given such an A-torsor A0, choose any element x ∈ A0.
For g ∈ Γ, gx = ag + x for ag ∈ A. Now form the element b = j ∑g∈Γ ag ∈ A where j is an integer for which
mj ≡ 1 (mod pN), and consider b + x. For h ∈ Γ,

h(b + x) = j ∑
g∈Γ

hag + hx = j ∑
g∈Γ

(hag + ah) + x = j ∑
g∈Γ

ahg + x = b + x

since the assignment g 7→ ag is a 1-cocycle. Thus b + x is fixed by Γ so that A0 is indeed trivial.

Remark (2.3.3). If Γ is a finite group whose order is prime to p, if k is a field of characteristic p, and if U is
a unipotent linear algebraic group over k and Γ acts on U, then (2.3.1) shows that H1(Γ, U(ksep)) = 1 and
H1(Γ, Lie(U)) = 0.

3. PRIME-TO-p DESCENT

Throughout § 3, k denotes a field of characteristic p > 0, and Γ denotes a finite group of order relatively
prime to p.

3.1. Fixed point results.

Theorem (3.1.1). Let U be a connected k-split unipotent group, and suppose that Γ acts on U by automorphisms of
algebraic groups. Then UΓ is connected.

Proof. Suppose that there is a proper, connected k-split Γ-invariant, normal subgroup U1 ⊂ U for which it is
known that UΓ

1 and (U/U1)
Γ are connected. By Remark (2.3.3), H1(Γ, U1(kalg)) = 1, and it follows that the

sequence
(♣) 1→ UΓ

1 → UΓ → (U/U1)
Γ → 1

is strictly exact. We now deduce that UΓ is connected, as desired.
Using (♣), we first reduce the proof of the Theorem to the case in which U is a vector group. For this,

we argue as in the proof of [Mc 12, Theorem 4.2.1]. First, the derived subgroup U1 = (U, U) is Γ-invariant.
Moreover, (U, U) and the quotient U/(U, U) are connected, k-split unipotent groups over k [Sp 98, Exerc.
14.3.12 (2) and (3)]. Since U is nilpotent, the strict exactness of (♣) and induction on dim U show that UΓ is
connected provided the Theorem is known when U is abelian. Now let U be abelian and let U1 = U(p) be
the subgroup generated by p-th powers; then U(p) is Γ-invariant. According to loc. cit., U(p) and U/U(p) are
again abelian split connected unipotent groups. By induction on the exponent, the strict exactness of (♣)
shows that UΓ is connected provided the Theorem is known for abelian U of exponent p – i.e. for vector
groups U [CGP 10, Theorem B.2.5].

Now suppose the Theorem is known for those vector groups W on which Γ acts by group automorphisms
and for which Lie(W) is a simple kΓ module. We claim the Theorem then follows for any vector group U
on which Γ acts by group automorphisms. To prove the claim, we suppose that Lie(U) is not a simple
kΓ module. Apply the semisimplicity of kΓ-modules together with [Mc 12, (3.2.2)] to find a Γ-equivariant
separable and surjective homomorphisms of algebraic groups φ : U → V for a simple Γ-module V 1. Since
Lie(U) is not simple, ker φ is positive dimensional, and by induction on the dimension of U, the Γ-invariant
subgroup (ker φ)0 contains a Γ-invariant connected subgroup U1 for which Lie(U1) is a simple Γ-module.

Since the composition length of Lie(U/U1) is less than that of Lie(U), we may suppose that (U/U1)
Γ is

connected. Moreover, since Lie(U1) is a simple kΓ-module, WΓ = UΓ
1 is connected by our assumption. Now

the strict exactness of (♣) shows that UΓ is connected.
Thus to prove the Theorem, we may assume that U is a vector group for which Lie(U) is a simple Γ-

module. Consider the separable surjective Γ-invariant homomorphism φ : U → V for a simple kΓ-module
V constructed above; the tangent mapping dφ is an isomorphism of kΓ-modules Lie(U)

∼−→ V = Lie(V). If
Lie(U) ' V is the trivial 1 dimensional Γ-module, it is easy to see that Γ acts trivially on U (e.g. apply [Mc
12, Prop. (3.2.3)]) so that UΓ = U is indeed connected.

1In the notation of loc. cit., choose a simple Γ-submodule W ⊂ A (U) with W ∩A 1(U) = {0} and set V = W∨, the dual Γ-module



6 GEORGE MCNINCH

Finally, if V is a non-trivial simple Γ-module, then VΓ = 0 and we must argue that UΓ = 0. Write
F = ker φ so that F is a finite linear algebraic group (a finite, smooth group scheme over k). It suffices to
argue that FΓ = 0.

Write A (U) for the collection of homomorphisms of algebraic groups U → Ga; we may view A (U) as a
Γ-submodule of the algebra k[U] of regular functions on U as in [Mc 12, §3.1]. Since Γ has order prime to p,
A (U) is a semisimple Γ-module, and it follows from [Mc 12, Prop. (3.2.1)] that A (U)Γ = 0.

By [Mc 12, Lemma (3.1.4)] A (U) contains a system of k-algebra generators for k[U]; thus to prove FΓ = 0,
it is enough to argue that f|FΓ = 0 for all f ∈ A (U). Set B = { f ∈ A (U) | f|FΓ = 0}. Then there is a injective
Γ-equivariant group homomorphism from A (U)/B to the group C of all homomorphisms FΓ(kalg)→ kalg.
But Γ acts trivially on C, so that Γ acts trivially on A (U)/B. Since A (U) is a semisimple Γ module and
A (U)Γ = 0, deduce that B = A (U) so that FΓ = 0 as required. This completes the proof. �

(3.1.2). If Γ acts by group automorphisms on a reductive group H, then the identity component of HΓ is reductive.

Proof. Since Γ is a linearly reductive group, this follows from a result of Richardson [Ri 82, Prop. 10.1.5]. �

3.2. Automorphisms of an extension. Let G be a linear algebraic group over k for which (RS) holds, let
R be the unipotent radical of G, and write M = G/R for the reductive quotient of G. We view G as an
extension

(]) 1→ R→ G π−→ M→ 1

As in §2.2, let A be the group-functor given for separable extensions K of k by taking A (K) to be the group
of all automorphisms of the extension (])/K obtained from (]) by extending scalars.

(3.2.1). If the unipotent radical R is abelian, then A (`) is abelian for each separable field extension `, and there is a
constant N for which each element of A (`) has order dividing pN .

Proof. The result describes A (`); thus we may and will suppose that k = `. By a result of Rosenlicht – see
e.g. [Mc 10, (2.2.3)] –we may choose a regular mapping σ : M→ G which is a section to π.

Using σ we may describe the variety G as follows. Define regular maps m, x : G → G by setting m = σ ◦π

and taking for x the map defined by the rule x(g) = m(g)−1 · g. Writing (m, x) : G → G × G for the map
determined by m and x, we find that µ ◦ (m, x) = 1G . The image M̃ of m (which is also the image of σ)
coincides with the fiber x−1(1), so M̃ is closed and π : M̃ → M is an isomorphism. Moreover, the image

of x is R and the mapping G
(m,x)−−−→ M̃× R is an isomorphism. In what follows, we identify G as a variety –

though not as a group – with M× R.
If φ : G → G is a k-automorphism which determines an automorphism of the extension (]), there is a

regular function fφ : M→ R for which the value of φ at kalg-points of G = M× R is given by:

φ(m, x) = (m, fφ(m) · x) for m in M(kalg) and x in R(kalg)

Thus if φ, ψ ∈ A (k), then

(ψ · φ)(m, x) = ψ(m, fφ(m) · x) = (m, fψ(m) · fφ(m) · x);

since R is assumed to be abelian, this rule is symmetric in φ and ψ so indeed A (k) is abelian.
Since R is an abelian unipotent group, there is a constant N ≥ 1 such that each element of R(ksep) has

order dividing pN . Let φ ∈ A (k). For (m, x) ∈ (M n R)(kalg), we have

φpN
(m, x) = (m, fφ(m)pN

x) = (m, x)

so that indeed φ has order dividing pN . �

(3.2.2). Let ` ⊃ k be a separable extension of fields, and let A = A (`). Suppose that G/` has a Levi decomposition.
Then:

(a) A is a nilpotent group, and
(b) there is a constant N for which each element of A has order dividing pN .
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Proof. Since the result concerns A (`), we may and will suppose that ` = k.
Since G = G/` is assumed to have a Levi decomposition, there is an action of the group M on R for which

the extension (]) is isomorphic (over ` = k) to the extension

1→ R→ M n R→ M→ 1

defined by the semi-direct product.
Since R is k-split, we may find a sequence

1 = Um ⊂ Um−1 ⊂ · · · ⊂ U1 ⊂ U0 = R

where each Ui is a closed normal k-subgroup of G and each quotient Ui/Ui+1 is a vector group – i.e. Ui/Ui+1
is isomorphic to a product of groups Ga/k –; see [Mc 10, (2.2.3)]. It now follows that each element x of R(ksep)

has the property xpm
= 1.

For m ≥ i ≥ 1, the group Ui is normal in G and thus the action of M on R by conjugation leaves Ui
invariant. One may therefore consider the extension

(]i) 1→ Ui → M nUi → M→ 1.

Write Ai for the group functor of automorphisms of (]i). There is a homomorphism of group functors Ai →
A and in particular a homomorphism of groups τ = τi : Ai(k) → A (k) = A. Indeed, a k-automorphism
Φ of (]i) is given as in §2.2 by a suitable automorphism of M n Ui. The diagram of §2.2 shows that there
is a regular function φ : M → Ui for which this automorphism of M n Ui is given by the rule (m, x) 7→
(m, φ(m)x). The regular function ι ◦ φ : M → Ui → R determines an automorphism (m, x) 7→ (m, φ(m)x)
of M n R, where ι : Ui → R denotes the inclusion. Finally, this automorphism of M n R determines an
automorphism τ(Φ) of the extension (∗∗).

Write Ai ⊂ A for the image of this mapping τ = τi : Ai(k)→ A (k) = A. Then we have

1 = Am ⊂ Am−1 ⊂ · · · ⊂ A1 ⊂ A

One readily observes that each Ai is normal in A, and that Ai/Ai+1 is isomorphic to a subgroup of the group
of all k-automorphisms of the extension

1→ Ui/Ui+1 → M n (Ui/Ui+1)→ M→ 1.

Thus (3.2.1) shows that Ai/Ai+1 is an abelian group; it follows that A is nilpotent and (a) holds.
For (b), choose M large enough that each element of each of the groups Ai/Ai+1 has order dividing pM.

Then each element of A has order dividing pN where N = mM. �

3.3. Levi factors stable under the action of a finite group. Recall that the finite group Γ has order relatively
prime to p, the characteristic of k.

Theorem (3.3.1). If G has a Levi decomposition, there is a Levi factor M ⊂ G invariant under the action of Γ. In
particular, MΓ is a Levi factor of GΓ.

Proof. As in 3.2, write A for the group of automorphisms of the extension

(]) : 1→ R→ G → G/R→ 1.

Set A = A (k). According to (3.2.2), A is a nilpotent group and for some N ≥ 1, each element of A has order
dividing pN . Moreover, Γ acts on A by the rule γ ? a = γ ◦ a ◦ γ−1 for a ∈ A and γ ∈ Γ.

Fix a Levi factor L ⊂ G. For γ ∈ Γ, the subgroup γL ⊂ G is another Levi factor. By definition the group
A = A (k) acts transitively on the the collection of all Levi factors of G; thus for γ ∈ Γ we may find aγ ∈ A
for which aγ · γL = L.

We now observe that the assignment a 7→ aγ is a 1-cocycle. Indeed, for σ, τ ∈ Γ,

στL = σa−1
τ L = (σ ? a−1

τ )σL = (σ ? a−1
τ )a−1

σ L.

Since an automorphism a of ([) is trivial if and only if aL = L, it follows that a−1
στ = (σ ? a−1

τ )a−1
σ so that

indeed aστ = aσ(σ ? aτ); i.e. the (non-Abelian) 1-cocycle identity holds.
Since Γ has order relatively prime to p, H1(Γ, A) = 1 by (2.3.1). Thus, there is b ∈ A such that

1 = b · aσ · (σ ? b−1) for each σ ∈ Γ.
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Put M = bL. For σ ∈ Γ, we find that

σM = σbL = (σ ? b)σL = (σ ? b)a−1
σ L = bL = M

so indeed M is a Levi factor of G stable under the action of Γ.
Now, the unipotent radical R of G is Γ-stable, and RΓ is a connected unipotent group by (3.1.1). Write

π : G → G/R for the quotient mapping. Since M is a Levi factor, π induces a Γ-equivariant isomorphism
M→ G/R and hence an isomorphism MΓ → (G/R)Γ.

Since H1(Γ, RΓ(kalg)) = 1 and H1(Γ, Lie(RΓ)) = 0 by Remark (2.3.3), the sequence

1→ RΓ → GΓ → (G/R)Γ → 1

is strictly exact. It now follows from (3.1.1) and (3.1.2) that MΓ is a Levi factor of GΓ. �

3.4. Descent of Levi factors for prime-to-p Galois extensions. Let L/k be a finite Galois extension for
which [L : k] is relatively prime to p. For an algebraic group H over L, we write RL/k(H) for the algebraic
group over k obtained from H by restriction of scalars; cf. [CGP 10, A.5].

(3.4.1) ([DG 70, II.1 Theorem 3.6] or [Ja 03, I.2.6(10)]). Let X be an affine scheme of finite type over k and suppose
that the finite group Σ acts on X by automorphisms over k. Then the functor on k-algebras Λ 7→ X(Λ)Σ is represented
by an affine scheme XΣ of finite type over k.

Write Γ = Gal(L/k).

(3.4.2). Let G be a linear algebraic group over k. There is a natural action of Γ on RL/k(G/L) by automorphisms over
k, and the natural mapping

φ : G → RL/k(G/L)
Γ

is an isomorphism of algebraic groups over k.

Proof. If Λ is a commutative k-algebra then Γ acts naturally on Λ⊗k L: an element γ ∈ Γ acts as 1⊗ γ. Since
L/k is Galois, (Λ⊗k L)Γ = Λ. The action of Γ on Λ⊗k L yields a natural action of Γ on (RL/kG/L)(Λ) =
G(Λ⊗k L), and evidently (RL/kG/L)(Λ)Γ = G((Λ⊗k L)Γ) = G(Λ).

The natural maps Λ → Λ⊗k L given by x 7→ x ⊗ 1 determine a functorial group homomorphism φΛ :
G(Λ)→ G((Λ⊗k L)Γ) = (RL/k(G/L)(Λ)Γ and hence a homomorphism φ : G → RL/k(G/L)

Γ; since φΛ is an
isomorphism for each Λ, φ is an isomorphism. �

Theorem (3.4.3). Let G be a linear algebraic group over k, let L/k be a Galois extension, and suppose that [L : k] is
relatively prime to p. If G/L has a Levi decomposition, then G has a Levi decomposition.

Proof. Let H be a linear algebraic group over L for which (RS) holds. Suppose that H has a Levi factor
M, there is an L-isomorphism H ' R o M where R is the unipotent radical of H. Then RL/k H ' RL/kR o
RL/k M. Since RL/kR is unipotent and (RL/k M)0 is reductive [Oe 84, A.3.4], this description shows that the k-
group RL/k H has a Levi decomposition. Thus, by hypothesis the k-group RL/kG/L has a Levi decomposition.
Since the order of Γ is relatively prime to p, it now follows from (3.4.2) together with Theorem (3.3.1) that G
has a Levi decomposition. �

4. EXTENSIONS OF A REDUCTIVE GROUP BY A LINEAR REPRESENTATION

4.1. Galois cohomology of a vector space. Let V be a vector space over k which is not necessarily of finite
dimension. Then V defines a group-functor AV as in §2.1 by the rule AV(`) = V⊗k `. Note that when dim V
is not finite, the functor AV is not representable by a k-scheme of finite type.

It is straightforward to see the following:

(4.1.1). Conditions (G1)–(G3) hold for the functor AV .

Using the additive version of Hilbert’s Theorem 90, one finds:

(4.1.2). Hi(k, AV) = 0 for i > 0. In particular, every AV-torsor is trivial.
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Proof. Let Γ = Gal(ksep/k). The cohomology groups are defined [Se 97, §I.2.2] using the complex

(C•, ∂) = (C•(Γ, V ⊗k ksep), ∂)

where Ci consists of continuous maps ∏i Γ→ V ⊗k ksep.
Let i > 0 and f ∈ Zi = ker(∂ : Ci → Ci+1). Since f is continuous, it is constant on the cosets of some

subgroup U ⊂ Γ having finite index. In particular, the image of f is finite and is thus contained in some
finite dimensional vector subspace W ⊂ V ⊗k ksep. We may evidently find a finite dimensional subspace
W0 ⊂ V such that W ⊂ ksepW0.

Then the triviality of the class [ f ] ∈ Hi(k, AV) will follow from the triviality of [ f ] in Hi(k, AW0); thus we
may and will suppose that V is finite dimensional.

In the finite dimensional case, the assertion may be easily proved using induction on the dimension of V
together with the additive version of Hilbert’s Theorem 90 [Se 97, §II.1.2]; details are left to the reader. �

4.2. Cohomology of G-modules. If V is G-module, the (Hochschild) cohomology groups H•(G, V) are de-
fined as the derived functors of the functor W 7→WG of G-fixed points on the category of G-representations
over k [Ja 03, §I.4].

On the other hand, one can consider the Hochschild complex C•(G, V) of V; for finite dimensional G-
modules V, the m-th degree term of this complex Cm = Cm(G, V) is the set of all regular functions of
varieties (over k)

G× · · · × G =
m

∏
i=1

G → V,

with the “usual” boundary mappings ∂m : Cm → Cm+1; see e.g. [Ja 03, I.4.14]. In particular, for f ∈ C1,
∂1( f ) : G× G → V is given by the rule (g, g′) 7→ f (g) + g f (g′).

(4.2.1) ([Ja 03, I,4,16]). The derived functor cohomology H•(G, V) may be identified naturally with the cohomology
H•(C•(G, V)) of the Hochschild complex (C•(G, V), ∂•)

Remark (4.2.2). When G is reductive and V is finite dimensional, the groups H•(G, V) are finite dimensional
as k-vector spaces; see [Ja 03, II.4.10 and II.4.7(c)]. On the other hand, H1(Ga, k) is of countably infinite
dimension as a k-vector space; [Ja 03, I.4.21(b)].

4.3. Extensions. Let V be a finite dimensional linear representation of the linear algebraic group H. We
may view V as a linear algebraic group over k. Recall from §2.2 that an extension of H by V is a strictly exact
sequence

(∗) 0→ V i−→ E π−→ H → 1
of linear algebraic groups; when considering such extensions we always insist that the action of E/V = H on
V is given by the action of H on the linear representation V. We sometimes write E for this extension when
no ambiguity seems likely.

Consider a second extension
(∗∗) 0→ V i−→ E′ π−→ H → 1

In §2.2 we considered isomorphisms of extensions, but we may also consider morphisms of extensions; a
morphism between extensions E and E′ is a commuting diagram

0 −−−−→ V i−−−−→ E π−−−−→ H −−−−→ 1∥∥∥ yφ

∥∥∥
0 −−−−→ V i′−−−−→ E′ π′−−−−→ H −−−−→ 1

where φ : E→ E′ is an morphism of linear algebraic groups E→ E′; we write φ for this morphism.
In fact, this notion is not more general, as the following result shows:

(4.3.1). Any morphism φ of extensions E and E′ is already an isomorphism of extensions.

Proof. Since π′ ◦ φ = π and φ ◦ i = i′, one readily argues that φ is injective and surjective on kalg-points,
where kalg is an algebraic closure of k. One then argues that dφ is a linear isomorphism, and the result
follows. �



10 GEORGE MCNINCH

Given an extension (∗), it follows from the result of Rosenlicht already mentioned in the proof of (3.2.1)
– see [Mc 10, (2.2.3)] – that we may choose a regular mapping σ : H → E which is a section to π.

(4.3.2). Consider the regular function

f = fE,σ : H × H → V via (g, g′) 7→ σ(g)σ(g′)σ(gg′)−1.

We have:
(1) f ∈ Z2(H, V).
(2) The extension (∗) is trivial if and only if 0 = [ f ] ∈ H2(H, V).
(3) More generally, if f ′ = fE′ ,σ′ : H × H → V arises from a second extension E′ of H by V using a section

σ′ : H → E′, the extensions are isomorphic (∗∗) if and only if [ f ] = [ f ′] in H2(H, V).

Proof. [DG 70, II §3.2.3] �

Let E1 and E2 be two extensions of H by the linear representation V. We form a new extension (E1 + E2)

as follows. First, consider the linear algebraic group F̃ = F̃E1,E2 for which the following diagram is Cartesian:

F̃
f1−−−−→ E1

f2

y yπ1

E2
π2−−−−→ H

The universal property of F̃ shows there to be unique homomorphisms j1, j2 : V → F̃ such that f1 ◦ j2 =
f2 ◦ j1 = 0, and such that fi ◦ ji is the inclusion V → Ei for i = 1, 2.

The above conditions show that j1 ⊕ j2 : V ⊕V → F̃ is injective, so that F̃ is an extension of H by V ⊕V.
The image W of (j1,−j2) : V → V ⊕V is normal in F̃, and the quotient F = F̃/W is an extension of H by V;
we set (E1 + E2) = F.

(4.3.3). (a) If αi ∈ H2(H, V) correspond to the extensions Ei for i = 1, 2, then α1 + α2 ∈ H2(H, V) corresponds to
the extension (E1 + E2).

(b) If φi : Ei → E′i are isomorphisms of extensions for i = 1, 2, there is an induced isomorphism (φ1 + φ2) :
(E1 + E2)→ (E′1 + E′2) of extensions.

Proof. Assertion (a) follows from a simple computation using 2-cocyles fi ∈ Z2(H, V) representing the
classes αi; details are left to the reader.

As to (b), note that φ1 and φ2 induce a mapping of linear algebraic groups φ̃ : FE1,E2 → FE′1,E′2
which is a

morphism of extensions of H by V ⊕V. It is straightforward to see that φ̃ induces a morphism – and hence
an isomorphism – φ : (E1 + E2)→ (E′1 + E′2) as required. �

4.4. Automorphisms of the trivial extension. Let H be a linear algebraic group over k, and let V be a finite
dimensional linear representation of H. We may view V as a vector group and form the semidirect product
V o H; it is also a linear algebraic group over k. We view V o H as the trivial extension of H by the vector
group V.

As in (2.2.1), let A be the automorphism group-functor of the trivial extension

0→ V → (H n V)→ H → 1

of H by V.
We are going to prove the following:

Theorem (4.4.1). (a) With notation as in §4.1, A = AZ for a certain k-vector space Z.
(b) H1(k, A ) = 1.

Proof. Note that (b) is an immediate consequence of (a) together with (4.1.2).
For (a), we show that A = AZ where Z = Z1(H, V) is the vector space of 1-cocycles H → V. For any

separable field extension K ⊃ k an element f ∈ AZ(K) = Z1(H/K, V/K) determines an map Φ f : (V o H)/K
by the rule

Φ f : (v, h) 7→ (v + f (h), h).
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Using the cocycle condition ∂1 f = 0, one checks that Φ f is a morphism of extensions, and it follows from
(4.3.1) that Φ f is an automorphism of (V o H)/K. We get in this way a homomorphism

Φ : AZ → A

of group functors.
On the other hand, let φ be an automorphism of the extension

0→ V i−→ (V o H)
π−→ H → 1.

Since φ ◦ i = i and π ◦ φ = φ, and since φ is a group homomorphism, one sees that the regular map φ has
the form

(v, h) 7→ (v + Ψφ(h), h)

for some morphism Ψφ : H → V of varieties. Using the fact that φ is a group homomorphism, one argues
that ∂1Ψφ = 0 so that Ψφ ∈ Z1 = AZ(k). Repeating this construction after replacing k by any extension K
of k, we have describe an assignment φ 7→ Ψφ which determines a homomorphism Ψ : A → AZ of group
functors.

Now Φ and Ψ are inverse to one another. �

4.5. Descent of isomorphisms between extensions by linear representations. Let H be a linear algebraic
group and let V be a finite dimensional linear representation of H.

Theorem (4.5.1). Fix two extensions

(∗) 0→ V i−→ E π−→ H → 1 and (∗∗) 0→ V i′−→ E′ π′−→ H → 1

of H by V over k, and suppose that ψ : (∗)/ksep → (∗∗)/ksep is an isomorphism of extensions over ksep. Then there is
a k-isomorphism between the extensions (∗) and (∗∗).

Proof. Since the extensions (E)/ksep and (E′)/ksep are isomorphic, (4.3.3)(b) shows that there is an isomor-
phism of extensions between (E − E′)/ksep and the trivial extension (0)/ksep = (V o H)/ksep . Moreover, if
we prove that (E − E′) is isomorphic to (0), then another application of (4.3.3)(b) will show that (E) is
isomorphic to (E′).

Thus in proving the Theorem, we may and will suppose (∗∗) to be the trivial extension E′ = H nV given
by the semi-direct product.

Denote by A the group-functor of automorphisms of the trivial extension (∗∗) as in § 4.4. Then Theorem
(4.4.1) shows that H1(k, A ) is trivial, thus it follows from (2.2.2) that (∗) and (∗∗) are already isomorphic
over k. �

As a consequence, we now find a proof of Theorem B from the introduction:

Corollary (4.5.2). Suppose that H is a reductive group over k, and let E be an extension of H by the finite dimensional
linear representation V viewed as a vector group. Suppose that the group E/ksep has a Levi factor. Then E has a Levi
factor.

Proof. The group E has a Levi factor if and only if the extension 0 → V → E → H → 1 is k-isomorphic to
the trivial extension given by the semi-direct product of H and V. Thus the Corollary follows immediately
from the preceding Theorem. �

5. EXAMPLE OF FAILURE OF DESCENT FOR LEVI DECOMPOSITION

Let k be a perfect field of characteristic p > 0, and let ` ⊃ k be a Galois extension with [` : k] = p.
Consider the linear algebraic group W = W2 of length two Witt vectors over k: thus W is isomorphic to A2 as
a k-variety, and the group operation in W is given by the rule

(a, b) + (a′, b′) = (a + a′, h(a, a′) + b + b′)

for a certain polynomial h(Y, Z) with integral coefficients.
For the following, see e.g. [Se 88, §VII.2].
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(5.0.3). There is a strictly exact sequence of linear algebraic groups

0→ Ga →W → Ga → 0

where the inclusion Ga →W is given by b 7→ (0, b) and the surjection W → Ga is given by (a, b) 7→ a. If w = (a, b)
and w′ = (a′, b′) are elements of W(kalg), then pw = pw′ if and only if a = a′. In particular, the order of the element
w is p2 if and only if a 6= 0.

Write F = Z/pZ, and consider the embedding F ⊂ Ga
i−→ W determined by the embedding Z/pZ ⊂ k

of fields. Now form the quotient group U = W/F. We may find ẽ ∈ W(k) for which π(ẽ) 6= 0 and pẽ ∈ F;
then the image 0 6= e ∈ U(k) of ẽ satisfies pe = 0.

View the linear algebraic group H = U × Z/pZ as an extension

([) 0→ U → H → Z/pZ→ 0.

Since e has order p, there is a k-automorphism τ of the extension ([) determined by the rule

τ(u, n + pZ) = (u + ne, n + pZ) for u ∈ U(kalg), n ∈ Z.

Fix a generator σ for the Galois group Gal(`/k) = 〈σ〉 and write A = A (`) for the group of automor-
phisms of the extension ([)/` obtained from ([) be scalar extension as in §2.2.

The Galois group Gal(`/k) acts on A, and the rule σi 7→ sσi = τi defines a group homomorphism
Gal(`/k)→ A. Since τ is a k-automorphism, we have στ = τ so that s is in fact a 1-cocycle.

Using the 1-cocycle s, form the “twisted” extension s([)

s([) 0→ U → sH π−→ Z/pZ→ 0

as in (2.2.2); thus the group G = s H is obtained from H by twisting with s.

(5.0.4). (a) The extension ([) is not k-isomorphic to the extension s([)
(b) s([) becomes isomorphic to ([) after extending scalars to `.

Proof. (b) holds by construction. To prove (a), it will suffice to argue that G = sH has no k-rational element
x ∈ G(k) of order p for which π(x) = 1 + pZ.

Well, if π(x) = 1+ pZ, then x has the form x = (u, 1+ pZ) ∈ sH(`) = H(`). Now x ∈ s H(k) if and only
if x = σ ? x for the “twisted” Gal(`/k) action ? on H(`). By the definition of this twisted action, we have
x ∈ s H(k) if and only if

u = σu + e.

Now, u ∈ U(`) is represented by some element w = (a, b) ∈ W(kalg) where a, b ∈ kalg. Denoting by σ̃ an
element of Gal(kalg/k) whose restriction to ` coincides with σ, we find that

(a, b)− ( σ̃a, σ̃b) ≡ ẽ (mod F)

in the group W(kalg). Since ẽ has order p2, it follows that a 6= σa so that a 6∈ k. In particular, it follows from
(5.0.3) that p(a, b) 6∈ F, so the image u of (a, b) in U(k) has order p2. Thus also x ∈ H(k) has order p2 and
the proof is complete. �

Thus G = sH provides an example of a (disconnected) linear algebraic group such that G/ksep =

sH/ksep = H/ksep has a Levi decomposition, but G = sH has no Levi decomposition.
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