ON THE DESCENT OF LEVI FACTORS

GEORGE MCNINCH

ABSTRACT. Let G be a linear algebraic group over a field k of characteristic p > 0, and suppose that the unipotent
radical R of G is defined and split over k. By a Levi factor of G, one means a closed subgroup M which is a
complement to R in G. In this paper, we give two results related to the descent of Levi factors.

First, suppose ¢ is a finite Galois extension of k for which the extension degree [¢ : k] is relatively prime to
p. If G, has a Levi decomposition, we show that G has a Levi decomposition. Second, suppose that there is a
G-equivariant isomorphism of algebraic groups R ~ Lie(R) —i.e. R is a vector group with a linear action of the
reductive quotient G/R. If Gk, has a Levi decomposition for a separable closure ksep of k, then G has a Levi
decomposition.

Finally, we give an example of a disconnected, abelian, linear algebraic group G for which G, has a Levi
decomposition, but G itself has no Levi decomposition.
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1. INTRODUCTION

Let k be a field and let G be a linear algebraic group over k; thus G is a smooth group scheme over k of
finite type. For any field extension k C ¢ we write G, for the linear algebraic group over ¢ obtained from G
by base-change. In this note, we are interested in Levi decompositions of G. In our investigations, we always
impose the following condition:

(RS) there is a split unipotent subgroup R C G such that R [kaig 18 the unipotent radical of G [k
Recall that a connected unipotent group U is split provided that there is a filtration
u=u’su's..-ou =1
by closed normal subgroups for which each subquotient U’ /U'*! is a vector group. When k is perfect, this

condition always holds, but it can fail for imperfect k; see e.g. [CGP 10, Example 1.1.3]. We note that if (RS)
holds, the quotient G/R is a reductive algebraic group over k.

1.1. Levi factors. A Levi factor of G is a closed k-subgroup M of G such that the product mapping
(x,y) = xy: MxR—G

is a k-isomorphism of algebraic groups, where M x R denotes the semidirect product (for the action of M on
R by conjugation); groups possessing a Levi factor are said to have a Levi decomposition. Of course, to give a
Levi factor of G is the same as to give a k-homomorphism G/R — G of algebraic groups which is a section to
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the natural quotient mapping G — G/ R. For more on these matters in the setting of linear algebraic groups
see [Mc 10, §4.3].

Remark (1.1.1). If the unipotent radical of G /kaig fails to arise by base-change from a subgroup of G (so in

particular, (RS) fails to hold) then of course G has no Levi decomposition. But in this case, G may well have
a Levi factor in the sense that G may possess a closed subgroup M C G for which G Jkag 18 the semidirect

product of M, Katg and R, where kg is an algebraic closure of k and R is the unipotent radical of G [k for

examples, see e.g. [CGP 10, Theorem 3.4.6]. Since we require (RS) to hold, we don’t distinguish between
Levi factors and Levi decompositions in this paper.

If the characteristic of k is 0, any linear algebraic group has a Levi factor; see [Mc 10, §3.1]. However, for
any field k of characteristic > 0, there are linear algebraic groups over k having no Levi factor; see e.g. the
example in loc. cit., §3.2. We assume for the remainder of the paper that the field k has characteristic p > 0.

1.2. Descent of Levi factors. Suppose that G is a linear algebraic group over k and that (RS) holds; write
M = G/R for the reductive quotient of G.

Let ksep be a separable closure of k, and suppose that the group Gy, has a Levi decomposition. The
question we face is this: among all Levi factors of G/, are any stable under the action of the absolute
Galois group Gal(ksep/k)? Otherwise said, does the group G have a Levi factor? In this paper, we give
some partial answers to this question.

We first study the action of a finite group I on G. In this context, we find the following result; see Theorem
(3.3.1).

Theorem A. Suppose that G satisfies (RS) and that the finite group I' acts on G. Assume that the order of T is
invertible in k. If G has a Levi decomposition, there is a Levi factor M C G invariant under the action of I'. In
particular, M is a Levi factor of G.

If now k C { is a finite, galois extension and if G, has a Levi factor, we observe in §3.4 that the k-group
Ry /1 G obtained from G, by restriction of scalars has a Levi factor. Moreover, there is a natural action of
I' = Gal(¢/k) by k-automorphisms on Ry/xG /s, and G may be identified with the group of fixed points
(Rg/kG/g)r,' see (3.4.2).

These observations together with Theorem A now allow us to obtain our first main result concerning the
descent of Levi factors; in Theorem (3.4.3) we prove the following:

Theorem B. Suppose that G satisfies (RS). Let k C { be a finite Galois extension for which [£ : k] is not divisible p.
If G ¢ has a Levi decomposition, then G has a Levi decomposition.

Finally, in §4 we consider linear algebraic groups G which are extensions of a linear algebraic group H
by a vector group V. If H acts on V by automorphisms of algebraic groups, then Lie(V) determines an
H-module, i.e. a linear representation of H. We say that the action of H on V is linear if there is an H-
equivariant isomorphism of algebraic groups V ~ Lie(V). There are vector groups V with G-action for
which there is no G-equivariant isomorphism Lie(V) ~ V - see e.g. the examples in [Mc 12]. When H is
reductive and the action of H on V is linear, we find unconditional “descent” results for Levi factors. More
precisely, we have the following result, proved in Corollary (4.5.2).

Theorem C. Suppose that G satisfies (RS) and suppose that there is a G-equivariant isomorphism of linear algebraic
groups R ~ Lie(R) —i.e. the unipotent radical R is a vector group and the action of G/R on R is linear. If G Jksep 111
a Levi decomposition then G has a Levi decomposition.

In a final section §5, we give an example of a disconnected group G for which G, has a Levi decompo-
sition while G has no Levi decomposition.

2. COHOMOLOGY AND AUTOMORPHISMS OF EXTENSIONS

2.1. Some generalities. Let k be a field, choose a separable closure ksep of k and write I' = Gal(kSep /k) for
the absolute Galois group of k.

As in [Se 97, §1.1], we consider functors defined on the category of & separable algebraic field extensions
of k. Let T : & — Sets be such a functor, and impose the following conditions:
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(G1) T(K) = ligl T(K;) for K; running over the set of sub-extensions of K having finite type over k.
(G2) If K — K’ is an injection of fields, the corresponding morphism T(K) — T(K') is injective.
(G3) If K’ /K is a Galois extension, then T(K) = T(K')Gal(K'/K),
These conditions guarantee for any choice of separable closure ksep of k that the action of the profinite
absolute Galois group I' = Gal(k) on T(ksep) is continuous when T (ksep ) is given the discrete topology.
By a group-functor, we mean a functor A : & — Groups with values in the category of groups such that

the composite & 4, Groups 7, Sets satisfies conditions (G1)—(G3), where ¥ is the forgetful functor; cf. [Se
97, §11.1.1]. Conditions (G1)—(G3) imply that the Galois cohomology set

H! (k,A) = H! (Gal(ksep/k),A(ksep))

is independent of the choice of separable closure of k.
We say that a functor T : & — Sets satisfying (G1)-(G3) is a torsor for the group-functor A, or simply an
A-torsor, if
(i) for each separable algebraic field extension K of k, the group A(K) acts on T(K),
(ii) the actions in (i) are compatible (in an obvious sense) with extensions K — K’, and
(iii) T(ksep) is a principal homogeneous space for A(ksep) for any separable closure ksep of k.

(2.1.1) ([Se 97, §1.5.2]). (a) There is a bijection between the elements of the set H' (k, A) and isomorphism classes of
A-torsors under which the trivial class 1 € H'(k, A) corresponds to the trivial A-torsor A.

(b) Assume H'(k, A) = 1. Then every A-torsor is trivial. Put another way, if T is an A-torsor, then T(k) is
non-empty and is a principal homogeneous space for the group A(k).

Remark (2.1.2). Of course, if £ D k is a finite Galois extension, the bijection of (2.1.1) yields a bijection
between the cohomology set H!(Gal(¢/k), A(£)) the isomorphism classes of those A-torsors T for which
T(¢) is a principal homogeneous space for A({).

2.2. Galois twists of extensions of linear algebraic groups. Recall that a sequence
+) 15N=-GCEM—1
of linear algebraic groups is strictly exact if the sequence of groups
1 — N(ksep) = Glksep) = M(ksep) — 1

is exact and drt : Lie(G) — Lie(M) is surjective. Then i induces an isomorphism of N onto a closed, normal
subgroup of G, and 7 induces an isomorphism G/i(N) ~ M.
By an extension of M by N we mean a strictly exact sequence of the form (x). Given a second extension

7.[/

(#%) 15NSG M1

of M by N, by an isomorphism of extensions between (*) and () we mean a commuting diagram

(*) 0 N—t5G6 -5 M 1
H e
(xx) 0 N "o M 1

where ¢ : G — G’ is an isomorphism of linear algebraic groups over k.

Fix an extension of M by N given by a strictly exact sequence of linear algebraic groups (). For each field
extension K of k, let &7 (K) be the group of automorphisms of the extension (x) ;i of Mg by N, obtained
from () by extension of scalars; thus the group <7 (K) consists in those automorphisms ¢ of G, such that
¢poi=iand T = mo¢.

(2.2.1). < is a group-functor (in the sense of §2.1).
Proof. First note of course that if K C K’ is a field extension, an automorphism of the extension (x),x de-
termines by base-change an automorphism of the extension (*) /x/; with the resulting morphisms .7 (K) —

A (K'), o/(—) is indeed a functor &/ : & — Groups. Conditions (G1)-(G3) are standard and left to the
reader. g
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We say that the extension (xx) of M by N is a k-form of the extension (x) if there is separable algebraic
field extension K D k and a isomorphism of extensions defined over K between (x) ;g and (xx) /.

(2.2.2). Fix an extension (x).

(a) There is a bijection between H' (T, o) and the set of isomorphisms classes of k-forms of (x); under this bijection,
the class of the k-form (x) corresponds to the neutral element of the pointed set H' (T, o).

(b) Let £ D k be a finite Galois extension of fields. The bijection of (a) induces a bijection between the cohomology set
HY(Gal(¢/k), </ (£)) and the set of isomorphism classes of k-forms (xx) of (x) for which the extensions (x)
and (xx) ;¢ are isomorphic.

Proof. Assertion (b) follows at once from (a); see (2.1.2)

Given a k-form (k%) of (%), let T : & — Sets be the functor whose value at an object K of & is the set
T(K) = Isom((x)/k, (**) k) of all isomorphisms of extensions (*),x — (*x),x. Fix a separable closure
ksep of k. Since (#x) is a k-form of (x), there is an isomorphism ¢ : (x) Jep 5 (%) Jkeeps it follows that
T(ksep) = ¢.o (ksep) is a principal homogeneous space for the group .« (ksep) so that T is an o7-torsor.

On the other hand, given an </-torsor T, choose a separable closure ksep of k. A choice of an element
of T(ksep) leads to a 1-cocycle o € Z!(T, o (ksep). Using this co-cycle, one constructs a twisted k-form G
of the linear algebraic group G. The action of the group T on the group of points ;G (ksep) is obtained by
“twisting” the given action of I' on G (ksep ) by the co-cycle ¢. Since each y € T determines an automorphism
of the extension (x), keep ON€ finds that the homomorphisms

i: N/k — G/k = (TG/k and 7T G/k = (TG/k — M/ksep

sep sep sep sep sep

commute with the action of T' on N (ksep ), M(ksep) and G (ksep) and hence descend to yield a strictly exact
sequence of

b) 15NS .65 M- 1

it is immediate that (b) is a k-form of the extension ().
The reader is left to verify that the indicated assignments determine the required bijection. g

2.3. A cohomological lemma. Let A be a (“concrete” ) group. Recall that the lower central series Z;(A) of
A is defined as follows: Z1(A) = Z(A) is the center of A, and

Zi(A) = n Y Z(A/Zi_1(A))) for i>1

where 7 : A — A/Z; 1(A) denotes the quotient mapping (for each i). Recall that A is nilpotent if its lower
central series terminates with Z;(A) = A for some j > 1. If A is nilpotent, the nilpotence class of A is the
minimal j > 1 for which Z;(A) = A.

(2.3.1). Let T be a finite group whose order is not divisible by the prime number p, and let A be a nilpotent group on
which T acts by group automorphisms such that for some N = N4 > 1, each element of A has order dividing p™.
Then HY(T, A) = 1.

Proof. Write m for the number of elements in I'.

We give the proof by induction on the nilpotence class j of A. If j = 1, the group A is abelian; in that
case A is aI'module, and we apply the standard result from the cohomology of finite groups which shows
that multiplication by m annihilates each Hi(l" ,A) for all i > 1 [Se 79, VIII §3 Cor. 1]. Now, the group
A is annihilated by p", so also each H/(T, A) is annihilated by pV. Since ged(m, pN) = 1, it follows that
H(T, A) = 0 fori > 1. In particular, H'(T, A) is trivial.

Now suppose that the nilpotence class of A satisfies j > 1, and that the result is know for all nilpotent
groups of class s < j. Write Z = Z(A) for the center of A, and observe that the nilpotence class of the group
A/Zisj—1.

Since Z is a normal subgroup of A, one finds an exact sequence of pointed sets

128 - A - (A/2)F — HY(T,Z) — HYT,A) — HY(T,A/Z)

cf. [Se 97, 1.§5]. By induction one knows that H 1 (T,Z)and H 1 (T, A/ Z) are trivial, and it follows at once that
HY(T, A) is trivial. Thus the required result indeed follows by induction on j. O
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Remark (2.3.2). Rather than invoking group cohomology in the case of abelian A, the preceding result may
perhaps be seen more directly using a “barycenter” argument. Indeed, if I is a finite group whose order m
is prime to p and if T acts on an Abelian group A having pN-torsion, then every A-torsor Ag on which T acts
(compatibly with its action on A) is trivial. Indeed, given such an A-torsor Ay, choose any element x € Aj.
For g €T, gx = ag + x for ag € A. Now form the element b = j} .cr ag € A where j is an integer for which

mj =1 (mod p"), and consider b + x. Forh € T,
h(b+x)=j) hag+hx=j) (hag+ay)+x=j) ap+x=>b+x
ger ger ger
since the assignment ¢ — 4, is a 1-cocycle. Thus b + x is fixed by I so that A is indeed trivial.

Remark (2.3.3). If I is a finite group whose order is prime to p, if k is a field of characteristic p, and if U is
a unipotent linear algebraic group over k and T acts on U, then (2.3.1) shows that H (T, U(ksep)) = 1 and
HY(T,Lie(U)) = 0.

3. PRIME-TO-p DESCENT

Throughout § 3, k denotes a field of characteristic p > 0, and I denotes a finite group of order relatively
prime to p.

3.1. Fixed point results.

Theorem (3.1.1). Let U be a connected k-split unipotent group, and suppose that T acts on U by automorphisms of
algebraic groups. Then U is connected.

Proof. Suppose that there is a proper, connected k-split I'-invariant, normal subgroup U; C U for which it is
known that U] and (U/U;)" are connected. By Remark (2.3.3), H!(T, U (kaig)) = 1, and it follows that the
sequence

(%) 1-U - U — (U/th)" -1
is strictly exact. We now deduce that U" is connected, as desired.

Using (&), we first reduce the proof of the Theorem to the case in which U is a vector group. For this,
we argue as in the proof of [Mc 12, Theorem 4.2.1]. First, the derived subgroup U; = (U, U) is T'-invariant.
Moreover, (U, U) and the quotient U/ (U, U) are connected, k-split unipotent groups over k [Sp 98, Exerc.
14.3.12 (2) and (3)]. Since U is nilpotent, the strict exactness of (&) and induction on dim U show that uris
connected provided the Theorem is known when U is abelian. Now let U be abelian and let U; = U?) be
the subgroup generated by p-th powers; then U(P) is T-invariant. According to loc. cit., UP) and U /U(P) are
again abelian split connected unipotent groups. By induction on the exponent, the strict exactness of ()
shows that U" is connected provided the Theorem is known for abelian U of exponent p — i.e. for vector
groups U [CGP 10, Theorem B.2.5].

Now suppose the Theorem is known for those vector groups W on which I acts by group automorphisms
and for which Lie(W) is a simple kI' module. We claim the Theorem then follows for any vector group U
on which I acts by group automorphisms. To prove the claim, we suppose that Lie(U) is not a simple
kI’ module. Apply the semisimplicity of kI-modules together with [Mc 12, (3.2.2)] to find a I'-equivariant
separable and surjective homomorphisms of algebraic groups ¢ : U — V for a simple T-module V !. Since
Lie(U) is not simple, ker ¢ is positive dimensional, and by induction on the dimension of U, the I'-invariant
subgroup (ker ¢)? contains a I'-invariant connected subgroup U for which Lie(U} ) is a simple I'-module.

Since the composition length of Lie(U /Uy ) is less than that of Lie(U), we may suppose that (U/U;)" is
connected. Moreover, since Lie(U; ) is a simple kI-module, W' = U] is connected by our assumption. Now
the strict exactness of (&) shows that U' is connected.

Thus to prove the Theorem, we may assume that U is a vector group for which Lie(U) is a simple I'-
module. Consider the separable surjective I'-invariant homomorphism ¢ : U — V for a simple kI'-module
V constructed above; the tangent mapping d¢ is an isomorphism of k[-modules Lie(U) = V = Lie(V). If
Lie(U) ~ V is the trivial 1 dimensional I'-module, it is easy to see that I' acts trivially on U (e.g. apply [Mc
12, Prop. (3.2.3)]) so that U" = U is indeed connected.

Un the notation of loc. cit., choose a simple I'-submodule W C .« (U) with W N &1 (U) = {0} and set V = W", the dual I-module
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Finally, if V is a non-trivial simple I'-module, then VI = 0 and we must argue that U = 0. Write
F = ker ¢ so that F is a finite linear algebraic group (a finite, smooth group scheme over k). It suffices to
argue that F' = 0.

Write o7 (U) for the collection of homomorphisms of algebraic groups U — G,; we may view </ (U) as a
I'-submodule of the algebra k[U] of regular functions on U as in [Mc 12, §3.1]. Since I has order prime to p,
o/ (U) is a semisimple T-module, and it follows from [Mc 12, Prop. (3.2.1)] that <7 (U)" = 0.

By [Mc 12, Lemma (3.1.4)] <7 (U) contains a system of k-algebra generators for k[U]; thus to prove F' =0,
it is enough to argue that f;r = 0forall f € &/ (U). Set B = {f € &/(U) | fzr = 0}. Then there is a injective
I'-equivariant group homomorphism from </ (U) /B to the group C of all homomorphisms F 1"(kalg) — kalg-
But I acts trivially on C, so that I acts trivially on </ (U)/B. Since </ (U) is a semisimple I' module and
(U)" = 0, deduce that B = &7 (U) so that F'' = 0 as required. This completes the proof. O

(3.1.2). IfT acts by group automorphisms on a reductive group H, then the identity component of H is reductive.

Proof. Since I is a linearly reductive group, this follows from a result of Richardson [Ri 82, Prop. 10.1.5]. O

3.2. Automorphisms of an extension. Let G be a linear algebraic group over k for which (RS) holds, let
R be the unipotent radical of G, and write M = G/R for the reductive quotient of G. We view G as an
extension

# 1-R=-GEHM—1

Asin §2.2, let o7 be the group-functor given for separable extensions K of k by taking <7 (K) to be the group
of all automorphisms of the extension (4),x obtained from () by extending scalars.

(3.2.1). If the unipotent radical R is abelian, then <7 ({) is abelian for each separable field extension ¢, and there is a
constant N for which each element of <7 (£) has order dividing pN.

Proof. The result describes <7 ({); thus we may and will suppose that k = ¢. By a result of Rosenlicht — see
e.g. [Mc 10, (2.2.3)] -we may choose a regular mapping ¢ : M — G which is a section to 7.

Using o we may describe the variety G as follows. Define regular maps m, x : G — G by settingm = com
and taking for x the map defined by the rule x(g) = m(g)~' - g. Writing (m,x) : G — G x G for the map
determined by m and x, we find that y1 o (m,x) = 1 . The image Mofm (which is also the image of o)
coincides with the fiber x~! (1), so M is closed and 7 : M — M is an isomorphism. Moreover, the image

)

of x is R and the mapping G (m_z) M x R is an isomorphism. In what follows, we identify G as a variety —
though not as a group — with M x R.

If ¢ : G — G is a k-automorphism which determines an automorphism of the extension (), there is a
regular function fy : M — R for which the value of ¢ at k,j,-points of G = M x R is given by:

alg
¢(m,x) = (m, fp(m) - x) for min M(k,g) and x in R(kyg)
Thus if ¢, ¢ € 7 (k), then
(W @)(m,x) = p(m, fo(m) - x) = (m, fy(m) - fp(m) - x);

since R is assumed to be abelian, this rule is symmetric in ¢ and ¢ so indeed <7 (k) is abelian.
Since R is an abelian unipotent group, there is a constant N > 1 such that each element of R(ksep) has

order dividing pN. Let ¢ € <7 (k). For (m,x) € (M x R)(kag), we have
N N
¢P (m, x) = (m, fo(m)?" x) = (m, x)
so that indeed ¢ has order dividing p™. g

(3.2.2). Let £ D k be a separable extension of fields, and let A = <7 ({). Suppose that Gy has a Levi decomposition.
Then:

(a) A is a nilpotent group, and

(b) there is a constant N for which each element of A has order dividing pN.
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Proof. Since the result concerns <7 (¢), we may and will suppose that ¢ = k.
Since G = G,y is assumed to have a Levi decomposition, there is an action of the group M on R for which
the extension (f) is isomorphic (over ¢ = k) to the extension

1> R—->MXR—->M-—1

defined by the semi-direct product.
Since R is k-split, we may find a sequence

1=U,CU, 1C--ClU ClUy=R

where each U is a closed normal k-subgroup of G and each quotient U; /U1 is a vector group —i.e. U;/Uj11
is isomorphic to a product of groups G, /i —; see [Mc 10, (2.2.3)]. It now follows that each element x of R (ksep)
has the property xP" =1,

For m > i > 1, the group U; is normal in G and thus the action of M on R by conjugation leaves U;
invariant. One may therefore consider the extension

) 1-U—->MxU —-M—1.

Write <7 for the group functor of automorphisms of (f;). There is a homomorphism of group functors <7; —
4/ and in particular a homomorphism of groups T = 7; : <4(k) — 4/ (k) = A. Indeed, a k-automorphism
® of (f;) is given as in §2.2 by a suitable automorphism of M x U;. The diagram of §2.2 shows that there
is a regular function ¢ : M — U; for which this automorphism of M x U; is given by the rule (m,x) —
(m, p(m)x). The regular function 10 ¢ : M — U; — R determines an automorphism (m, x) — (m, ¢(m)x)
of M x R, where ¢ : U; — R denotes the inclusion. Finally, this automorphism of M x R determines an
automorphism 7(®) of the extension (kx).
Write A; C A for the image of this mapping 7 = 1; : (k) — </ (k) = A. Then we have

1=AnCAy,1C---CAICA

One readily observes that each A; is normal in A, and that A;/ A; 1 is isomorphic to a subgroup of the group
of all k-automorphisms of the extension

1= U;/U — Mx (U;/Ui) > M— 1.
Thus (3.2.1) shows that A;/A;1 is an abelian group; it follows that A is nilpotent and (a) holds.

For (b), choose M large enough that each element of each of the groups A;/A;,1 has order dividing pM.
Then each element of A has order dividing p" where N = mM. 0

3.3. Levi factors stable under the action of a finite group. Recall that the finite group I has order relatively
prime to p, the characteristic of k.

Theorem (3.3.1). If G has a Levi decomposition, there is a Levi factor M C G invariant under the action of I'. In
particular, M" is a Levi factor of G.

Proof. Asin 3.2, write <7 for the group of automorphisms of the extension
(4): 1-R—-G—-G/R—1

Set A = &/ (k). According to (3.2.2), A is a nilpotent group and for some N > 1, each element of A has order
dividing pN. Moreover, T acts on A by therule yxa = yoaoy ! fora € Aand y € T.

Fix a Levi factor L C G. For v € T, the subgroup L C G is another Levi factor. By definition the group
A = o/ (k) acts transitively on the the collection of all Levi factors of G; thus for v € T we may find a, € A
for which a,, - yL = L.

We now observe that the assignment a + 4, is a 1-cocycle. Indeed, for o, T € T,

otL = oa;'L = (e xa;1)oL = (e xa;V)a, ' L.

Since an automorphism a of (b) is trivial if and only if aL = L, it follows that a;! = (o xa;')a;! so that
indeed a,r = a, (0 x a¢); i.e. the (non-Abelian) 1-cocycle identity holds.
Since I has order relatively prime to p, H'(T, A) = 1 by (2.3.1). Thus, there is b € A such that

1=b-ay-(cxb"') foreacho cT.
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Put M = bL. For 0 € T, we find that
oM = obL = (0% b)oL = (0 xb)a; 'L =bL = M

so indeed M is a Levi factor of G stable under the action of I'.

Now, the unipotent radical R of G is T-stable, and R' is a connected unipotent group by (3.1.1). Write
1t : G = G/R for the quotient mapping. Since M is a Levi factor, 7t induces a I'-equivariant isomorphism
M — G/R and hence an isomorphism Ml — (G/R)r.

Since H'(T, Rr(kalg)) = land H'(T, Lie(R")) = 0 by Remark (2.3.3), the sequence

1-R -G = (G/R)f =1
is strictly exact. It now follows from (3.1.1) and (3.1.2) that M" is a Levi factor of G O

3.4. Descent of Levi factors for prime-to-p Galois extensions. Let L/k be a finite Galois extension for
which [L : k] is relatively prime to p. For an algebraic group H over L, we write R /x(H) for the algebraic
group over k obtained from H by restriction of scalars; cf. [CGP 10, A.5].

(3.4.1) ([DG 70, 1.1 Theorem 3.6] or [Ja 03, 1.2.6(10)]). Let X be an affine scheme of finite type over k and suppose
that the finite group ¥ acts on X by automorphisms over k. Then the functor on k-algebras A s X(A) is represented
by an affine scheme X* of finite type over k.

Write I' = Gal(L/k).

(3.4.2). Let G be a linear algebraic group over k. There is a natural action of T on Ry (G ) by automorphisms over
k, and the natural mapping

¢ G — RL/k(G/L)r

is an isomorphism of algebraic groups over k.

Proof. If A is a commutative k-algebra then I' acts naturally on A ®j L: an element v € I' acts as 1 ® . Since
L/k is Galois, (A ®; L)' = A. The action of T on A ® L yields a natural action of T on (R /4G, )(A) =
G(A ®¢ L), and evidently (Ry /xG /1 )(A)F = G((A @ L)T) = G(A).

The natural maps A — A ® L given by x — x ® 1 determine a functorial group homomorphism ¢, :
G(A) = G((A®x L)') = (Ry/x(G/1)(A)! and hence a homomorphism ¢ : G — Ry /x(G,1)'; since ¢, is an
isomorphism for each A, ¢ is an isomorphism. g

Theorem (3.4.3). Let G be a linear algebraic group over k, let L/k be a Galois extension, and suppose that [L : k| is
relatively prime to p. If G 1, has a Levi decomposition, then G has a Levi decomposition.

Proof. Let H be a linear algebraic group over L for which (RS) holds. Suppose that H has a Levi factor
M, there is an L-isomorphism H ~ R x M where R is the unipotent radical of H. Then Ry /s H ~ Ry /xR %
Ry /kM. Since Ry /R is unipotent and (R /s M )V is reductive [Oe 84, A.3.4], this description shows that the k-
group R; /i H has a Levi decomposition. Thus, by hypothesis the k-group R; /4G, has a Levi decomposition.
Since the order of I' is relatively prime to p, it now follows from (3.4.2) together with Theorem (3.3.1) that G
has a Levi decomposition. O

4. EXTENSIONS OF A REDUCTIVE GROUP BY A LINEAR REPRESENTATION

4.1. Galois cohomology of a vector space. Let V be a vector space over k which is not necessarily of finite
dimension. Then V defines a group-functor Ay as in §2.1 by the rule Ay (¢) = V ®; £. Note that when dim V
is not finite, the functor Ay is not representable by a k-scheme of finite type.

It is straightforward to see the following;:

4.1.1). Conditions (G1)—(G3) hold for the functor Ay.
Using the additive version of Hilbert’s Theorem 90, one finds:

(4.1.2). Hi(k, Ay) = 0 fori > 0. In particular, every Ay-torsor is trivial.
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Proof. LetT = Gal(ksep/k). The cohomology groups are defined [Se 97, §1.2.2] using the complex
(C*,9) = (C*(T,V ® ksep), 9)

where C! consists of continuous maps [TT — Ve ksep-

Leti > 0and f € Z' = ker(d : C' — C*1). Since f is continuous, it is constant on the cosets of some
subgroup U C I having finite index. In particular, the image of f is finite and is thus contained in some
finite dimensional vector subspace W C V ®j ksep. We may evidently find a finite dimensional subspace
Wo C V such that W C ksep Wo.

Then the triviality of the class [f] € H'(k, Ay) will follow from the triviality of [f] in H'(k, A, ); thus we
may and will suppose that V is finite dimensional.

In the finite dimensional case, the assertion may be easily proved using induction on the dimension of V'
together with the additive version of Hilbert’s Theorem 90 [Se 97, §I1.1.2]; details are left to the reader. [

4.2. Cohomology of G-modules. If V is G-module, the (Hochschild) cohomology groups H*(G, V) are de-
fined as the derived functors of the functor W +— WG of G-fixed points on the category of G-representations
over k [Ja 03, §1.4].

On the other hand, one can consider the Hochschild complex C*(G, V) of V; for finite dimensional G-
modules V, the m-th degree term of this complex C" = C™(G, V) is the set of all regular functions of
varieties (over k)

m
Gx---xG=]]G—V,
i=1
with the “usual” boundary mappings 0™ : C" — C"*1; see e.g. [Ja 03, 1.4.14]. In particular, for f € C!,
9l(f): G x G — Vis givenby therule (g,¢') — f(g) +gf(g')-

(4.2.1) ([Ja 03, 1,4,16]). The derived functor cohomology H®(G, V') may be identified naturally with the cohomology
H*(C*(G,V)) of the Hochschild complex (C*(G,V),0°)

Remark (4.2.2). When G is reductive and V is finite dimensional, the groups H*(G, V) are finite dimensional
as k-vector spaces; see [Ja 03, 11.4.10 and II.4.7(c)]. On the other hand, Hl(Gu, k) is of countably infinite
dimension as a k-vector space; [Ja 03, 1.4.21(b)].

4.3. Extensions. Let V be a finite dimensional linear representation of the linear algebraic group H. We
may view V as a linear algebraic group over k. Recall from §2.2 that an extension of H by V is a strictly exact
sequence

(x) 0-VSHESLH1
of linear algebraic groups; when considering such extensions we always insist that the action of E/V = H on
V is given by the action of H on the linear representation V. We sometimes write E for this extension when

no ambiguity seems likely.

Consider a second extension
7T,

(%) 0=V SE S H—=1
In §2.2 we considered isomorphisms of extensions, but we may also consider morphisms of extensions; a
morphism between extensions E and E’ is a commuting diagram

0 Vv 1 E ", H 1
| o)
0 v g " .g 1

where ¢ : E — E’ is an morphism of linear algebraic groups E — E’; we write ¢ for this morphism.
In fact, this notion is not more general, as the following result shows:

(4.3.1). Any morphism ¢ of extensions E and E’ is already an isomorphism of extensions.

Proof. Since 7' o ¢ = 7 and ¢ oi = i, one readily argues that ¢ is injective and surjective on k,z-points,
where k, is an algebraic closure of k. One then argues that d¢ is a linear isomorphism, and the result
follows. O
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Given an extension (x), it follows from the result of Rosenlicht already mentioned in the proof of (3.2.1)
- see [Mc 10, (2.2.3)] — that we may choose a regular mapping o : H — E which is a section to 7.

(4.3.2). Consider the reqular function

f=fee:HxH—=V oin (g8)— o(g)o(g)o(gg) ™.

We have:
(1) f€Z*(H,V).
(2) The extension (x) is trivial if and only if 0 = [f] € H>(H, V).
(3) More generally, if f' = fp o : Hx H — V arises from a second extension E' of H by V using a section
o' : H — E/, the extensions are isomorphic (xx) if and only if [f] = [f'] in H>(H, V).

Proof. [DG 70, 11 §3.2.3] O

Let Eq and E; be two extensions of H by the linear representatlon V. We form a new extension (E; + E)
as follows. First, consider the linear algebraic group F = FE1 E, for which the following diagram is Cartesian:

?L}El

A

E, —2 5 H

The universal property of F shows there to be unique homomorphisms j;,j, : V — F such that f; o j =
f2 071 =0, and such that f; o j; is the inclusion V — E; fori =1, 2.

The above conditions show that j; @ j, : V @ V — F is injective, so that F is an extension of Hby V & V.
The image W of (j;, —j») : V — V @ V is normal in F, and the quotient F = F/W is an extension of H by V;
we set (E; + Ep) = F.

(4.3.3). (a) Ifa; € H>(H, V) correspond to the extensions E; fori = 1,2, then ay + ap € H>(H, V) corresponds to
the extension (E1 + Ejp).

(b) If ¢; - E; — E] are isomorphisms of extensions for i = 1,2, there is an induced isomorphism (p1 + ¢2) :
(E1 + E2) — (E} + E}) of extensions.

Proof. Assertion (a) follows from a simple computation using 2-cocyles f; € Z2(H,V) representing the
classes &;; details are left to the reader. N

As to (b), note that ¢; and ¢» induce a mapping of linear algebraic groups ¢ : Fg, r, — Fer g which is a
morphism of extensions of H by V & V. Tt is straightforward to see that ¢ induces a morphism — and hence
an isomorphism — ¢ : (E; + Ez) — (E] + E}) as required. O

4.4. Automorphisms of the trivial extension. Let H be a linear algebraic group over k, and let V be a finite
dimensional linear representation of H. We may view V as a vector group and form the semidirect product
V x H; it is also a linear algebraic group over k. We view V x H as the trivial extension of H by the vector
group V.

Asin (2.2.1), let &7 be the automorphism group-functor of the trivial extension

0-V—>(HxV)—H-—=1

of Hby V.
We are going to prove the following:

Theorem (4.4.1). (a) With notation as in §4.1, o = Ay for a certain k-vector space Z.
(b) H' (k, o) = 1.

Proof. Note that (b) is an immediate consequence of (a) together with (4.1.2).

For (a), we show that &/ = Az where Z = Z(H, V) is the vector space of 1-cocycles H — V. For any
separable field extension K D k an element f € Az(K) = Z!(H/k, V) determines an map & ri (VX H)
by the rule

®; : (v,h) = (v+ f(h), h).
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Using the cocycle condition 9! f = 0, one checks that ® ¢ is a morphism of extensions, and it follows from
(4.3.1) that @ is an automorphism of (V x H) k. We get in this way a homomorphism

D:A;— A

of group functors.
On the other hand, let ¢ be an automorphism of the extension

0= VS (VxH) B H—1.

Since ¢ oi = iand 7o ¢ = ¢, and since ¢ is a group homomorphism, one sees that the regular map ¢ has
the form

(v,h) = (v+¥g(h), h)
for some morphism ¥y : H — V of varieties. Using the fact that ¢ is a group homomorphism, one argues
that 9'¥y = 0 so that ¥,y € Z! = Az (k). Repeating this construction after replacing k by any extension K
of k, we have describe an assignment ¢ — ¥, which determines a homomorphism ¥ : A — Az of group

functors.
Now ® and ¥ are inverse to one another. O

4.5. Descent of isomorphisms between extensions by linear representations. Let H be a linear algebraic
group and let V be a finite dimensional linear representation of H.

Theorem (4.5.1). Fix two extensions

() 05VSEDSHS1 and (%) 05VSE S H—1
of H by V over k, and suppose that i : (x) Sksep (%) Jksep 1 A isomorphism of extensions over ksep. Then there is
a k-isomorphism between the extensions (x) and (xx).

Proof. Since the extensions (E) Jkeep aNd (E") /keep are isomorphic, (4.3.3)(b) shows that there is an isomor-
phism of extensions between (E — E’) /keep and the trivial extension (0) sk, = (V % H) g, Moreover, if
we prove that (E — E’) is isomorphic to (0), then another application of (4.3.3)(b) will show that (E) is
isomorphic to (E').

Thus in proving the Theorem, we may and will suppose (xx) to be the trivial extension E' = H x V given
by the semi-direct product.

Denote by o7 the group-functor of automorphisms of the trivial extension (xx) as in § 4.4. Then Theorem
(4.4.1) shows that H!(k, &) is trivial, thus it follows from (2.2.2) that () and () are already isomorphic
over k. d

As a consequence, we now find a proof of Theorem B from the introduction:

Corollary (4.5.2). Suppose that H is a reductive group over k, and let E be an extension of H by the finite dimensional
linear representation V viewed as a vector group. Suppose that the group E i has a Levi factor. Then E has a Levi
factor.

Proof. The group E has a Levi factor if and only if the extension 0 -+ V — E — H — 1 is k-isomorphic to
the trivial extension given by the semi-direct product of H and V. Thus the Corollary follows immediately
from the preceding Theorem. 0

5. EXAMPLE OF FAILURE OF DESCENT FOR LEVI DECOMPOSITION

Let k be a perfect field of characteristic p > 0, and let ¢ D k be a Galois extension with [¢ : k] = p.
Consider the linear algebraic group W = W, of length two Witt vectors over k: thus W is isomorphic to A2 as
a k-variety, and the group operation in W is given by the rule

(a,b)+ (a',b') = (a+d ,h(a,a)+b+1)

for a certain polynomial 1(Y, Z) with integral coefficients.
For the following, see e.g. [Se 88, §VIL.2].
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(5.0.3). There is a strictly exact sequence of linear algebraic groups
0—-G, > W—->G, =0
where the inclusion G, — W is given by b — (0, b) and the surjection W — Gy is given by (a,b) — a. Ifw = (a,b)

and w' = (a',b") are elements of W(kayg), then pw = pw' if and only if a = a’. In particular, the order of the element
wis p? ifand only if a # 0.

Write F = Z/pZ, and consider the embedding F C G, — W determined by the embedding Z/pZ C k
of fields. Now form the quotient group U = W/F. We may find & € W(k) for which 71(é) # 0 and pé € F;
then the image 0 # e € U(k) of € satisfies pe = 0.

View the linear algebraic group H = U x Z/pZ as an extension

(b) 0—-U—H—Z/pZ —0.
Since e has order p, there is a k-automorphism 7 of the extension (b) determined by the rule
T(u,n+pZ) = (u+nen+pZ) for ue Ulkyg) n € Z.

Fix a generator ¢ for the Galois group Gal({/k) = (r) and write A = </ ({) for the group of automor-
phisms of the extension () ,; obtained from () be scalar extension as in §2.2.

The Galois group Gal(£/k) acts on A, and the rule ¢’ + s, = t' defines a group homomorphism
Gal(¢/k) — A. Since 7 is a k-automorphism, we have “T = 7 so that s is in fact a 1-cocycle.

Using the 1-cocycle s, form the “twisted” extension (b)

sh) 0=U— HSZ/pZ -0
as in (2.2.2); thus the group G = H is obtained from H by twisting with s.

(5.0.4). (a) The extension (b) is not k-isomorphic to the extension ()
(b) s(b) becomes isomorphic to (b) after extending scalars to .

Proof. (b) holds by construction. To prove (a), it will suffice to argue that G = ;H has no k-rational element
x € G(k) of order p for which 7(x) =1+ pZ.

Well, if 71(x) = 1+ pZ, then x has the form x = (1,1 + pZ) € ;H(¢) = H(¢). Now x € ;H(k) if and only
if x = 0% x for the “twisted” Gal(¢/k) action » on H(¢). By the definition of this twisted action, we have
x € sH(k) if and only if

u= "u+e.

Now, u € U(Y) is represented by some element w = (a,b) € W(k,;) where a,b € k,;. Denoting by & an
element of Gal(k,g/k) whose restriction to £ coincides with ¢, we find that

(a,b) — (%a, °b) =¢é (mod F)

in the group W (k). Since & has order p?, it follows that a # “a so that a ¢ k. In particular, it follows from

(5.0.3) that p(a,b) ¢ F, so the image u of (a,b) in U(k) has order p?. Thus also x € H(k) has order p? and
the proof is complete. 0

Thus G = H provides an example of a (disconnected) linear algebraic group such that G, =
sH )iy = Hyk,, has a Levi decomposition, but G = sH has no Levi decomposition.
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