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Abstract. Let K be a local field – i.e. the field of fractions of a complete DVR A whose residue field k has
characteristic p > 0 – and let G be a connected, absolutely simple algebraic K-group G which splits over an
unramified extension of K. We study the rational nilpotent orbits of G– i.e. the orbits of G(K) in the nilpotent
elements of Lie(G)(K) – under the assumption p > 2h− 2 where h is the Coxeter number of G.

A reductive groupM over K is unramified if there is a reductive model M over A for whichM = MK. Our
main result shows for any nilpotent element X1 ∈ Lie(G) that there is an unramified, reductive K-subgroupM
which contains a maximal torus of G and for which X1 ∈ Lie(M) is geometrically distinguished.

The proof uses a variation on a result of DeBacker relating the nilpotent orbits of G with the nilpotent orbits
of the reductive quotient of the special fiber for the various parahoric group schemes associated with G.
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1. Introduction

Let G be a connected and reductive algebraic group G over a field F. If Falg is an algebraic (or even
just separable) closure, there is a central isogeny S×G1 × · · · ×Gd → GFalg where S is a torus and where
each Gi is quasisimple over Falg. If Ri denotes the (irreducible) root system associated with Gi, then up
to re-ordering, the list of root systems R1, . . . ,Rd is independent of any choices made. We write h for the
supremum of the Coxeter number of the Ri, and throughout this paper, we refer to h as “the Coxeter
number of G”.

1.1. Nilpotent elements and their orbits. In this paper, we consider the rational orbits of G in its adjoint
action on Lie(G) – i.e. the orbits of the group of F-points G(F) on the elements of Lie(G) = Lie(G)(F)
1. More precisely, we study the rational orbits of nilpotent elements. An element X ∈ Lie(G) is nilpotent
if dρ(X) is a nilpotent endomorphism of V for every algebraic representation (ρ,V) of G. From another
perspective, X is nilpotent provided that the derivation of the coordinate algebra F[G] determined by X
act locally nilpotently on F[G] – see [Spr98, §2.4 and §4.4]; since E [G] = F[G]⊗F E , this makes clear that
X ∈ Lie(G) is nilpotent if and only if X is nilpotent in Lie(GE ) for some (any) field extension E of F.

When the characteristic of F is bad for G, the adjoint orbits have some pathological properties – for
example, in that case the scheme theoretic centralizer of a nilpotent element may fail to be smooth (i.e.
reduced) over F. To avoid such problems, we suppose G to be a standard reductive group. Among other
nice properties, one knows when G is standard reductive that the centralizer CG(X) of any X ∈ Lie(G) is
smooth over F; see section 2.1 for a summary of this and other properties of standard reductive groups.

Date: September 8, 2020.
1Here we view the F-vector space Lie(G) as “being” an affine F-variety; one might write X ∈ Lie(G)(F) to emphasize that X

is a F-rational elements. We’ll mostly avoid this more cumbersome notation in the sequel, however.
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Definition 1.1.1. Let G be a standard reductive group over the field F, and let X ∈ Lie(G) be a nilpotent
element. We say that X is geometrically distinguished provided that any F-torus of CG(X) is central in G.

Since CG(X) is smooth over F, X is geometrically distinguished if and only if X ∈ Lie(GFalg) is distin-
guished in the usual sense – e.g. as in [Car93, §5.7] – where Falg is an algebraic closure of F; here and
elsewhere, the notation GFalg denotes the group obtained from G by base-change.

In this paper, we are primarily interested in local fields. Throughout the paper, A will denote a complete
discrete valuation ring with maximal ideal m, with field of fractions K, and with residue field k = A/m.
We consider F = K, and we write p > 0 for the characteristic of k.

We make no further assumptions on A; the residue field k is not required to be perfect, and the charac-
teristic of K may be either 0 (the “mixed characteristic” case) or p (the “equal characteristic” case).

The results of the paper remain valid for arbitrary k. However the main contributions of the present
work are to the setting of positive residue characteristic, and we have not formulated all statements and
arguments to cover the case in which k has characteristic 0.

1.2. Reductive groups and some subgroups. If G is a connected and reductive group over a field F, a
subgroup M ⊂ G is said to be of type C(µ) if M is the connected centralizer C0

G(φ) of the image of a
homomorphism φ : µN → G for some N, where µN is the finite group scheme of “N-th roots of unity”.
If M is such a subgroup, then M is reductive and contains a maximal torus of G. More details on such
subgroups are give in Section 2.2.

Now suppose F = K is a local field. The reductive group G is said to be unramified if there is a reductive
group scheme G over A for which G = GK. We say that G is a reductive model of G over A.

An algebraic torus T over K is of course a reductive group. We observe in Corollary 2.3.3 below that a
torus T is unramified if and only if TL is split for some finite unramified extension K ⊂ L.

The reductive group G splits over an unramified extension of K provided that G has a maximal K-torus that
is unramified. If G is unramified, then G splits over an unramified extension of K; see Proposition 2.3.7.

1.3. The main result. The main result of this paper locates a nilpotent element of Lie(G) in a reductive
subgroup of G with some favorable properties. In some sense, our result may be viewed as a “K-rational
analogue” of part of the Bala-Carter Theorem.

Theorem 1.3.1. Suppose that p > 2h− 2. Let X1 ∈ Lie(G) be a nilpotent element. Then there is a K subgroup
M ⊂ G with the following properties:

(a) M is an reductive group of type C(µ) containing a maximal unramified K-torus of G,
(b) M is an unramified reductive group over K, and
(c) X1 ∈ Lie(M) ⊂ Lie(G) is geometrically distinguished for the action of M.

Remark 1.3.2. In fact, the proof we will give shows a bit more. Indeed, we will establish that for a suitable
reductive model M of the unramified group M, the nilpotent element X1 has the form XK for a certain
balanced nilpotent section X ∈ Lie(M); see Section 1.4 and Section 1.6 below.

The Bala-Carter classification of nilpotent orbits for a standard reductive group H over an algebraically
closed field F was proved in “good characteristic” by Pommerening [Pom77] [Pom80], with a later proof
– independent of case checking – given by Premet [Pre03]. See also [Car93, §5.9] and [Jan04]. In part, the
Bala-Carter Theorem shows that the nilpotent H-orbits in Lie(H) are in bijection with conjugacy classes of
pairs (L,O) where L is a Levi factor of a parabolic subgroup of H and O is a distinguished nilpotent L-orbit
in Lie(L). For X ∈ Lie(H), one chooses a maximal torus S of the centralizer CH(X) and takes L = CH(S);
then X ∈ Lie(L) is distinguished, and the Bala-Carter bijection is given by the assignment

X 7→ (L, Ad(L)X).

Return now to the reductive group G over K, and keep the assumptions of Theorem 1.3.1. For a fixed
nilpotent element X we may of course choose a maximal K-torus S ⊂ CG(X). Setting H = CG(S), we find
that X ∈ Lie(H) is indeed geometrically distinguished for H. However, the reductive group CG(S) need
not be unramified; see Section 6.3.
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1.4. Balanced sections. We are going to achieve the proof of Theorem 1.3.1 by relating nilpotent elements
of G with nilpotent sections of certain A-group schemes whose generic fiber identifies with G. We begin
with some definitions.

Let H be a group scheme which is smooth, affine and of finite type over A. The Lie algebra Lie(H) is of
course a finitely generated free A-module (an “A-lattice”). Let us fix an element X ∈ Lie(H) (a “section”
over A or more precisely over Spec(A)).

Write C = CH(X) for the centralizer subgroup scheme (see Section 3.1).

Definition 1.4.1. X is a balanced section if Ck = CHk
(Xk) is smooth over k, if CK = CHK

(XK) is smooth over
K, and if dimCk = dimCK.

See Section 3.1 for more details on the notion of a balanced section.
The section X is nilpotent provided that XK ∈ Lie(G) is nilpotent, in which case Xk ∈ Lie(Hk) is also

nilpotent; see Lemma 3.2.1
We are mainly interested in these notions when the generic fiber HK = G is reductive over K.

1.5. Parahoric group schemes and balanced sections. Let P be a parahoric group scheme over A with
generic fiber PK = G. These group schemes were introduced by Bruhat-Tits [BT84] and are parameterized
by the points of the affine building associated with G. If G is unramified then a reductive model G is an
important example of a parahoric group scheme. In general, however, the special fiber Pk need not be
reductive; thus, the parahoric group schemes P for G are in general not reductive over A.

For our purposes here, we will use the following description. Fix a maximal split torus S of G and
write V = X∗(S)⊗Q. Then each point x ∈ V determines a parahoric group scheme Px, and up to G(K)-
conjugacy any parahoric group scheme has this form; see e.g. [McN20, §4.3]. Each P = Px is a smooth
affine group scheme over A with PK = G, and the special fiber Pk is a connected linear algebraic group
over k.

Recent work of the author yields the following result about P:

Theorem 1.5.1 ([McN20]). Suppose that G splits over an unramified extension of K. There is a subgroup scheme
M ⊂ P such that

(a) M is reductive over A,
(b) Mk is a Levi factor of Pk, and
(c) MK is a reductive subgroup of G = PK of type C(µ) containing a maximal, maximally split torus of G.

We explain statement (b). First of all, [McN20, Prop. 4.3.7] shows that the unipotent radical R = RuPk is
defined over k; thus Pk/R is a linear algebraic group over k. Now the statement that Mk is a Levi factor of
Pk means that the quotient mapping π : Pk → Pk/R yields on restriction an isomorphism π|M :M→ Pk/R

where M = Mk.

1.6. Unramified reductive groups and balanced sections. We now consider an unramified reductive
group G over K with reductive A-model G. The reductive group scheme G is said to be standard pro-
vided that GK and Gk are standard. This condition is immediate e.g. if p > h; see Proposition 2.2.2.

Theorem 1.6.1. Suppose that G is a standard reductive group scheme over A.

(a) For each nilpotent X ∈ Lie(Gk), there is a balanced nilpotent section X ∈ Lie(G) with Xk = X.
(b) If X ∈ Lie(G) is a balanced nilpotent section, and if Xk is geometrically distinguished, then XK is geometrically

distinguished.
(c) Suppose that p > 2h − 2. If X,X ′ ∈ Lie(G) are balanced nilpotent sections for which Xk = X ′k, there is

g ∈ G(A) for which X ′ = Ad(g)X.

When p > 2h− 2, consider the assignment X 7→ XK, where X is a balanced nilpotent section with Xk =
X. The Theorem shows that this assignment determines a well-defined mapping from the rational nilpotent
orbits of Gk to the rational nilpotent orbits of G, and it shows that this mapping takes geometrically
distinguished orbits for Gk to geometrically distinguished orbits for G.
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1.7. Balanced sections for parahoric group schemes. In order to establish Theorem 1.3.1, we require an
analogue of Theorem 1.6.1 valid for non-reductive parahoric group schemes. To establish this analogue,
we will use SL2-homomorphisms; in fact, these homomorphisms already play a role in the proof of the
conjugacy statement Theorem 1.6.1(c).

Let H be a standard reductive group over a field F, and let X ∈ Lie(H) be nilpotent. When F has pos-
itive characteristic, the sl2-triples provided by the Jacobson-Morozov Lemma are not available in general;
however, one can instead associate to X an optimal cocharacter φ : Gm → H which is a useful replacement;
see Section 3.3 for further details.

Suppose that X[p] = 0. Identifying the diagonal torus D of SL2 with Gm, we showed in [McN05] that the

choice of φ determines a unique homomorphism Φ : SL2,F → H for which dΦ
(

0 1
0 0

)
= X and Φ|D = φ.

Such Φ are the optimal SL(2)-homomorphisms; see Section 4.
In this paper, we prove that the construction of optimal SL(2)-homomorphisms can be carried out over

A. We establish the following:

Theorem 1.7.1. Let G be a standard reductive group scheme over A and let X ∈ Lie(Gk) be a nilpotent element for
which X[p] = 0. Then there is a homomorphism of A-group schemes Φ : SL2,A → G such that
(a) X = dΦ(EA) is a balanced nilpotent section with Xk = X,
(b) Φk is an optimal homomorphism for Xk, and
(c) ΦK is an optimal homomorphism for XK.

Now consider a reductive group G over K which splits over an unramified extension, and let P be
any parahoric A-group scheme with PK = G. Let us choose a reductive subgroup scheme M ⊂ P as in
Theorem 1.5.1. Of course, Lie(Mk) identifies with Lie(Pk/RuPk). Our main application of Theorem 1.7.1
is to achieve the proof of the following:

Theorem 1.7.2. Suppose that p > 2h− 2, and let X0 ∈ Lie(Mk) be a nilpotent element.
(a) According to Theorem 1.6.1, there is a section X ∈ Lie(M) such that Xk = X0 and such that X is balanced for

the action of M. For any such section, X ∈ Lie(M) ⊂ Lie(P) is balanced for the action of P as well.
(b) If X,X ′ ∈ Lie(P) are balanced nilpotent sections with X ′k = Xk = X0 then X ′ = Ad(g)X for g ∈ P(A) ⊂

G(K).

The Theorem shows that – under its assumptions and notations – the assignment X 7→ XK determines
a well-defined mapping from the rational nilpotent orbits of Mk ⊂ Pk to the rational nilpotent orbits of G,
where X is a balanced nilpotent section with Xk = X. In order to prove Theorem 1.3.1, we require to know
that as we vary P, the images of this assignment “account for” every rational nilpotent orbit for G. This is
indeed the case:

Theorem 1.7.3. Suppose that p > 2h− 2, and let X1 ∈ Lie(G) be nilpotent. Then there is a parahoric A-group
scheme P with G = PK, a reductive subgroup scheme M ⊂ P with the properties described in Theorem 1.5.1, and a
balanced nilpotent section X ∈ Lie(M) with X1 = XK.

1.8. An overview of the paper. After some generalities about reductive groups and reductive group
schemes in Section 2, we begin the discussion of balanced sections in Section 3. After some prelimi-
nary results about nilpotent orbits in standard reductive groups found in Section 3.3 – we give the proof
of part (a) and (b) of Theorem 1.6.1 in Section 3.4.

Results concerning SL2-homomorphisms are found in Section 4. In particular, we give the proof of
Theorem 1.7.1 in Section 4.3; see Remark 4.3.8.

The existence of optimal SL2-homomorphisms over A plays an important role in our proofs for existence
for non-reductive parahoric group schemes; see Proposition 5.1.2. Using these methods, the proof of
Theorem 1.7.2(a) – the existence result for balanced sections – is given in Section 5.1. And the conjugacy
results Theorem 1.6.1(c) and Theorem 1.7.2(b) are proved in Section 5.2.

Finally, the proofs of Theorem 1.7.3 and of the main result Theorem 1.3.1 are given in Section 6.1.
Let G be a reductive group over K. In the depth zero case of the result of [DeB02], DeBacker established

– under the assumption that the residue characteristic p is zero or “sufficiently large” – a parametrization
of the rational nilpotent orbits of G. His result labels the rational nilpotent orbits of G using the (geometri-
cally) distinguished rational nilpotent orbits of the reductive quotients Pk/RuPk for the various parahoric
group schemes P having generic fiber PK = G.
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In Section 6.2 we relate DeBacker’s description with the balanced sections Theorem 1.7.2 described in
this paper.

We provide examples which call attention to important aspects of the results in Section 6.3.
Finally, in an appendix Appendix A we give a proof in a more general context of a result from [MS03]

about cocharacters associated to a nilpotent element and reductive subgroups of type C(µ).

1.9. Remarks and notations. Recall [Jan03, (I.2.7)] that if Λ is a commutative ring and if H is an affine
Λ-group scheme, then a module - or representation - for H is a Λ-module M together with an action of H
on the Λ-functor determined by M. In particular, for any commutative Λ-algebra A, the group H(A) acts
linearly on M(A) =M⊗Λ A. Alternatively, one may view M as a comodule for the Hopf algebra Λ[H].

If Λ is a commutative ring, and if D is a diagonalizable group scheme over Λ with character group X,
recall that any D-module M can be written as a direct sum M =

⊕
λ∈XMλ where D acts on the weight

space Mλ according to the character λ. If H is a Λ-group scheme, if φ : Gm → H is a Λ-homomorphism,
and if M is an H-module, we identify the character group of Gm with Z, and for i ∈ Z we often write
M(φ; i) for the i-weight space for the action of Gm on M determined by φ.

1.10. Acknowledgements. I would like to thank Stephen DeBacker, Steve Donkin, Paul Levy, David Stew-
art, Donna Testerman, and Richard Weiss for some useful mathematical conversations during the prepara-
tion of this manuscript. Moreover, I thank an anonymous referee for useful suggestions and observations.

1.11. Data sharing statement. Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.

2. Reductive groups and related group schemes

In this section, we collect some results on reductive groups and reductive group schemes.

2.1. Standard reductive groups. We describe the notion of “standard” reductive groups; the terminology
follows the “standard hypotheses” considered by J. C. Jantzen - see e.g. [Jan04].

The class C = CF of standard reductive groups over F consists of all connected and reductive linear
algebraic groups over F satisfying the following properties:
(S1) C contains all simple F-groups in very good characteristic; see Remark 2.1.1 below.
(S2) If G1 and G2 are in C then G1 ×G2 is in C.
(S3) If G is in C and H is a reductive F-group, and if there is a separable isogeny between G and H, then H

is in C.
(S4) If G is in C and D ⊂ G is a diagonalizable subgroup scheme, then CG(D)o is in C.
(S5) If G ' H× T for a reductive F-group H and a F-torus T , then G is in C if and only if H is in C.

In this section, we are going to recall results concerning the nilpotent orbits of a geometrically standard
reductive group over a ground field F of characteristic p > 0.

Remark 2.1.1. Recall if H is a split simple group over F, the characteristic p of F is good for H provided that
p does not divide the index of the root lattice in the weight lattice; see [SS70].

Suppose p is good for the split group H and that H has root system R. Then p is said to be very good for
H provided that R has no irreducible component of type Ar with the property r ≡ −1 (mod p).

If H is any split semisimple group, one may apply [Knu+98, Theorems 26.7 and 26.8] to see that there is
a (possibly inseparable) central isogeny

m∏
i=1

Hi → H

where each Hi is a simple group over F. The characteristic is good - respectively very good – for H just in
case it is good - respectively very good - for each Hi.

Remark 2.1.2. See [MT16, §4] for some discussion reconciling this version of the definition of “standard”
with that found in older papers of the author. This discussion also compares these definitions with the
notion of “pretty good primes” introduced by S. Herpel [Her13] and with the “standard hypotheses” of J.
C. Jantzen.

Remark 2.1.3. For any n > 1, the group GLn is standard. The group SLn is D-standard if and only if p
does not divide n. See [McN05, Remark 3].
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We say that G is geometrically standard if GE is standard for some finite and separable field extension E

of F.

Proposition 2.1.4. Let G be a geometrically standard reductive group over the field F.
(a) The (scheme theoretic) center Z = Z(G) of G is geometrically smooth over F.
(b) There is aG-invariant non-degenerate bilinear form β on Lie(G), and Lie(G) is a completely reducibleG-module.
(c) Let G be a standard reductive group over F, let x ∈ G(F) and let X ∈ g. Then CG(x) and CG(X) are smooth

over F. In other words,

dimCG(x) = dim cg(x) and dimCG(X) = dim cg(X).

Proof. For standard reductive groups, (a) follows from [MT09, (3.4.2)], and (b) and (c) follow from [MT07,
Prop. 12].

Now (a) and (c) follow at once for geometrically standard groups. For (b), also completely reducibility
is a geometric property. As to the remaining assertion, recall that a non-degenerate bilinear form on
Lie(G) amounts to a G-module isomorphism Lie(G)→ Lie(G)∨. Such an isomorphism exists over F if G is
standard. If F is infinite, the F-homomorphisms HomG(Lie(G), Lie(G)∨) form a dense subset of the variety
of allG-homomorphisms, and it follows that the non-empty, open subvariety IsomG(Lie(G), Lie(G)∨) must
have an F-rational point. If F is finite, note that IsomG(Lie(G), Lie(G)∨) is a torsor over the group A =
AutG(Lie(G)). Since Lie(G) is a semisimple G-module, A is a connected (and reductive) F-group. Hence
the Lang-Steinberg Theorem implies that IsomG(Lie(G), Lie(G)∨) has an F-rational point, as required; see
e.g. [Ser02, III §2]. �

Proposition 2.1.5. Let G be a reductive group over F, let h be the Coxeter number of G, and let p denote the
characteristic of F. If p = 0 or if p > h, then G is a standard reductive group.

Proof. Let G1 denote the derived group of G, let Z denote the identity component of the center of G, and
consider the product mapping

Φ : Z×G1 → G.

Then Φ is an isogeny [Spr98, Cor. 8.1.6 and Prop. 8.1.8(i)]. If the characteristic is zero, then Φ is automati-
cally separable, hence G is standard by (S3) and (S5). Now suppose that p > 0. Since p > h, it is immediate
that p is very good for G1. Now, the kernel of Φ is isomorphic to the center ζ of G1; since the characteristic
is very good for G1, it follows e.g. from [MT16, Remark 4.4(iii)] that ζ is a smooth group scheme. Thus
indeed Φ is a separable isogeny so that G is standard – again by (S3) and (S5) – as required. �

A reductive group scheme G over A is standard provided that the fiber Gk is a geometrically standard
reductive group over k, and the fiber GK is a geometrically standard reductive group over K.

Recall that a reductive group G over K is said to be unramified if there is a reductive group scheme G

over A for which G = GK.

Proposition 2.1.6. Let G be an unramified reductive group over K, and suppose that G1 and G2 are reductive models
of G over A. Then G1 is geometrically standard if and only if G2 is geometrically standard.

Proof. According to [SGA3III, p. XXII.2.8], the type of a reductive A-group is locally constant on the spec-
trum of A. It then follows from [SGA3III, XXIII Cor. 5.3] that G1,k is isomorphic to G2,k; the result now
follows. �

2.2. Subgroups of a reductive group of type C(µ). Let G be a reductive group over an arbitrary field F.
In the introduction Section 1.2 we introduced the notion of a reductive subgroup of type C(µ).

This class of groups was studied in [McN20] and is slightly larger than the class of so-called pseudo-Levi
subgroups considered in [MS03].

We denote by µn = µn,F the group scheme of n-th roots of unity in F; it is the affine scheme with
coordinate algebra F[T ]/〈Tn− 1〉. The group scheme µn is diagonalizable over F, and the group of characters
X∗(µn) identifies with Z/nZ.

By a µ-homomorphism with values in G, we mean an equivalence class of homomorphisms of group
schemes φ : µn → G for varying n, under a natural equivalence relation – see [McN20, §3]
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Following the terminology of [McN20], we say that a connected subgroup M of G is of type C(µ) if
M is the identity component of the centralizer in G of the image of a homomorphism φ : µn → G 2.
Any subgroup of type C(µ) is reductive and contains a maximal torus of G; see [McN20, Prop. 3.4.1 and
Theorem 3.4.6].

When G is F-split, [McN20, Theorem 3.4.5] gives an explicit description of the subgroups of type C(µ)
containing a fixed maximal split torus.

Proposition 2.2.1. Let M be reductive subgroup of G of type C(µ), let hG be the Coxeter number of G, and let hM
be the corresponding value for M. Then hG > hM.

Proof. It suffices to give the proof after scalar extension; thus, we may suppose that G and M are split.
Moreover, the Coxeter numbers depend only on the root systems R ′ = RM and R = RG of M and G.

We may construct the complex semisimple Lie algebras gR ′ , gR with the indicated root systems; Accord-
ing to [McN20], R ′ = RM identifies with a closed symmetric subroot system of R = RG. Thus we may
identify gR ′ with a subalgebra of gR.

Now, one knows that hG and hM are determined as follows:

2hG − 2 = min{i ∈ Z>0 | 0 = ad(X)i ∈ End(gR) for all nilpotent X ∈ gR}

and
2hM − 2 = min{i ∈ Z>0 | 0 = ad(Y)i ∈ End(gR ′) for all nilpotent Y ∈ gR ′ }.

For nilpotent Y ∈ gR ′ ⊂ gR, it follows that

0 = ad(Y)2hG−2 ∈ End(gR) =⇒ 0 = ad(Y)2hG−2 ∈ End(gR ′)

and one concludes 2hM − 2 6 2hG − 2. �

Proposition 2.2.2. Let G be a reductive group over K, assume that G splits over an unramified extension of K, and
let P be a parahoric group scheme with G = PK.
(a) The unipotent radical of Pk is defined over k.
(b) If p > h then GK and Pk/RuPk are standard reductive groups.

Proof. Assertion (a) is confirmed in [McN20, Prop. 4.3.7 and 4.5.5]. For (b), it follows from Theorem 1.5.1
that there is a reductive subgroup scheme M ⊂ P such that Mk ' Pk/RuPk and such that MK is a
reductive subgroup of G of type C(µ).

Now, the root system of Mk identifies with that of MK. If hM denotes the maximum Coxeter number
of M, it follows from Proposition 2.2.1 that hM 6 h < p. Now Proposition 2.1.5 shows that Mk is standard,
as required. �

2.3. Group schemes of multiplicative type, maximal tori, and cocharacters. Let G and M be groups
schemes of finite type over A. Suppose moreover that G is smooth and affine over A, and that M is of
multiplicative type over A. Consider the functors

F : SchA → Sets and H = HomA -gr(M,G) : SchA → Sets

where SchA is the category of schemes over A, Sets is the category of sets, and for an A-scheme T , F(T) is
the set of subgroup schemes of G of multiplicative type over T and H(T) = HomT -gr(MT ,GT ) is the set of
homomorphisms of group schemes MT → GT over T .

We record the following result:

Theorem 2.3.1. (a) The functors F and H = HomA -gr(M,G) are represented by A-schemes which are smooth and
separated over A.

(b) If S0 ⊂ Gk is a k-torus, there is an A-torus S ⊂ G for which Sk = S0.
(c) If λ0 : Gm → Gk and µ0 : Mk → Gm are k-homomorphisms, there is an A-torus S ⊂ G together with

A-homomorphisms λ : Gm → T and µ : M → Gm for which µk = µ0 and λk : Gm,k → Tk ⊂ Gk coincides
with λ0.

2We will permit ourselves to write CG(φ) for the centralizer of the image of φ, and CoG(φ) for the identity component of this
centralizer.
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Proof. The assertions in (a) are proved in [SGA3II, Exp. XI Thm 4.1 and Cor. 4.2]. Now (b) and (c) are
consequences of (a) together with the scheme-theoretic extension of Hensel’s Lemma – see [SGA3II, Exp.
XI Prop 1.10 and Cor. 1.11]. �

Corollary 2.3.2. Let S be a torus over A. Then there is a DVR B which is a finite unramified extension of A for
which SB is a split torus over B.

Proof. Write S = Sk for the special fiber of the torus S , and choose a finite, separable extension k ⊂ ` for
which the torus S` is split. Let A ⊂ B be the corresponding unramified extension of A; see e.g. [Ser79,
III.6 Theorem 2]. Since S` is split, the rank of the character group X∗(S`) coincides with the dimension of
S. Now Theorem 2.3.1(c) shows that the characters of S` prolong to B-morphisms SB → Gm, and one
immediately deduces that the torus SB is indeed split over B as required.

�

Corollary 2.3.3. Let T be a K torus. Then T has the form T = TK for some torus T over A if and only if T splits
over an unramified extension of K.

Proof. If T splits over an unramified extension L of K, we may and will suppose that Lis Galois over K with
Galois group Γ = Gal(L/K). If B denotes the ring of integers of L, there is a canonical B-torus S attached
to the split L-torus TL; see [BT84, §1.2.11]. Now Γ acts on B[S ] and [BT84, §5.1.8] yields the existence of
the required A-torus T .

On the other hand, if T = TK for some A-torus T , it follows from Corollary 2.3.2 that T - and hence
also T - splits over an unramified extension, as required. �

For a group scheme H which is smooth and of finite type over A, a closed subgroup scheme T ⊂ H is
called a maximal A-torus if: (i) T is an A-torus, (ii) Tk is a maximal torus of Hk and (iii) TK is a maximal
torus of HK.

Corollary 2.3.4. Let G be reductive over A.
(a) If S is a maximal k-torus of Gk, there is a maximal A-torus S of G with Sk = S.
(b) In particular, G possesses a maximal torus S over A.
(c) If φ : Gm,k → Gk is a k-homomorphism, there is a maximal torus S of G and a homomorphism Φ : Gm → S

such that Φk : Gm,k → Sk → Gk coincides with φ.

Proof. For (a), use Theorem 2.3.1 to find a torus S ⊂ G with Sk = S. We now argue that S is a maximal
torus – i.e. that SK is a maximal torus of GK. Since G is reductive, it follows from [SGA3II, Exp XII,
Théorèm 1.7] that G has a maximal torus locally in the étale topology of Spec(A). In particular, the
dimension of a maximal torus of GK coincides with that of a maximal torus of Gk. Since dim SK = dim Sk,
it follows that SK is a maximal torus of GK, as required; this proves (a).

Now (b) follows from (a). For (c), choose a maximal torus S of Gk containing the image of φ and apply
(a) together with Theorem 2.3.1. �

Proposition 2.3.5. Suppose that λ0 : Gm → der(Gk) is a k-homomorphism with values in the derived group of
Gk. Then there is an A-homomorphism λ : Gm → G such that λk = λ0 and such that λK takes values in the derived
group der(GK).

Proof. According to [SGA3III, Théorème 6.2.1], there is a closed subgroup scheme der(G) which is semisim-
ple over A for which der(G)k is the derived group of Gk and der(G)K is the derived group of GK. Now the
result follows from Theorem 2.3.1. �

The following terminology was given in the introduction:

Definition 2.3.6. A reductive algebraic group G over K is said to be unramified if there is a reductive group
scheme G over A for which G = GK.

Proposition 2.3.7. Let G be an unramified reductive group over K. Let G be a reductive model of G over A, and let
T be a maximal A-torus of G; cf. Corollary 2.3.4.

(1) There is DVR B which is a finite unramified extension of A for which TB is a split torus over B.
(2) In particular, GB is a split reductive group scheme over B, and
(3) G splits over an unramified extension of K.
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Proof. (a) this follows from Corollary 2.3.2. Now (b) follows from [SGA3III, Exp. XXII Prop. 2.2], and (c)
is an immediate consequence. �

Remark 2.3.8. Of course, there are are reductive groups G over K which split over an unramified extension
but which are not themselves unramified. For an example, suppose the residue field k to be finite, let Q
be a non-split quaternion algebra over K, and let G = GL1,Q. It is well-known that Q has an unramified
splitting field L, hence GL ' GL2,L is split. On the other hand, G is anisotropic modulo its center. Now
[BT84, Cor. 5.1.27] implies that there is an essentially unique parahoric group scheme – an Iwahori group
scheme – with generic fiber G. Since I is not reductive, G has no reductive model.

Proposition 2.3.9. Let H be a (smooth) linear algebraic group over the local field K. Then H has a K-torus T which
is maximal among unramified K-tori contained in H.

Proof. Since H is smooth, it has maximal tori defined over K. Write Kun for the maximal unramified
extension of K in some fixed algebraic closure. For any maximal K-torus S, [Spr98, Prop. 13.2.4] show that
there are unique Kun-subtori Sa,Ss such that Sa is anisotropic over Kun, Ss is split over Kun, S = SaSs
and Sa ∩ Ss is finite. Since the sub-tori Sa and Ss are unique, they are stable by the Galois group and hence
are defined over K. We have, dimSa + dimSs = dimS.

As the maximal K-torus S ⊂ H varies, write d(S) for the dimension of the maximal torus Ss. Now
choose a K-torus S for which d(S) is maximal. It is then clear that the K-torus T = Ss has the required
properties. �

2.4. Parabolic subgroup schemes of a reductive group scheme. Let G be a reductive group scheme over A
with connected fibers. We first recall - see [SGA3III, Exp XXII Def 5.11.1] - that a subgroup scheme H ⊂ G

is said to be of type (R) provided that H is smooth over A with connected fibers, Hk contains a maximal
torus of Gk, and HK contains a maximal torus of GK.

Now, according to [SGA3III, Exp XXVI §1] a subgroup scheme P ⊂ G is a parabolic subgroup scheme if P is
smooth over A, if Pk ⊂ Gk is a parabolic subgroup, and if PK ⊂ GK is a parabolic subgroup. In particular,
a parabolic subgroup scheme of G is of type (R).

If P is a parabolic subgroup scheme of G, then according to [SGA3III, Exp. XXVI Prop. 1.6] there is a
closed, normal subgroup scheme RuP ⊂ P such that RuP is smooth over A with connected fibers, (RuP)k
is the unipotent radical of Pk, and (RuP)K is the unipotent radical of PK.

Proposition 2.4.1. Let S ⊂ G be an A-torus. Then the centralizer M = CG(S ) is a reductive A-subgroup scheme
of G with connected fibers. Moreover, M is a subgroup scheme of G of type (R).

Proof. Indeed, according to [SGA3II, Exp XI, Cor 5.3], M is a closed subgroup scheme of G which is smooth
over A. Now [SGA3III, Exp XIX, §1.3] shows that Mk and MK are connected and reductive subgroups of
Gk and GK respectively, and the Proposition follows. �

Lemma 2.4.2. Let L be a free A-module of finite rank, suppose that ψ : Gm → GL(L) is an A-homomorphism, and
let M ⊂ L be an A-submodule such that

MK =
∑
i>m

LK(ψK; i) and Mk =
∑
i>m

Lk(ψk; i).

for some integer m. Then M =
∑
i>m L(ψ; i).

Proof. Since L =
⊕
i L(ψ; i), we have

([) M ⊂ L∩

∑
i>m

LK(ψK; i)

 =
∑
i>m

L(ψ; i).

Since Mk =
∑
i>m Lk(ψk; i) it follows from the Nakayama Lemma that equality holds in ([). �

For more on the “limit group scheme” described in the following result, the reader can consult [CGP15,
§2.1].
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Proposition 2.4.3. Let ψ : Gm → G be an A-homomorphism. There is a unique subgroup scheme PG(ψ) ⊂ G of
type (R) with the property that

(]) LiePG(ψ) =
∑
i>0

Lie(G)(ψ; i).

Moreover,
(a) P = PG(ψ) is a parabolic subgroup scheme of G,
(b) CG(ψ) is a Levi factor of P, and
(c) Lie(RuP) =

∑
i>0 Lie(G)(ψ; i).

Proof. First recall [Spr98, Prop. 8.4.5 and Theorem 13.4.2] that if G is a connected and reductive group over
a field F and if φ : Gm → G is an F-homomorphism, then there is a parabolic subgroup PG(φ) for which

PG(φ)(Fsep) = {g ∈ G(Fsep) | lim
t→0

Int(φ(t))g exists}.

Moreover, Lie(PG(φ)) =
∑
i>0 Lie(G)(φ; i), Lie(RuPG(φ)) =

∑
i>0 Lie(G)(φ; i), and CG(φ) is a Levi factor

of PG(φ).
Let us write PK for the parabolic subgroup PGK

(ψK) of GK determined by ψK. Consider the functor
Par defined for an A-scheme S by the rule

Par(S) = set of all S-parabolic subgroup schemes of HS

It follows from [SGA3III, Exp. XXVI, Cor. 3.5] that Par is represented by a scheme which is smooth,
projective and of finite type over A.

Since Par is projective and since A is a discrete valuation ring, the K-points of this A-scheme coincide
with its A-points; see e.g. [Liu02, Thm 3.3.25]. Thus, the K-point PK ∈ Par(K) determines a unique A-
point P ∈ Par(A). Since Lie(P) is an A-lattice in Lie(PK) and since Lie(P) is contained in Lie(G), it follows
immediately from Lemma 2.4.2 that (]) holds.

Since P is smooth, the discussion in [BT84, (I.2.6)] shows that it is equal to the schematic closure in G of
its generic fiber PK. Similarly, M = CG(ψ) is the schematic closure of MK = CGK

(ψK). Since MK ⊂ PK,
it follows that M is a closed subgroup scheme of P.

Now, M is a reductive subgroup scheme of P, and according to the discussion in the first paragraph of
this proof, Mk is a Levi factor of Pk and MK is a Levi factor of PK. Thus indeed M is a Levi factor of P
and (b) holds.

Finally, recall the smooth subgroup scheme RuP has the property that

Lie((RuP)K) =
∑
i>0

Lie(GK)(ψK; i) and Lie((RuP)k) =
∑
i>0

Lie(Gk)(ψk; i).

It now follows from Lemma 2.4.2 that (c) holds. �

3. Balanced nilpotent sections for reductive group schemes

The main goal of this section is the proof of assertions (a) and (b) of Theorem 1.6.1; this proof is given
in Section 3.4 after some preliminaries.

3.1. Generalities for balanced sections and their centralizers. Recall that we introduced the notion of a
balanced section in the introduction Section 1.4. In this section, we formulate some general results about
balanced sections and their stabilizers.

First we recall what is meant by the scheme-theoretic identity component. For a group scheme G of finite
type over A, the identity component is a certain A-subgroup functor; see [SGA3I, VI.B.3.1]. If G is moreover
smooth over A, then the identity component G0 of G is the union of the identity components G0

k and G0
K –

see [BT84, §1.2.12] or [SGA3I, VIB Thm. 3.10]; it is an open subgroup scheme of G which is smooth over A
and has connected fibers. In particular, the generic fiber (G0)K is precisely the identity component of GK.

Next, we recall the follow result of Raynaud:

Proposition 3.1.1. Let G be a flat group scheme of finite type over A such that the generic fiber GK is affine. Then
G is affine over A if and only if it is separated over A.

Proof. A proof of this result can be found in [PY06, Prop. 3.1]. �
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Corollary 3.1.2. Let G be a smooth group scheme which is affine over A. Then the identity component G0 is affine
over A.

Proof. Since G is affine over A, it and its open subgroup G0 are separated over A. Now (G0)K = G0
K is

closed in GK and is thus affine. So the the Corollary follows from Proposition 3.1.1. �

I thank an anonymous referee for pointing out the following reference and result; this result is simpler
and more efficient than a previous argument.

Theorem 3.1.3. Let G be a group scheme of finite type over A. Then the following are equivalent:
(a) the fibers GK and Gk are smooth of the same dimension, and
(b) the A-functor G0 is representable by an open A-subgroup scheme which is smooth over A.

Proof. The statement (b) =⇒ (a) is immediate, and (b) =⇒ (a) follows from [SGA3I, VI.B.4.4] �

Suppose now that G is a group scheme over A which is smooth, affine and of finite type over A. Consider
an G-module L which is a finitely generated free A-module. For x ∈ L, write xK for the image of x in
LK = L⊗A K, and write xk for the image of x in Lk = L⊗A k = L/mL.

The stabilizer C = StabG(x) is a closed – and hence affine – subgroup scheme of G; see [Jan03, p. I.2.6].
We recapitulate the following definition from Section 1.4.

Definition 3.1.4. The element x ∈ L will be said to be balanced for the action of G if the scheme-theoretic
stabilizer C = StabG(x) has the following properties: (i) CK is a smooth group scheme over K, (ii) Ck is a
smooth group scheme over k, and (iii) dimCK = dimCk.

We have the following immediate consequence of Theorem 3.1.3:

Corollary 3.1.5. Let x ∈ L be a balanced section, and let C = StabG(x). Then there is a open A-subgroup scheme
H ⊂ C such that
(a) H is smooth, affine and of finite type over A, and
(b) HK = (CK)0 = StabHK

(xK)0 and Mk = (Ck)
0 = StabHk

(xk)
0.

Remark 3.1.6. Let G be an A-group scheme satisfying the equivalent conditions of Theorem 3.1.3, and write
M for the smooth and open A-subgroup scheme representing the identity component of G. It is clear that
M is preserved by any A-automorphism of G.

3.2. Nilpotent sections. In this paper, our main interest is in nilpotent sections. In this section, we record
some generalities. Let G be a smooth, affine group scheme of finite type over A.

Lemma 3.2.1. Let X ∈ Lie(G) = Lie(G)(A) be a section. If XK ∈ Lie(GK) is nilpotent, then also Xk ∈ Lie(Gk) is
nilpotent.

Proof. Recall that if H is a linear algebraic group over the field F, then an element Y ∈ Lie(H) is nilpotent
if and only if 0 = YN ∈ EndF(V) for some sufficiently large N > 0 and some faithful linear representation
V of H.

Since G is affine and smooth - in particular, flat - over A, it follows from [BT84, (1.4.5)] that G has a
faithful linear representation on a free A-module M of finite rank. Then Mk = M⊗A k affords a faithful
linear representation of Gk, and MK =M⊗A K affords a faithful linear representation of GK.

Identifying G as a closed subgroup scheme of GL(M), the nilpotence of XK implies that 0 = XNK ∈
EndK(MK) for some N > 0. But then 0 = XN ∈ EndA(M), and hence 0 = XNk ∈ Endk(Mk) so that indeed
Xk is nilpotent as well. �

Remark 3.2.2. Of course, the Lemma applies when G is reductive over A, or more generally when G = P is
a parahoric group scheme with generic fiber G.

Definition 3.2.3. A section X ∈ Lie(G) is said to be nilpotent just in case the generic fiber XK ∈ Lie(GK) is
nilpotent.

Thus the Lemma shows that the value Xk at the closed point of Spec(A) of a nilpotent section X is
nilpotent.
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3.3. Nilpotent orbits for a reductive group over a field. We consider a ground field F and a geometrically
standard reductive group G over F. We now recall for later use some important facts about the nilpotent
orbits of G. Write g = Lie(G) for the Lie algebra of G, let X ∈ g be a nilpotent element, and let C = CG(X)
for the centralizer of X in G.

Definition 3.3.1. A cocharacter φ : Gm → G is associated with X provided that
(a) X ∈ g(φ; 2), and
(b) there is a maximal torus S ⊂ C such that the image of φ lies in the derived group der(M) where

M = CG(S).

This definition is essentially that given by Jantzen in [Jan04, §4] when working over an algebraically
closed field, and - in slightly different language - by Premet in [Pre03]. In the case of an algebraically
closed field, the result below – Proposition 3.3.2 – essentially follows from work of Premet [Pre03] giving
a modern proof of the Bala-Carter Theorem.

Write N = N(X) for the stabilizer in G of the line [X] in the projective space P(g).

Proposition 3.3.2. (a) The subgroup N is smooth over F.
(b) For each maximal torus S of N, there is a unique cocharacter φ ∈ X∗(S) associated to X. In particular, there is a

cocharacter associated with X.
(c) If φ is a cocharacter associated with X, the image of φ centralizes some maximal F-torus of the connected

centralizer H = CG(X), and the centralizer M = CH(φ) of the image of φ in H is a Levi factor of H.
(d) If S is a maximal F-torus of CG(X), there is a cocharacter associated with X whose image centralizes S.
(e) The unipotent radical U = Ru(C) is defined and split over F, and
(f) Any two associated cocharacters for X are conjugate by a unique element of U(F).

Proof. We are going to give references for the statements; these references assume that G is a standard
reductive group. Since here we only suppose that G is geometrically standard, let us fix a finite separable
extension F ′ of F for which GF ′ is standard.

For (a), the smoothness of NF ′ follows from [McN04, Lemma 23]; and the smoothness of N follows at
once.

Now (b), since N is smooth over F we may choose a maximal F-torus S of N. Now, [MT09, Prop. 15]
shows that SF ′ has a unique cocharacter φ associated with X. Then φ is an F-cocharacter by Galois descent.

Let us now fix an F-cocharacter φ associated with X. For (c), we may form the centralizer M = CH(φ),
an F-subgroup of the connected centralizer H = C0

G(X). Now [McN04, Cor. 20] shows that MF ′ is a Levi
factor of HF ′ , it is immediate that M is a Levi factor of H.

(d) is obtained by applying (b) to the nilpotent element X in the Lie algebra of the geometrically standard
reductive F-group CG(S).

Statement (e) holds for UF ′ by [McN05, Prop/Defn 21, (3)]; the assertion for U now follows e.g. by
[Spr98, Theorem 14.3.8].

Finally, consider (f) and let φ1,φ2 be F-cocharacters of G associated with X. We may apply [McN05,
Prop/Defn 21, (4)] to GF ′ to learn that φ1 and φ2 are conjugate by a unique element u ∈ U(F ′). But
the unipotent radical U is an F ′-group, and the uniqueness of u permits us to conclude that u ∈ U(F) as
required. �

An cocharacter associated to X determines the dimension of the orbit of X, as follows:

Proposition 3.3.3. Let φ be a cocharacter associated to X, let P(φ) be the parabolic subgroup determined by φ, and
write CG(X) for the centralizer of X in G. Then:
(a) CG(X) ⊂ P(φ), and
(b) dimCG(X) = dimF(g(φ; 0) + g(φ; 1)).

Proof. Indeed, [Jan04, Prop. 5.9] shows that (a) holds, that the P-orbit O of X is smooth – where P = P(φ)
– and that O is dense in

R =
∑
i>2

g(φ; i).

The result now follows since Lie(P(φ)) =
∑
i>0 g(φ; i). �

The Richardson orbits will play an important role.
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Proposition 3.3.4. Let Q ⊂ G be an F-parabolic subgroup. Then Q has a unique open and separable orbit on
Lie(RQ) containing an F-rational point.

Proof. We first argue that when G is F-split, there is a unique open and separable Q-orbit on Lie(RQ)
defined over F. When F is algebraically closed, this follows e.g. from [Jan04, §4.9]; the separability of this
Q-orbit follows from [Jan04, §4.9](B) since under our assumptions all G-orbits on Lie(G) are smooth

Now suppose F to be separably closed and write Falg for an algebraic closure. Since Lie(RQ) is an
irreducible variety, the F-points Lie(RQ)(F) are dense in Lie(RQ); see [Spr98, Lemma 11.2.5]. Thus, the
unique dense QFalg -orbit O on Lie(RQ)Falg contains an element X of Lie(RQ)(F); since the orbit of X is
separable, it follows that O is defined over F.

Now let F be arbitrary with separable closure Fsep. Since there is a unique open QFsep -orbit O on
(LieRuQ)Fsep , Galois descent shows that O is defined over F.

Finally, there is always an F-rational Richardson element. Indeed, when F is infinite an F-open subset
U of affine space LieRuP ' AN has an F-rational point as soon as U (Falg) is non-empty, where Falg
is an algebraic closure of F. If instead F is finite, the existence of an F-rational point follows from the
Lang-Steinberg Theorem [Ser02, III §2]. �

Remark 3.3.5. The dense Q-orbit O on Lie(RuQ) is called the Richardson orbit for Q, and an element X ∈
O(F) ⊂ Lie(RuQ)(F) is called a Richardson element for Q.

If G is semisimple, a parabolic subgroup P ⊂ G is distinguished provided that dimP/RuP = dimRuP −
dim der(RuP). when G is reductive, a parabolic subgroup P is distinguished provided that the intersection
of P with the derived group of G is a distinguished parabolic. See [Car93, §5.8] and [Jan04, §4.10].

On the other hand, recall from Definition 1.1.1 that a nilpotent element X ∈ Lie(G) is geometrically
distinguished provided that a maximal torus of CG(X) is central in G.

Theorem 3.3.6. (a) Let X ∈ Lie(G)(F) be a geometrically distinguished nilpotent element and let φ : Gm → G be
a cocharacter associated to X. Then P = PG(φ) is a distinguished parabolic subgroup of G and X ∈ LieRuP is a
Richardson element.

(b) Let Q be a distinguished parabolic subgroup of G. Then any Richardson element in Lie(RuQ) is a geometrically
distinguished nilpotent element.

Proof. In each case it suffices to give the proof after extending scalars to an algebraic closure of F. Now (a)
follows from [Jan04]; see also [Pre03, Prop 2.5]. And (b) follows from [Car93, Cor. 5.2.4]. �

Remark 3.3.7. The preceding Theorem is a crucial part of the Bala-Carter Theorem parametrizing the geo-
metric nilpotent orbits of G; it was first proved in good characteristic by K. Pommerening [Pom77; Pom80].
A more conceptual proof of the Bala-Carter Theorem was given later by Premet [Pre03].

3.4. Balanced nilpotent sections for a reductive group scheme. In this section, we are going to give the
proofs of assertions (a) and (b) of Theorem 1.6.1.

For a field F, by an F-variety we mean an integral F-scheme of finite type. If f : V → W is a morphism
of varieties over F, recall that f is dominant if the image f(V) is dense in W.

Proposition 3.4.1. Let R,S be finitely generated commutative A-algebras which are flat - or equivalently (since A is
a discrete valuation ring), torsion free - as A-modules, and let f : R → S be an A-algebra homomorphism. Assume
that fk : Rk = R⊗A k → Sk = S⊗A k is injective. Then f is injective, and in particular fK : RK → SK is
injective.

Proof. Since S is torsion free as an A-module, also the image B = im(f) of f is a torsion free and hence flat
A-module.

Writing I = ker f, we have a short exact sequence of A-modules

0→ I→ R
f−→ B→ 0.

Tensoring this sequence over A with k, we find an exact sequence

TorA1 (B,k)→ I⊗A k→ R⊗A k
fk−→ B⊗A k→ 0.

Since B is a flat A-module, TorA1 (B,k) = 0. Since fk is injective, we deduce that I/πI = I⊗A k = 0, where
πA is the maximal ideal of DVR A; put another way, we know that I = πI.
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Now, R is a finitely generated A-algebra, hence R is Noetherian. In particular, I is a finitely generated
R-module. In order to show that I = 0, it is enough to show that the localization Im is 0 for each maximal
ideal m of R.

Since π ∈ m for each maximal ideal m ⊂ R, the condition I = πI implies that Im = mIm; since Im is a
finitely generated Rm-module, Nakayama’s Lemma implies that Im = 0.

Conclude now that I = 0. This proves that f - and a fortiori fK - is injective, as required. �

We now return to the discrete valuation ring A. Recall that an integral affine A-scheme Y = Spec(A[Y])
is smooth over A if A[Y] is a flat A-module which is finitely generated as A-algebra, and if its fibers Yk and
YK “are” smooth varieties; see e.g. [BT84, (1.2.9)].

Proposition 3.4.2. Let X, Y be schemes which are affine, integral, smooth and of finite type over A, and let f : X→ Y
be an A-morphism. Suppose that the morphism fk : Xk → Yk obtained by base change is dominant. Then the
morphism fK : XK → YK is dominant, as well.

Proof. Write A[X] and A[Y] for the affine coordinate rings of the schemes X and Y, and write k[X] and k[Y] for
the coordinate rings of the affine k-varieties Xk and Yk obtained by base change; thus e.g. k[X] = A[X]⊗A k.
Similarly, write K[X] and K[Y] for the coordinate rings of the affine K-varieties XK and YK.

Since the morphism fk is dominant, [Stacks, Tag 0CC1] shows that the comorphism f∗k : k[Y] → k[X] is
injective. Since X and Y are smooth over A, A[X] and A[Y] are free A-modules. Proposition 3.4.1 permits
us to conclude that the comorphisms f∗ : A[Y]→ A[X] and f∗K : K[Y]→ K[X] are each injective, and now a
second application of [Stacks, Tag 0CC1] shows that fK : XK → YK is dominant. �

Now suppose that G is a reductive group scheme over A with connected fibers, and write G = GK. Let
us fix a parabolic subgroup scheme Q of G. Recall from section 2.4 that there is a smooth subgroup scheme
R = RuQ whose fibers are the unipotent radicals RuQk and RuQK.

Proposition 3.4.3. Suppose that X0 ∈ Rk is a Richardson element for Qk. Let X ∈ R be any element with Xk = X0
– i.e. for which X ≡ X0 (mod πR). Then XK ∈ RK is a Richardson element for QK.

Proof. By abuse of notation, we also write R for the A-scheme isomorphic to AN whose A-points identify
with R, where N is the rank of R as A-module. Consider the A-morphism

α : Q→ R

given by α(g) = Ad(g)X.
The morphism αk : Qk → Rk obtained by base change from α is then given by the rule αk(g) = Ad(g)X0;

since X0 is a representative of the dense Qk orbit on Rk, it follows that αk is a dominant morphism.
Since Q and R are schemes which are affine, smooth, and of finite type over A, it now follows from

Proposition 3.4.2 that αK : QK → RK is dominant. In view of Proposition 3.3.4, this proves that XK is a
Richardson element, as required. �

Proposition 3.4.4. If Q ⊂ G is a parabolic subgroup scheme, then Qk is a distinguished parabolic subgroup of Gk if
and only if QK is a distinguished parabolic subgroup of GK.

Proof. Since Gk and GK are geometrically standard by assumption, this follows from the characterization of
distinguished parabolics given in [Jan04, §4.10]. �

In order to prove the lifting results found in Section 1.6 of the introduction, we introduce a somewhat
more precise notion. Consider a triple (X, S ,φ) for which X ∈ Lie(G), S ⊂ G is a closed A-subgroup
scheme which is a maximal A-torus (see Section 2.3), and φ : Gm → L is an A-homomorphism, where
L = CG(S ). We say that (X, S ,φ) is a balanced triple if the following conditions hold:
(B1) X is balanced for the adjoint action of G,
(B2) the cocharacter φK is associated with the nilpotent element XK ∈ Lie(GK) determined by X,
(B3) the cocharacter φk is associated with the nilpotent element Xk ∈ Lie(Gk) determined by X, and
(B4) Xk is geometrically distinguished in Lie(Lk) and XK is geometrically distinguished in Lie(LK).

Theorem 3.4.5. Fix a nilpotent element X0 ∈ Lie(Gk) and a maximal torus S0 of the centralizer CGk(X0). There is
a maximal A-torus T of G and a balanced triple (X, S ,φ) such that S ⊂ T , Sk = S0 and Xk = X0.

https://stacks.math.columbia.edu/tag/0CC1
https://stacks.math.columbia.edu/tag/0CC1
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Proof. Write L0 = CGk(S0). Using Proposition 3.3.2, we choose a cocharacter φ0 of L0 associated with X0;
thus also φ0 is associated with X0 in Lie(Gk); cf. Theorem A.1.

Using Corollary 2.3.4 and Theorem 2.3.1 we may find A-tori S ⊂ T ⊂ G together with an A-
homomorphism φ : Gm → T for which T is a maximal torus of G, Sk = S0, and φk : Gm → Tk ⊂ Gk
coincides with φ0.

Set L = CG(S ); according to Proposition 2.4.1, L is a reductive group scheme with connected fibers.
Moreover, since G is a standard reductive group scheme, also L is a standard reductive group scheme.

By definition φ0 takes values in the derived group der(Lk) = der(L0). Using Proposition 2.3.5 we may
find an A-morphism φ : Gm → L such that φ0 = φk and such that φK takes values in the derived group
der(LK). Note that (B3) holds by construction.

Now let Q = PL(φ) and P = PG(φ) be the parabolic subgroup schemes of L and G determined by φ as
in Proposition 2.4.3.

Since a maximal torus of CLk(X0) is central in L, X0 is distinguished in Lie(Lk). It follows from
Theorem 3.3.6 that X0 ∈ Lie(RuQk) is a Richardson element and that Qk is a distinguished parabolic
subgroup of Lk. It follows from Proposition 3.4.4 that QK is a distinguished parabolic subgroup of LK.
Let X ∈ Lie(L)(φ; 2) ⊂ Lie(RuQ) by any element with Xk = X0. It follows from Proposition 3.4.3 that XK ∈
Lie(RuQK) is Richardson. Since QK is a distinguished parabolic, a second application of Theorem 3.3.6
shows that XK is distinguished in Lie(LK); this confirms condition (B4). Since XK ∈ Lie(LK)(φK; 2) and
since the image of φK lies in der(LK), it follows that φK is a cocharacter associated to XK in LK. It
now follows from the Theorem proved in the appendix to this paper – see Theorem A.1 – that φK is a
cocharacter associated to XK in GK, as well. Thus condition (B2) holds

Finally, since Gk and GK are geometrically standard reductive groups, the centralizers CGk(Xk) and
CGK

(XK) are smooth – see Proposition 2.1.4. Since φK is associated with XK and φk is associated with
Xk, it follows from Proposition 3.3.3 that the dimension of CGk(Xk) coincides with that of CGK

(XK). This
shows that X is indeed balanced; this confirms condition (B1) and completes the proof of the Theorem. �

We observe that the preceding result indeed confirms assertions (a) and (b) of the Theorem formulated
in Section 1.6 of the introduction to this paper.

Proof of Theorem 1.6.1(a) and (b). Let X ∈ Lie(Gk) be nilpotent, and choose a maximal k-torus S of CGk(X).
The preceding Theorem then yields a balanced triple (X, S ,φ). Now (a) of Theorem 1.6.1 is confirmed.
Now if X is geometrically distinguished for Gk, then condition (B4) shows that XK is geometrically distin-
guished for GK; this confirms (b). �

3.5. The centralizer of a balanced section. We will later require a property of the centralizer of a balanced
section X ∈ Lie(G), which we now formulate and prove.

Let G be an unramified reductive group over K with reductive A-model G, suppose that G is a standard
reductive group scheme, and let (X, S ,ψ) be a balanced triple as in Section 3.4. We require some results
about the centralizer group scheme C = CM(X).

Recall from Corollary 3.1.5 that since X is balanced, C contains an open subgroup scheme H with the
following properties:
(B1) H is smooth and affine over A,
(B2) the fibers HK and Hk coincide with the identity component of CK respectively of Ck.

Proposition 3.5.1. H contains a subgroup scheme M with the following properties:
(a) H is reductive over A,
(b) Mk is a Levi factor of Hk = C0

k, and
(c) MK is a Levi factor of HK = C0

K.

Proof. Note that H is normalized by the action of the image of φ; see Remark 3.1.6. Set M = CH(φ) for
the centralizer subgroup scheme of the image of φ in H; more precisely, the group scheme CH(φ) is the
fixed-point subscheme of H for the action of the image of φ. According to [SGA3II, Exp. XII, Prop. 9.2
and Cor 9.8], M is a closed subscheme of H which is smooth over A. Moreover, M is affine over A, e.g. by
Proposition 3.1.1.

Now, MK is the centralizer in CoGK
(XK) of the image of φK and Mk is the centralizer in CoGk(Xk) of the

image of φk. Thus it follows from Proposition 3.3.2 that for F ∈ {K,k}, MF is a Levi factor of C0
GF

(XF).
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In particular, M is a smooth and affine A-group scheme with connected and reductive fibers, hence M

is reductive [SGA3III, Exp. XIX Defn 2.7]. �

Proposition 3.5.2. There is an A-torus T of G centralizing X such that TF is a maximal torus of CF for F = k,K.
In particular, the centralizer CG(XK) has a maximal torus which splits over an unramified extension of K.

Proof. Let M ⊂ H be the open subgroup scheme of the centralizer as in Proposition 3.5.1.
Applying Corollary 2.3.4 we see that the reductive A-group scheme M ⊂ H has a maximal torus T .

According to Corollary 2.3.2 that torus splits over an unramified extension B ⊃ A, and in particular the
maximal torus TK of MK = C0

K splits over the field of fractions of B, an unramified extension of K. �

4. SL2-homomorphisms

As discussed in in Section 1.7, some of the proofs of the main results of this paper depend on the
existence of SL2-homomorphisms determined by nilpotent elements. In this section, we confirm these
required results.

Let us fix some notations. For a commutative ring A, consider the semisimple A-group scheme SL2,A.
Write EA and FA for the nilpotent sections

EA =

(
0 1
0 0

)
, FA =

(
0 0
1 0

)
∈ Lie(SL2/A),

and write D = DA ⊂ SL2,A for the diagonal (maximal) torus; thus DA ' Gm/A.
We identify the character groups

X∗(D) = X∗(Dk) = X
∗(DK)

with Z. Any D-module M is completely reducible and may be written as a direct sum

(♥) M =
⊕
n∈Z

Mn

of its weight spaces; see [Jan03, p. I.2.11].

4.1. Modules for SL2 and lifting. We begin by formulating some generalities about representations of
split reductive groups over the complete DVR A.

First, consider an A-algebra R which is free and of finite rank as an A-module, and write Rk = R⊗A k
and RK = R⊗A K.

Proposition 4.1.1. Let V be a finitely generated Rk-module, and suppose that ExtiRk(V ,V) = 0 for i = 1, 2.
Then there is an R-module V , unique up to isomorphism of R-modules, such that V is free of rank dimk V and
V ' V ⊗A k as Rk-module.

Proof. This follows from [McN00, Prop. 3.1.2]. �

Consider a split reductive group scheme G over the complete DVR A. A representation of G (“G-
module”) is of course a co-module for the Hopf algebra A[G] (the coordinate algebra of G).

Fix a split maximal torus T of G and write X∗ = X∗(T ) for the group of its characters. Any G-module
V is a direct sum V =

⊕
λ∈X∗ Vλ of its T -weight spaces.

For a saturated set of weights π ⊂ X∗ – see [Bou02, VI Exerc. I.23] – and for Λ ∈ {A,k,K}, consider the
full subcategory Cπ,Λ of the category of GΛ-modules whose objects are those GΛ-modules V for which
Vλ 6= 0 =⇒ λ ∈ π.

Donkin [Don86] has introduced an A-algebra Sπ – a generalized Schur algebra – which is finitely generated
and free as an A-module and for which the category of Sπ,Λ-modules is naturally equivalent to Cπ,Λ where
Sπ,Λ = Sπ ⊗A Λ. See also [McN00, §5.2].

As a consequence, we find the following:

Proposition 4.1.2. Let V be an finite dimensional algebraic Gk-representation for which ExtiGk(V ,V) = 0 for
i = 1, 2. Then there is a representation V for the group scheme G such that V is a free A-module, and V ' V ⊗A k
as Gk-modules. Moreover, V is uniquely determined by these properties, up to isomorphism of G-modules.
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Proof. Indeed, choose a saturated set of weights π large enough to contain all weights λ for which Vλ 6= 0.
Using Donkin’s result, we may view V as a module for Sπ,k. Our assumptions now permit application of
Proposition 4.1.1. �

Proposition 4.1.3. Let M and N be G-modules that are free and of finite rank as A-modules. Suppose that

Ext1
Gk

(Mk, Nk) = 0.

If φ0 : Mk → Nk is an isomorphism of Gk-modules, there is an isomorphism Φ : M → N of G-modules for which
φ0 = Φk.

Proof. Under our assumption on Ext1, it follows from [McN00, Prop. 3.3.1, Prop 3.3.2] that the natural
mapping (Φ 7→ Φk) : HomG(M,L) → HomGk(Mk,Lk) is surjective. Take Φ : M → L such that Φk = φ0;
it follows from the Nakayama lemma that Φ is an isomorphism, as required. �

We are mainly going to apply the preceding results to SL2,A, so we now specialize our discussion a bit.
In this case, D is a split maximal torus and its character group may be identified with the free abelian
group Z.

Let F be a field of characteristic p > 0. For a representation V of SL2,F, write V =
⊕
n Vn as a direct

sum of D-weight spaces. We say that V is restricted if either p = 0 or if Vn 6= 0 =⇒ |n| < p.

Proposition 4.1.4. (a) A restricted SL2,F-representation is semisimple.
(b) Any restricted representation V is the internal direct sum (as D-module) of ker(F : V → V) and E.V .
(c) If V ,W are restricted SL2,F-representations, then

ExtiSL2,F
(V ,W) = 0, i > 1.

Proof. Recall [Jan03, §II.2] that the simple modules LF(n) for SL2,F are indexed by their highest weight
n ∈ Z>0, where we have identified X∗(DF) = Z. A simple module is then restricted if and only if n < p.
It follows from the linkage principle [Jan03, Cor. II.6.7] that ExtiSL2,F

(L,L ′) = 0 for i > 1 and for any two
restricted simple modules. (a) and (c) are immediate consequences of this statement. Since (b) holds for
each restricted simple module L(n), it holds for V by assertion (a). �

Let V be an SL2,A-module. We will say that V is restricted if V is free of finite rank as A-module and
if Vk is a restricted module for SL2,k. Of course, V is restricted if and only if n > p =⇒ Vn = 0 where Vn
are the weight spaces in the decomposition (♥) above, where p is the residue characteristic.

Combining Proposition 4.1.2 and Proposition 4.1.4, we obtain:

Proposition 4.1.5. Let V be a restricted representation for SL2,k. Then there is a representation V for SL2,A for
which V is a free A-module and V ' V ⊗A k as SL2,k-modules; thus V is restricted. Moreover, V is uniquely
determined up to isomorphism of SL2,A-modules.

For 0 6 n < p, consider the simple SL2,k-module L(n). Since L(n) is restricted, Proposition 4.1.5 yields
a restricted SL2,A-module L(n) with L(n)⊗ k ' L(n). Since L(n)⊗K is restricted - hence semisimple -
and has 1-dimensional weight spaces, it is immediate that L(n)⊗K is a simple SL2,A-module, as well.

We now find the following:

Proposition 4.1.6. If V is a restricted SL2,A-module, then V '
⊕
i L(ni) for integers 0 6 ni < p which are

uniquely determined up to order.

Proof. Since Vk is a restricted semisimple SL2,k-module, there is an isomorphism Vk '
⊕
i L(ni) of SL2,k-

modules, where 0 6 ni < p for each i. It now follows from Proposition 4.1.3 that there is an isomorphism
of SL2,A-modules V '

⊕
i L(ni). �

Proposition 4.1.7. If V is a restricted module, we have:
(a) dimk ker(Ek : Vk → Vk) = dimK ker(EK : VK → VK).
(b) V is the internal direct sum ker(F)⊕ E.V as DA-modules.

Proof. In view of Proposition 4.1.6, it suffices to confirm (a) and (b) when V = L(n) for each 0 6 n < p.
Let F be either k or K. Since L(n)⊗F is the restricted, simple SL2,F-module LF(n) of highest weight n,

it is clear that ker(EF : L(n)⊗ F → L(n)⊗ F) is 1 dimensional and is spanned by a DF-weight vector of
weight n. Now (a) is confirmed.
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The same argument also show that ker(FF : L(n)⊗ F → L(n)⊗ F) is 1-dimensional and is spanned by
a DF-weight vector of weight −n.

Finally, since ker(EF) is 1 dimensional, it is clear that E.L(n)⊗F has codimension 1, and coincides with⊕n−2
i=−n L(i)⊗F. Now (b) follows from the Nakayama Lemma. �

For any n ∈ Z>0, write

L(n) = LF(n), H0(n) = H0
F(n), V(n) = VF(n) = H

0(n)∨, T(n) = TF(n)

respectively for the simple, standard, Weyl and tilting SL2,F-module of highest weight n; see [Jan03, §II.2].
If n < p so that L(n) is restricted, then T(n) = V(n) = H0(n) = L(n), but in general these modules do not
coincide.

An SL2,F-module T is said to be a tilting module provided that T and the dual module T∨ both have a
filtration by standard modules H0(n).

We have the following characterization of tilting modules:

Proposition 4.1.8. Let T be an SL2,F-module. The following are equivalent:
(a) T is a tilting module,
(b) Ext1

SL2,F
(V(n), T) = Ext1

SL2,F
(T ,H0(n)) = 0 for all n > 0,

(c) ExtiSL2,F
(V(n), T) = ExtiSL2,F

(T ,H0(n)) = 0 for all n > 0 and all i > 1.

Proof. This result is confirmed e.g. in [Jan03, Prop. E.1]. �

Proposition 4.1.9. Let T be a tilting module for SL2,F. Then T '
⊕
i T(ni) for certain integers ni > 0.

Proof. Indeed, by the Krull-Schmidt theorem we may write T as a direct sum of indecomposable SL2,F-
modules. Now Proposition 4.1.8 shows that any direct summand of a tilting module is again tilting. Thus
the Proposition follows from the description of indecomposable tilting modules; cf. [Jan03, Prop. E.6]. �

In particular, in the setting of the local field K, if T is a tilting module for SL2,k, Proposition 4.1.2
guarantees that there is a module T for SL2,A which is free of finite rank as A-module for which T ⊗k ' T .

4.2. Optimal SL2-homomorphisms over a field. Consider a geometrically standard reductive group G
over a field F of characteristic p > 0.

For a nilpotent element X ∈ Lie(G) recall that according to Proposition 3.3.2 we may choose a cocharacter
φ of G associated with X. Write Lie(G)(i) = Lie(G)(φ; i) for the i-weight space in Lie(G) for the adjoint
action of the image of φ.

Proposition 4.2.1. Let as usual h denote the Coxeter number of G. Suppose that X1 ∈ Lie(G)(F) is a regular
nilpotent element, and let φ1 be an associated cocharacter. Then Lie(G)(i) 6= 0 =⇒ |i| 6 2h− 2. In particular,
ad(Y)2h−2 = 0 for every nilpotent Y ∈ Lie(G).

Proof. The conclusion of the Proposition is unaffected by scalar extension, thus we may suppose that G
is split and that X1 is the sum of all the simple root vectors. In that case, one can explicitly identify the

cocharacter φ1 and one knows that Lie(G) =

h−1⊕
i=−h+1

Lie(G)(2i). This confirms that ad(X)2h−2 = 0. It

follows that the morphism Y 7→ ad(Y)2h−2 defined on the nilpotent cone vanishes on the open, dense set
of regular nilpotent elements, and hence this morphism is identically zero. �

If p > 0 recall that Lie(G) is a p-Lie algebra, so there is a p-operation Y 7→ Y[p] on Lie(G). An element
Y is nilpotent if and only if iterated application of the p-operation annihilates Y – i.e. Y[p]

j
= 0 for some

j > 1. For notational convenience, when the characteristic of F is zero, we define Y[p] to be 0, for nilpotent
Y ∈ Lie(G).

Theorem 4.2.2. Let X ∈ Lie(G) be nilpotent with X[p] = 0, and choose a cocharacter φ associated with X. Then
there is a unique F-homomorphism Ψ : SL2,F → G such that dΨ(EF) = X and Ψ|DF

= φ.

Proof. For a standard reductive group over F, this is proved in [McN05, Theorem 47]; see Remark 2.1.2.
For geometrically standard G the result follows by Galois descent from the result for standard G. �
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Definition 4.2.3. A homomorphism Ψ : SL2 → G is said to be optimal if φ = Ψ|DF
is a cocharacter associated

to the nilpotent element X = dΨ(EF).

Thus Theorem 4.2.2, provides an optimal homomorphism associated with any nilpotent element X.
Write h for the Coxeter number of G. We record the following:

Proposition 4.2.4. Let X ∈ Lie(G) be nilpotent and let φ be a cocharacter associated with X. Then
(a) X[p] = 0 if and only if Lie(G)(φ; i) = 0 for all i > 2p.
(b) If p > h, then X[p] = 0.

Proof. When G is standard, (a) follows from [McN05, Prop. 24] (again, see Remark 2.1.2). When G is
geometrically standard, (a) follows by Galois descent.

For (b), it suffices to prove the result after extending the ground field. Thus we may and will suppose
that G is split reductive over F and we may choose a regular nilpotent element X1 ∈ Lie(G)(F). If φ1 is
a cocharacter associated to X1, then X[p]

1 ∈ Lie(G)(φ1; 2p). On the other hand, if p > h Proposition 4.2.1

shows that Lie(G)(φ1; 2p) = 0. We conclude that X[p]
1 = 0. Thus, the morphism Y 7→ Y[p] from the nilpotent

variety to itself vanishes on the dense, open subvariety of regular elements and so is identically zero. This
proves (b). �

The following result is the basis for [McN05, Theorem 35]; see also [Sei00, §2].

Proposition 4.2.5. Suppose that p > 0, let X ∈ Lie(G) be nilpotent with X[p] = 0, choose a cocharacter φ associated
to X, and let ψ : SL2,F → G be the optimal SL2-homomorphism determined by X and φ as in Theorem 4.2.2. Then
as a representation for SL2, the adjoint representation Lie(G) is a tilting module. Moreover, as SL2-module,

Lie(G) '
⊕

06n62p−2

T(n)e(n)

for suitable multiplicities e(n) > 0.

Proof. Since SL2,F is split reductive over F, two semisimple SL2,F-modules which become isomorphic
after scalar extension of F are already isomorphic over F. Thus it suffices to prove the result after scalar
extension, so we may and will suppose suppose G to be split over F.

Since G is split, it arises by base change from a split reductive group scheme over the discrete valuation
ring Zp, the p-adic integers. Write Λ for a complete discrete valuation ring of characteristic 0 with residue
field F – see [Bou06, IX.2.3 Prop 5] for the existence of such a ring. Since the complete DVR Λ is an
extension of the p-adic integers, it follows that G arises by base change from a split reductive group
scheme G over Λ.

Now argue as in [McN05, Lemma 28] – or just use Theorem 3.4.5 – to find a balanced triple (X, S ,φ)
with XF = X for which SF is a maximal torus of the centralizer CG(X). It now follows from [McN03b,
Theorem 13] – or from Proposition 4.3.3 below – that there is a Λ-homomorphism Ψ : SL2,Λ → G for which
Φ = ΨF. Moreover, Proposition 4.2.4(b) shows that (♣) |i| > 2p =⇒ g(φ; i) = 0.

Observe that (♣) implies that all weights n of the SL2,Λ-represent Lie(G) satisfy n < 2p. This condition
permits us to apply [McN05, Prop. 34] (or [Sei00, Prop. 4.2]), and thus we conclude that Lie(G) is indeed
a tilting module for SL2,F via the homomorphism Φ.

Thus as a module for SL2,F, Lie(G) is a direct sum of indecomposable tilting modules T(d); now (♣)
guarantees that each tilting summand T(d)has highest weight d 6 2p− 2, as required. �

Proposition 4.2.6. Suppose that the characteristic p of F satisfies p = 0 or p > 2h− 2, and let X ∈ Lie(G) be
nilpotent. Then X[p] = 0 and if Ψ : SL2 → G is an optimal homomorphism for which dΨ(EF) = X, then the
adjoint representation Lie(G) is restricted (and in particular semisimple) as SL2,F-module. Moreover, if the simple
SL2,F-module L(n) appears as a submodule of Lie(G), then n 6 2h− 2.

Proof. Proposition 4.2.1 shows that ad(X)2h−2 = 0. If p > 2h− 2, then ad(X)p−1 = 0; this confirms the
condition X[p] = 0.

Now use Theorem 4.2.2 to find an optimal homomorphism Ψ : SL2 → G with dΨ(EF) = X. If p = 0,
every SL2,F-module is semisimple, so suppose for the moment that p > 0. According to Proposition 4.2.5,
the adjoint representation Lie(G) viewed as an SL2-module via Ψ is a direct sum of tilting modules T(d)
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for d 6 2p− 2. For any p 6 d 6 2p− 2, the SL2-module T(d) has dim T(d) = 2p, and EF acts on T(d) with
two Jordan blocks each of size p; see [McN03a, Prop. 5] or the description in [Sei00, Lemma 2.3]. Since
ad(X)p−1 = 0, ad(X) has no Jordan blocks of size p. It follows that the only tilting modules that can appear
in the decomposition of Lie(G) as SL2-module are those of the form T(d) with d < p− 1. But those tilting
modules are restricted – i.e. T(d) = L(d) for 0 6 d < p; this confirms that Lie(G) is a restricted module for
SL2,F.

To conclude the proof, we return to the general case in which p > 0. Since EF has a Jordan block of size
m on a restricted simple SL2,F-module L(m), and since ad(X)2h−2 = 0, the simple SL2,F-submodules L(n)
of the restricted semisimple module Lie(G) must satisfy n 6 2h− 2. �

4.3. Optimal SL2-homomorphisms over A. The main goal of this section is the proof of Theorem 4.3.6;
this will establish Theorem 1.7.1 from the introduction. As we’ll observe in more detail below, the proofs of
the results found in this section amount more-or-less to a recapitulation of arguments given in [McN03b]
and [McN05]; however, the formulation given here isn’t found in those references.

Let G be an unramified reductive group over K with reductive model G over A, and suppose that G is a
standard reductive group scheme. Fix a balanced triple for G

(♥) (X, S ,φ)

as in Section 1.6. Recall that φk is a cocharacter associated with Xk and that φK is a cocharacter associated
with XK. Write p for the characteristic of the residue field k.

Lemma 4.3.1. If (Xk)[p] = 0, then (XK)[p] = 0.

Remark 4.3.2. Since X is a balanced nilpotent section, XK is nilpotent. If the characteristic of K is zero,
recall that by convention (XK)[p] = 0.

Proof. We apply Proposition 4.2.4(a). According to that result, the condition (Xk)
[p] = 0 shows that the

weights of the image of φk on Lie(Gk) are all < 2p. But then it is immediate that the weights of the image
of φK on Lie(GK) are all < 2p and the same result shows that (XK)[p] = 0. �

The following result is essentially a recapitulation of [McN03b, Theorem 13].

Proposition 4.3.3. Assume that G is a split reductive group scheme over A. If (Xk)[p] = 0 and if Xk is geometrically
distinguished, there is a homomorphism of group schemes Ψ : SL2,A → G such that dΨ(EA) = X and Ψ|SA

= φ.

Proof. First of all, we may and will suppose that G is semisimple. Indeed, let H = der(G) be the subgroup
scheme of G described in [SGA3III, Exp. XXII §6]. Then H is semisimple – see loc. cit., Theorem 6.2.1.
Moreover, Hk is the derived group of Gk and HK is the derived group of GK; see loc. cit., Remark 6.2.2.
By assumption the cocharacter φ has the property that φK is associated to XK and φk is associated to Xk.
It follows from the definition that φk takes values in Hk and φK takes values in HK. Thus we may and
will replace G by H and thus suppose G to be semisimple.

Write R = Z(p) and note that there is a unique unital ring homomorphism R → A. If A has “equal
characteristic” – i.e. if k and K have the same characteristic – the kernel of this homomorphism is pR;
otherwise, this homomorphism is injective. Let GR be a split semisimple group scheme over R for which
G = GR × Spec(A). There is a split maximal torus TR of GR such that TR × Spec(A) identifies with T .
In particular, we may view φ also as a cocharacter of GR. As in Proposition 2.4.3, write P ⊂ G for the
parabolic A-subgroup scheme of G determined by φ, and let PR ⊂ GR be the parabolic R-subgroup scheme
of GR determined by φ. Note that P = PR × Spec(A). Moreover, write UR ⊂ PR and U ⊂ P for the smooth
subgroup schemes of [SGA3III, XXVI Prop. 1.21] whose fibers give the unipotent radicals of the fibers of
PR resp. P.

Write Lie(G) =
⊕
n∈Z Lie(G)(φ;n) as a sum of weight spaces for the image of φ. According to [McN05,

Prop. 24], the condition that (Xk)
[p] = 0 implies that Lie(G)(φ;n) = 0 when n > 2p. Hence also

Lie(GR)(φ;n) = 0 when n > 2p. Now a second application of loc. cit. shows that the nilpotence class
of the generic fiber UQ of UR is < p.

Now [Sei00, Prop. 5.1] shows that the exponential isomorphism yields an isomorphism of R-group
schemes exp : Lie(UR) → UR. Hence by base change R → A, we get an exponential isomorphism exp :
Lie(U) → U. Applying these considerations to the opposite parabolic subgroup schemes, we have an
exponential A-isomorphism exp(Lie(U−))→ U−.



NILPOTENT ELEMENTS AND REDUCTIVE SUBGROUPS OVER A LOCAL FIELD 21

Since G is semisimple, we may argue as in [McN03b, Lemma 10] to find a nilpotent element Y ∈
Lie(G)(φ;−2) such that (X,Y,H = dφ(1)) is an sl2-triple over A. Indeed, since XK is distinguished, we have
dim Lie(GK)(φ; 0) = dim Lie(GK)(φ; 2). Moreover, Proposition 3.3.3 shows that that CGk(Xk) ⊂ P(φk).
Thus ad(Xk) : Lie(Gk)(φ;−2)→ Lie(Gk)(φ; 0) is injective and is therefore a linear isomorphism. It follows
at once that ad(X) : Lie(G)(φ;−2) → Lie(G)(φ; 0) is an A-isomorphism. In particular, there must be an
element Y ∈ Lie(G)(φ;−2) with ad(X)(Y) = [X,Y] = H, as required.

Let Ψ1 : SL2,K → GK be the homomorphism of Theorem 4.2.2 with dΨ1(E1) = XK and Ψ1|S1
= φK. The

“big cell” of SL2 is the A-subscheme Ω = U−
1 S1U1 where U±1 ' Ga,A and T1 ' Gm,A. The restriction

of Ψ1 to ΩK is then given by (s, t,u) 7→ exp(sY)φK(t) exp(uX); thus Ψ1|ΩK
arises by base change from

an A-morphism Ω → G. Now the argument found in the proof of [Ser96, Prop. 2] yields the required
A-homomorphism Ψ : SL2 → G. (The argument of loc. cit. uses that SL2,Z is covered by the big cell ΩZ
together with wΩZ for a suitable w ∈ SL2(Z)). �

Remark 4.3.4. As was already pointed out, the preceding result is essentially that found in [McN03b,
Theorem 13], which in turn used the construction(s) found in [Ser96]. In fact, the underlying argumentation
give here is essentially that of the proof of Theorem 4.2.2 given in [McN05].

Our remaining goal for this section is to extend the result Proposition 4.3.3 to cover the case when G is
no longer assumed to be split. Here is our main tool:

Proposition 4.3.5. Let X and Y be affine A-schemes which are flat and of of finite type over A. Suppose that the
DVR B is an étale extension of A, and write L for the field of fractions of B.

Let Ψ : XB → YB be a B-morphism, and suppose that the L-morphism ΨL : XL → YL obtained from Ψ arises
by base change from a K-morphism Ψ1 : XK → YK. Then there is a unique A-morphism Φ : X → Y for which
Ψ = ΦB.

Proof. After possibly replacing B – and hence also L – by a larger unramified extension, we may and will
suppose that the residue field ` of B is a Galois extension of the residue field k of A. Write Γ = Gal(`/k);
since L is unramified over K, also L is a Galois extension of K, and Gal(L/K) identifies with Γ .

Since X is flat over A, A[X] identifies with an A-subalgebra of K[XK]. Similarly, B[XB] identifies with a
B-subalgebra of L[XL]. Moreover, K[HK] = L[XL]

Γ and A[X] = B[XB]Γ . Identical considerations hold for
Y.

Now suppose that Φ,Φ ′ : X→ Y are A-morphisms with ΦK = Φ ′K; thus Φ and Φ ′ agree on the generic
fiber Xη = XK. Since X is flat over , Xη is dense in X [Liu02, Lemma 4.3.7] so that Φ = Φ ′; thus the
uniqueness statement of the Proposition is immediate.

We now argue the required existence statement. Denote by Ψ∗ : B[Y] → B[X] the comorphism of
Ψ : X → Y. Since by our assumption ΨL arises by base-change from a K-mapping, it follows that Ψ∗L is
fixed by the action of Γ . But then Ψ∗ is already fixed by the action of Γ ; thus Ψ∗ determines by restriction
a mapping A[Y]→ A[X] which is the comorphism of the desired mapping Φ. �

We now state and prove the main result of this section: Recall that we have fixed a balanced triple
(X, S ,φ) for G.

Theorem 4.3.6. If X[p]
k = 0, there is a unique A-homomorphism

Φ : SL2/A → G

such that dΦ(E) = X, and Φ|D = φ.

Proof. In view of Lemma 4.3.1 and our the assumption, we know that (Xk)[p] = 0 and (XK)[p] = 0. Since
φK is a cocharacter associated with XK, we may apply Theorem 4.2.2 to see that there is a unique K-
homomorphism ψ1 : SL2,K → GK such that dψ1(EK) = XK and ψ1|D = φK, where as before D is the
diagonal torus in SL2.

Provided that it exists, the uniqueness of Φ is now clear.
To argue the existence, we proceed as follows. According to Proposition 2.3.7, there is a DVR B which is

a finite étale extension of A for which GB is a split reductive group scheme over B. Now, Proposition 4.3.3
yields a B-homomorphism Ψ : SL2,B → GB for which dΨ(EB) = XB and Ψ|D = φB.

It follows from the uniqueness in Theorem 4.2.2 that ΨL = ψ1,L. Thus Proposition 4.3.5 yields an
A-homomorphism Φ : SL2 → G for which ΦK = Ψ. �
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Definition 4.3.7. An A-homomorphism Ψ : SL2,A → G is said to be optimal provided that Ψk and ΨK are
optimal in the sense of Definition 4.2.3.

Remark 4.3.8. If X ∈ Lie(G) is a nilpotent element, recall Theorem 3.4.5 that we may find a balanced triple
(X, S ,φ) for G such that Xk = X. Thus Theorem 1.7.1 is an immediate consequence of Theorem 4.3.6
together with the definition of a balanced triple.

5. Balanced sections for parahoric group schemes

Throughout this section, G denotes a reductive group over K which splits over an unramified extension,
P denotes a parahoric A-group scheme for which PK = G, and the residue characteristic p = char(k)
satisfies the inequality p > 2h− 2 where h = hG denotes the Coxeter number of G.

Under these assumption, we may invoke Theorem 1.5.1; thus we may and will choose a subgroup
scheme M ⊂ P satisfying the conditions found in the statement of that Theorem. Now Proposition 2.1.5
guarantees that G is a standard reductive group and M is standard reductive group scheme.

5.1. Existence of balanced nilpotent sections for parahoric group schemes. In this section, we are going
to prove Theorem 1.7.2(a). We begin by formulating an “infinitesimal condition” that will permit us to
recognize balanced nilpotent sections X ∈ Lie(P).

Let H be a group scheme which is affine, smooth and of finite type over A, and let L be an H-module
where L is free of finite rank as an A-module.

Proposition 5.1.1. Let x ∈ L. Write h = Lie(H), and assume the following:
(a) the HK orbit of xK is smooth – i.e. dim StabHK

(xK) = dimK chK
(xK), and

(b) dimK chK
(xK) = dimk chk(xk).

Then x is balanced for the action of H.

Proof. Let C = StabH(x). The group scheme CK is smooth over K by assumption. It remains to argue that
Ck is smooth over k and that dimCK = dimCk.

It follows from Chevalley’s upper semi-continuity theorem [EGAIVIII, §13.1.3] that

dimCK 6 dimCk.

On the other hand, cgk(xk) is the Lie algebra of the group scheme StabGk(xk) = Ck. Thus dimCk 6
dimk cgk(xk) e.g. by [Knu+98, Lemma 21.8].

Combining these inequalities with our assumptions, we deduce that

dimCK 6 dimCk 6 dimk cgk(xk) = dimK cgK(xK) = dimCK.

Thus equality holds everywhere, so indeed Ck is smooth, e.g. by [Knu+98, Prop. 21.9], and moreover
dimCk = dimCK. �

Our main tool is the following result:

Proposition 5.1.2. Let Ψ : SL2,A →M be a homomorphism which is optimal as in Definition 4.3.7.
(a) X = dΨ(EF) is a nilpotent section of Lie(P) which is balanced for the action of P, and
(b) Lie(P) is a restricted SL2,A-module via Ψ.

Proof. Composing with the adjoint representation of P on Lie(P), observe that ΨK determines an SL2,K-
module structure on Lie(G) = Lie(PK), Ψk determines an SL2,k-module structure on Lie(Pk) and Ψ deter-
mines an SL2,A-module structure on Lie(P).

It follows from Theorem A.1 that ΨK is an optimal homomorphism SL2,K → G = GK. Since p > 2h− 2
it follows from Proposition 4.2.6 that Lie(G) is a restricted semisimple representation for SL2,K (for the
module structure arising from ΨK just mentioned), and that every simple SL2,K-submodule has the form
LK(n) with n 6 2h− 2 6 p− 1.

It follows at once that the weights m for the action of the torus DA ⊂ SL2,A for which Lie(P)(m) 6= 0
satisfy |m| < p; thus Lie(P) is a restricted module for SL2,A via Ψ. Now Proposition 4.1.7 implies that

dim cLie(Pk)(Xk) = dim cLie(G)(XK).

Finally, Proposition 5.1.1 implies that X is balanced for the action of P, as required. �
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We can now give the

Proof of Theorem 1.7.2(a). Recall that we are given a nilpotent element X0 ∈ Lie(Mk).
First note that M = MK is an unramified reductive group, and the above discussion shows that the

fibers of M are standard. Thus, we may invoke Theorem 1.6.1 to find a section X ∈ Lie(M) which is
balanced for the action of M for which Xk = X0. We must argue that X ∈ Lie(M) ⊂ Lie(P) is in fact
balanced for the action of P.

More precisely, we use Theorem 3.4.5 to find a balanced triple (X, S ,φ) for M with Xk = X0. Since
p > 2hM−2, Theorem 4.3.6 provides an A-homomorphism SL2,A →M with dΨ(EA) = X which is optimal.
Now Proposition 5.1.2 implies that X is balanced for the action of P and the proof is complete. �

5.2. Conjugacy of balanced nilpotent sections. In this section, we are going to prove the “conjugacy
assertions” of the Theorems found in Section 1. More precisely, we are going to prove Theorem 1.6.1(c)
and Theorem 1.7.2(b).

These conjugacy statements amount more-or-less to results obtained in [DeB02], specialized somewhat
to the present setting. For the readers convenience, and for clarity, in this section we are going to recapit-
ulate an adapted version of DeBacker’s argument.

Throughout this section, G will denote a connected and reductive algebraic group over the local field
K, and P will denote a parahoric group scheme over A with PK = G.

We begin by recalling the Moy-Prasad filtration P(A)s of the group P(A), indexed by real numbers s > 0.
This filtration was introduced in [MP94]; see also [Adl98, §1.4]. We write P+ ⊂ P(A) for the subgroup
which is the union the P(A)s for s > 0.

Parallel to the Moy-Prasad filtration of P(A), there is an analogous Moy-Prasad filtration Lie(P)s of the
A-Lie algebra Lie(P). We write Lie(P)+ for the union of the Lie(P)s for s > 0. Then Lie(P)+ and each
Lie(P)s is a full A-lattice in Lie(G).

Let R = Ru(Pk) denote the unipotent radical of the special fiber Pk.

Proposition 5.2.1. (a) Lie(P+) and Lie(P)s for each s > 0 is a P-submodule of Lie(P) for the adjoint action.
(b) Lie(P)+ is the kernel of the natural mapping ψ : Lie(P)→ Lie(Pk)→ Lie(Pk/R).

Proof. (a) follows from [Adl98, Prop. 1.2.5]. As to (b), one may confirm the statement when G is split
using the definition of the Moy-Prasad filtration together with [BT84, Prop. 4.6.10] and [BT84, Cor. 4.6.7].
Since G splits over an unramified extension, the parahoric group scheme P arises via étale descent from
a a parahoric group scheme Q for GL for some finite unramified extension L of K. One knows that
Lie(P)+ = Lie(P)∩ Lie(Q)+ and the assertion follows immediately. �

The main tool of the present section is the following, which the reader may compare to results in [DeB02,
§5.1]:

Theorem 5.2.2. Let X,X ′ ∈ Lie(P) be balanced nilpotent sections for which X+P+ = X ′ +P+. Then there is an
element g ∈ P+ for which Ad(g)X = X ′.

We first remark that Theorem 1.6.1(c) and Theorem 1.7.2(b) are immediate consequences of Theo-
rem 5.2.2. Before giving the proof of Theorem 5.2.2, we formulate some preliminary observations and
auxiliary results.

Returning to the setting of Theorem 5.2.2, consider sections X,X ′ as in the statement of that result; let
us write X0 ∈ Lie(Pk/RuPk) for the common image of X and X ′. Recall that we have chosen a subgroup
scheme M ⊂ P which is reductive over A, for which Mk is a Levi factor of Pk, and for which MK is a
reductive subgroup of G of type C(µ).

Since Mk is a Levi factor of Pk, we may identify X0 with a nilpotent element of Lie(Mk); by some abuse
of notation, we continue to denote this element by X0.

According to Theorem 1.6.1 we may choose a balanced section X1 ∈ Lie(M) for which X1,k = X0;
according to Theorem 1.7.2, X1 is balanced for P when viewed as an element of Lie(P). It is evidently
sufficient to prove Theorem 5.2.2 in the special case that X = X1, which we now assume.

According to Theorem 1.7.1, we may find a homomorphism Φ : SL2 → M such that ΦK is an optimal
homomorphism for XK and Φk is an optimal homomorphism for Xk. Since p > 2h− 2, proposition 4.2.6
shows that Lie(P) is a restricted representation for SL2,A via Ad ◦Φ.
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Recall the notation E, F for the “standard” nilpotent sections of Lie(SL2,A), where dΦ(E) = X. Let
S ⊂ Lie(G) denote the kernel of the operator addΦ(F). For each s > 0, note that Ss = S ∩ Lie(P)s is of
course the kernel of the restriction of addΦ(F) to Lie(P)s, and Ss+ = S ∩ Lie(P)s+ is the kernel of that
operator on Lie(P)s+.

Proposition 5.2.3. For each s > 0, we have Lie(P)s = Ss + [X, Lie(P)s]

Proof. Indeed, since p > 2h − 2 we have observed already that Lie(P) is a restricted module for SL2,A.
It is clear from definitions that any SL2,A-submodule of a restricted module is itself restricted. Thus by
Proposition 5.2.1, Lie(P)s is a restricted module for SL2,A. Now, Proposition 4.1.7 shows that Lie(P)s is the
internal direct sum of ker(F) and [E, Lie(P)s]. But Ss is the kernel of the action of F on Lie(P)s and E acts
via X, and the Proposition follows at once. �

Proposition 5.2.4.
Ad(P+)(X+ S+) = X+ Lie(P)+.

Proof. This amounts to the r = 0 case of [DeB02, Lemma 5.2.1]. This result is valid under our hypotheses;
indeed, the proof give in loc. cit. uses the existence of “mock exponential” found in [Adl98] together with
Proposition 5.2.3 3. �

Proposition 5.2.5. Let F be an algebraically closed field of characteristic p, let H be a reductive group over F and
suppose that either p = 0 or p > 2hH − 2. Let X ∈ Lie(H) be nilpotent, and let Φ : SL2 → H be an optimal
homomorphism determined by X. If S = cLieHdΦ(F), then Ad(G)X∩ (X+ S) = {X}.

Proof. Write Y for the G-orbit of X. Since the centralizer of X in G is smooth section 2.1, the tangent space
of Y at X is TXY = [X, Lie(G)]. Moreover, S = TX(X+ S).

It follows that the subvarieties Y and X + S are transversal at X, and in particular, there is an open
subvariety U ⊂ S such that X ∈ U(F) and such that (X+U)∩ Y = {X}.

Now, it follows from [Jan04, §7.15] that the weights of the image of φ on S are strictly negative. Precisely
as in the proof of [CG10, Prop. 3.7.15], the action of the image of φ determines an action of Gm on X+ S
for which X is the only fixed point, and as in loc. cit. it follows that (X+ S)∩ Y = {X}. �

Proof of Theorem 5.2.2. In view of Theorem 3.4.5, it suffices to prove the result when X appears in a balanced
triple (X, S ,φ).

Since Xk = Yk, we have Y = X+ πZ for some Z ∈ Lie(G). Now according to Proposition 5.2.4, there is
an element g ∈ P+ and an element W ∈ S such that

Ad(g)(X+ πW) = X+ πZ = Y.

Since Yk = Xk and since X and Y are balanced, the dimension of the orbit of YK coincides with that of the
orbit of XK. It now follows from Proposition 5.2.5 – applied to an algebraic closure of K – that W = 0;
thus indeed X and Y are G(A)-conjugate. �

6. Conclusions

Throughout this section, G denotes a connected and reductive group over the local field K. We suppose
that G splits over an unramified extension of K, and that p > 2h− 2. In particular, G is a standard reductive
group.

6.1. Completion of the proofs. In this section, we give the proof for Theorem 1.7.3 and the proof of the
main result, Theorem 1.3.1.

Recall that in the statement of Theorem 1.7.3, X1 ∈ Lie(G) is a K-rational nilpotent element; we must
find a parahoric group scheme P and a balanced section X ∈ Lie(P) for which X1 = XK. We give here an
adaptation of the argument of [DeB02, Lemma 4.5.3]; Debacker attributes this argument to Gopal Prasad.

We first establish the following preliminary result:

Proposition 6.1.1. Let X1 ∈ Lie(G) be nilpotent, and let φ1 be a cocharacter of G associated with X1. Write p for
the characteristic of K. If (X1)

[p] = 0 4, then there is a parahoric group scheme P with generic fiber PK = G and an
A-homomorphism Φ : SL2,A → P with the following properties:

3The argument we require from [DeB02] begins on p. 24 following displayed equation (6).
4Recall that if the characteristic of K is zero, we simply define (X1)

[p] = 0.
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(a) if φ = Φ|D , then φK = φ1, and
(b) if X = dΦ(E), then XK = X1.

Proof. It suffices to give the proof after replacing G by its derived group. Indeed, let G1 denote the derived
group of G. Fix a maximal split torus T1 of G1 contained in a maximal split torus T of G, and write Z0 for
the split component of the center of G (thus Z0 is a split torus over K). The product mapping Z0 × T1 → T

is an isogeny, and hence X∗(T)⊗Q is the direct sum of X∗(T1)⊗Q and X∗(Z0)⊗Q; write

π : S = X∗(T)⊗Q→ S1 = X∗(T1)⊗Q

for the natural projection map. For x ∈ S, write Px for the parahoric subgroup scheme with generic fiber
G determined by x and write Qπ(x) for the parahoric group scheme with generic fiber G1 determined by
π(x).

It is clear from the construction that

Px ⊃ Qπ(x) and Px = Pπ(x).

So the result will follow if we construct a homomorphism SL2,A → Qπ(x) with properties (a) and (b). Thus
we may and will suppose G to be semisimple for the remainder of the proof.

Let Φ1 : SL2,K → G = GK be the optimal homomorphism determined by X and φ1 as in Theorem 4.2.2.
We now argue as in [DeB02, Lemma 4.5.3]. Thus, we write Ku for the maximal unramified extension of K,
we consider the Bruhat-Tits building Bu of GKu , and we write Γ = Gal(Ku/K) = Gal(k/k).

Let Au denote the integral closure of A in Ku and consider the action of SL2(Au)× Γ on Bu, where the
action of SL2(Au) is determined by Φ1,Ku . Since the group SL2(Au)× Γ is bounded, [Tit79, §2.3.1] shows
that there is a fixed point x ∈ Bu for this action.

Since G is semisimple, [BT84, §4.6.27] shows that the stabilizer in G(Ku) of x is the group of Au points
of a smooth group scheme H with generic fiber G, and the parahoric Au-group scheme Q = Qx with
generic fiber GKu is an Au subgroup scheme of H which is equal to the identity component of H. Since x
is stable by the Galois group Γ , it follows that x is actually in the Bruhat-Tits building of G. In particular,
there is a parahoric A-group scheme P = Px with generic fiber G for which Q = PAu .

Since x is stable by SL2(Au), it follows that Φ1 maps SL2(Au) to the group of points H(Au). Now,
the group scheme SL2 is étoffé [BT84, §1.7], hence it follows from [BT84, (1.7.1)] that there is an Au-
homomorphism Ψ : SL2,Au → H compatible with the mapping Φ1 on Au-points.

Since SL2 has connected fibers, it follows that Ψ factors through the subgroup scheme Q ⊂ H; i.e. Ψ
determines a homomorphism Ψ : SL2,Au → Q = PAu .

Finally, étale descent shows that Ψ arises by base change from an A-homomorphism Ψ0 : SL2,A → P. It
is immediate that Ψ0 satisfies conditions (a) and (b). �

We now give:

Proof of Theorem 1.7.3: According to Proposition 4.2.4, the assumption p > 2h− 2 implies that (XK)[p] = 0.
Thus we may apply Proposition 6.1.1 to find an A-homomorphism Φ : SL2,A → P as in the statement of
that Proposition.

We write ψ : Gm,A → P for the A-homomorphism obtained by restricting Φ1 to the diagonal torus
of SL2,A. Since p > 2h− 2, Proposition 4.2.4 shows that Lie(G)(ψK; i) 6= 0 =⇒ |i| < p and hence that
Lie(P)(ψ; i) 6= 0 =⇒ |i| < p. It follows that Lie(P) is a restricted module for SL2,A. We now argue as in
the proof Proposition 5.1.2; it follows from Proposition 4.1.7 that X = dΦ(EA) is balanced for the action of
P, as required. �

Finally, we give the proof of the main result of this paper:

Proof of Theorem 1.3.1: We are given a nilpotent element X1 ∈ Lie(G) and we seek a reductive subgroup M
of G satisfying the conditions given in the statement of the Theorem.

Since CG(X1) is smooth over K, we may invoke Proposition 2.3.9 to find a maximal unramified K-torus
T ⊂ CG(X1). The centralizer H = CG(T) is a reductive group over K which splits over an unramified
extension of K. If we find a subgroup M of H satisfying the conclusion of Theorem 1.3.1, the Theorem will
follows. Thus, we may and will suppose: (♦) an unramified torus of CG(X1) is central in G.

We now use Theorem 1.7.3 to find data X,P,M as in the statement of that Theorem. We then know the
following:
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(i) P is a parahoric group scheme for the group G,
(ii) M is a reductive A-subgroup scheme of P,

(iii) X ∈ Lie(M) is a balanced nilpotent section with XK = X1,
(iv) MK is a reductive subgroup of G of type C(µ).

It is now clear that X1 ∈ Lie(MK), so it only remains to confirm that X1 is geometrically distinguished
for the action of MK. Now use Proposition 3.5.2 to find an A-torus T of M centralizing X for which TF is
a maximal torus of CF for F = k,K, where C = CM(X).

The unramified torus TK in G = GK centralizes X1 = XK, so (♦) implies that TK is a central in G,
and hence central in MK. Since TK is a maximal torus of CK, this confirms that X1 is geometrically
distinguished in M = MK and completes the proof of Theorem 1.3.1. �

6.2. DeBacker’s parametrization. This section investigates the relationship between the balanced nilpotent
sections of a parahoric group scheme with the parametrization of nilpotent orbits given by Debacker in
[DeB02].

As before, G denotes a reductive group over K which splits over an unramified extension of K, and we
suppose that p > 2h− 2. We are going to describe DeBacker’s parametrization for any parahoric group
scheme P for G, which we now fix.

Recall that according to Proposition 5.2.1, the subalgebra Lie(P)+ ⊂ Lie(P) determined by the Moy-
Prasad filtration coincides with the kernel of the natural mapping

Lie(P)→ Lie(Pk/RuPk).

We are going to prove:

Theorem 6.2.1. Let X ∈ Lie(P) be a balanced nilpotent section.
(a) For any Y ∈ X+ Lie(P)+, we have dim cLie(G)(YK) 6 dim cLie(G)(XK).
(b) TheG(K)-orbit of XK is the rational nilpotent orbit of smallest dimension which intersects the coset X+Lie(P)+

non-trivially.

Remark 6.2.2. To achieve the parametrization of nilpotent orbits in the “depth zero” (r = 0) case in [DeB02],
DeBacker assigns to a nilpotent orbit P(k)-orbit in Lie(P)/Lie(P)+ the nilpotent G(K)-orbit of smallest
dimension intersecting the Lie(P)+. Thus, Theorem 6.2.1 confirms that the balanced nilpotent sections
describe DeBacker’s assignment.

Before giving the proof of Theorem 6.2.1, we begin with some observations about adjoint conjugacy
classes in linear algebraic groups having a Levi decomposition.

Let H be a linear algebraic group over a field F. Suppose that the unipotent radical R = RuH is
defined over F and that H has a Levi decomposition – i.e. there is a closed F-subgroup M ⊂ H such
that the restriction of the quotient mapping π : H → H/R induces an isomorphism π|M : M ' H/R. Let
X0 ∈ Lie(H/R) and let X ∈ Lie(M) be the unique element with dπ(X) = X0.

Choose a filtration
(♣) Lie(H) = L0 ⊃ L1 ⊃ L2 · · · ⊃ Ld = 0

of Lie(H) by H-invariant subspaces for which R acts trivially on the quotient Li/Li+1 for each 0 6 i 6 d− 1;
such a filtration exists since the unipotence of R means that VR 6= {0} for any R-module V 6= {0}.

Proposition 6.2.3. For each Y ∈ dπ−1(X0), we have the inequality

d∑
i=0

ker(ad(X) : Li/Li+1 → Li/Li+1) > dim cLie(H)Y,

where ad(X) is the endomorphism of Li/Li+1 induced by ad(X) (for each i).

Proof. Let Y ∈ dπ−1(X0), and notice that ad(X) and ad(Y) induce the same mapping on the associated
graded space gr(Lie(H)) =

⊕d−1
i=0 L

i/Li+1.
Now the Proposition follows from the observation that the dimension of the kernel of the mapping

gr(ad(Y)) exceeds the dimension of ker(ad(Y)) = cLie(H)(Y). �



NILPOTENT ELEMENTS AND REDUCTIVE SUBGROUPS OVER A LOCAL FIELD 27

Corollary 6.2.4. Suppose that Φ : SL2,F → M is an F-homomorphism, and that – in the notation of section 4.2 –
we have X = dφ(E1). If Lie(H) is a completely reducible SL2,F-module, then

dim cLie(H)(X) > dim cLie(H)(Y)

for all Y ∈ dπ−1(X0).

Proof. Choose a filtration (♣) as above.
The assumption of complete reducibility implies that – as modules for SL2,F –

Lie(H) '
d−1⊕
i=0

Li/Li+1.

Thus the dimension of the centralizer in Lie(H) of X = dφ(E1) is precisely
d−1∑
i=0

dim ker(adX : Li/Li+1 → Li/Li+1);

the result now follows from Proposition 6.2.3. �

Proof of Theorem 6.2.1. Fix a reductive subgroup scheme M ⊂ P as in Theorem 1.5.1. Since Mk is a Levi
factor of Pk, we may choose X0 ∈ Lie(Mk) which identifies with the image of Xk in Lie(Pk/RuPk).

Now, M is a reductive group scheme. If hM denotes the Coxter number of MK, then we have p >
2h− 2 > 2hM − 2 by Proposition 2.2.1. In particular, M is a standard reductive group scheme over A.

Thus, we may use Theorem 1.6.1 to find a section X0 ∈ Lie(M) which is balanced for M with X0 = X0,k.
We may also invoke Theorem 1.7.1 to find an A-homomorphism Φ : SL2/A → M such that Φk is optimal
for Xk and ΦK is optimal for XK. Finally, the representations

Now, Theorem 1.7.2 guarantees that X0 ∈ Lie(M) is balanced for P. Finally, since X and X0 have the
same image in Lie(Pk/RuPk), Theorem 1.7.2(c) shows that X and X0 are conjugate by an element of P(A).

Thus it suffices to give the proof when X = X0 ∈ Lie(M). We now prove (a). Recall that Y ∈ X+Lie(P)+.
First, Chevalley’s upper semi-continuity theorem [EGAIVIII, §13.1.3] implies that

([) dimK cLie(G)(YK) 6 dim cLie(Pk)(Yk).

Now Corollary 6.2.4 shows that

(∗) dimk cLie(Pk)(Yk) 6 dimk cLie(Pk)(Xk).

Combining ([) and (∗) and using the fact that X ∈ Lie(P) is balanced, one deduces assertion (a).
To prove (b), suppose that Y = X+ Z for Z ∈ Lie(P)+ and that equality holds for the inequality in (a).

Since G is a geometrically standard reductive group, the identity component of CG(YK) is a smooth group
scheme. Thus Proposition 5.1.1 implies that Y is a balanced nilpotent section. Since the image of Y in
Lie(Pk/RuPk) = Lie(P)/Lie(P)+ coincides with that of X, it follows from Theorem 1.7.2(b) that X and Y

are conjugate by an element of P(A), and the result follows. �

6.3. Examples. We keep the notations K,A,k from before. We suppose that the characteristic of the residue
field k satisfies p > 2.

Consider a K-vector space V together with a non-degenerate bilinear form β, and assume that β is
either symmetric or alternating. Then β determines an involution ι = ιβ = (X 7→ X∗) of the simple K-
algebra B = EndK(V) by the rule β(Xv,w) = β(v,X∗w) for each X ∈ B and all v,w ∈ V , and in turn
the algebra-with-involution (B, ι) determines a simple algebraic K-group Iso(B, ι) [Knu+98, §23]. When
β is alternating, Iso(B, ι) = Sp(V) = Sp(V ,β) is the split symplectic group, and when β is symmetric,
Iso(B, ι) = O(V ,β) is the orthogonal group determined by β. Recall that O(V ,β) is K-split if and only if β
is hyperbolic.

The Lie algebra of G = Iso(A, ι) may be described by

Lie(G) = Skew(B, ι) = {X ∈ B | X+X∗ = 0}.

We will refer to the pair (V ,β) as a symplectic space, resp. an orthogonal space, if β is alternating, resp.
symmetric. Let us fix an orthogonal space (W,γ) with dimW = m.

Observation 6.3.1. (a) If (V1,β1) is a symplectic space, then (V1 ⊗W,β1 ⊗ γ) is a symplectic space.
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(b) If (V1,β1) is a hyperbolic orthogonal space with dimV > 2, then (V1 ⊗W,β1 ⊗ γ) is a hyperbolic orthogonal
space.

We consider two possibilities for the pair (V ,β). In the first case, suppose that β is alternating and that
dimV = 2nm. Then there is an isomorphism of symplectic spaces (V ,β) ' (V1⊗W,β1⊗γ) where (V1,β1)
is a symplectic space of dimension 2n.

In the second case, β is symmetric and hyperbolic, and dimV = nm. Then there is an isomorphism of
orthogonal spaces (V ,β) ' (V1 ⊗W,β1 ⊗ γ) where (V1,β1) is a hyperbolic orthogonal space of dimension
n.

In both cases, we consider the algebras B = EndK(V), B1 = EndK(V1) and C = EndK(W) with respec-
tive involutions ι = ιβ, ι1 = ιβ1 , j = ιγ, and the corresponding K-groups

G = Iso(B, ι),G1 = Iso(B1, ι1),H = Iso(C, j).

Observation 6.3.2. B1⊗KC identifies with an ι-invariant subalgebra of B, and the restriction of ι to this subalgebra
identifies with the involution ι1 ⊗ j. In particular, there is a K-homomorphism φ : G1 ×H→ G with central kernel.

Observation 6.3.3. There is a regular nilpotent element X1 ∈ Lie(G1) = Skew(B1, ι1). Write X for the nilpotent
element X1 ⊗ 1C ∈ Skew(B1 ⊗ C, ι1 ⊗ j) ⊂ Skew(B, ι) = Lie(G). The reductive quotient of the centralizer of X
identifies with H = O(W,γ).

For the remainder of this discussion, let us fix a nilpotent element X as in the preceding observation.
Then the centralizer of X has an unramified maximal K-torus if and only if O(W,γ) has an unramified
maximal K-torus.

Now suppose that dimW = 2 and that (W,γ) identifies with (L,NL/K) where L is a quadratic separable
extension of K and where NL/K denotes the norm form.

Observation 6.3.4. The identity component SO(W,β) = Oo(W,β) identifies with the 1-dimensional K-torus
G1
m,L (the “norm-one-torus”).

In particular, when K ⊂ L is a ramified quadratic extension, the torus SO(W,β) is not an unramified
K-torus, and hence in this case the centralizer in G of X has no unramified maximal K-torus.

Maintain the assumption that W identifies with a quadratic separable field extension L of K and that β
is the norm form.

Observation 6.3.5. The centralizer in G of the torus SO(W,β) is the unitary group M = Iso(B1 ⊗K L, κ)
determined by the involution of second kind κ = ι1 ⊗ σ of the L-algebra B1 ⊗K L where σ is the non-trivial element
of Gal(L/K).

With the notations of the preceding observation, X ∈ Lie(M) is geometrically distinguished (for the
action of M). The reductive subgroup M becomes the Levi factor of a parabolic subgroup of GL, though
M is not the Levi factor of any K-parabolic subgroup of G.

If L is a ramified extension of K, the reductive K-groups M has no reductive model over A. Thus, when
L is a ramified extension of K, M does not satisfy the conclusion of Theorem 1.3.1 for the nilpotent element
X.

Observation 6.3.6. There is a K-homomorphism ψ : µ2 → H = O(W,β) = Iso(C, j) for which ψ(−1) acts as the
non-trivial K-automorphism on L = W for the natural action of H on L = W. Abusing notation, we also write ψ

for the homomorphism µ2
(1,ψ)−−−→ G1 ×H → G = Iso(B, ι) determined by the natural mapping G1 ×H → G. For

the natural action of G on B, the fixed points of ψ(−1)on B coincide with B1 ⊗K L. In particular, the centralizer
CG(ψ) in G of the image of ψ is isomorphic to Iso(B1, ι1)× Iso(B1, ι1).

It is now easy to see that X ∈ Lie(CG(ψ)) is geometrically distinguished for the action of CG(ψ); since
CG(ψ) is a split reductive K-group (recall that ι1 is the involution determined by a hyperbolic symmetric
bilinear form), one knows that CG(ψ) is an unramified reductive group over K. The group CG(ψ) satisfies
the conclusion of Theorem 1.3.1 for the nilpotent element X.



NILPOTENT ELEMENTS AND REDUCTIVE SUBGROUPS OVER A LOCAL FIELD 29

Appendix A. Nilpotent elements and subgroups of type C(µ)

Let G be a connected and reductive group over the field F, and let M ⊂ G be a subgroup of G of type
C(µ) – see section 2.2 for an explanation of the terminology. By definition, M = CoG(ψ) where ψ : µn → G
is an F-homomorphism.

In this section, we consider the cocharacters of M and of G which are associated to a nilpotent element
X ∈ Lie(M). Since X ∈ Lie(M), the image of the µ-homomorphism ψ is contained in CG(X).

In this section, we are going to prove:

Theorem A.1. If φ is a cocharacter of M associated to X for the action of M, then when viewed as a cocharacter of
G, φ is associated to X for the action of G, as well.

If φ is a cocharacter of M, observe that the conditions “φ is associated to X for the action of M” and “φ
is associated to X for the action of G” are geometric; we may therefore give the proof of the Theorem after
extending the base field.

Thus, for the remainder of this appendix, we are going to suppose that F is algebraically closed.

Proposition A.2. If H is linear algebraic group over the field F for which H0 is a reductive group and if ψ : µn → H
is a homomorphism, there is a maximal torus T of H normalized by the image of ψ.

Proof. Write n = pa ·m with gcd(p,m) = 1; thus µn ' µpa × µm. Since µpa is connected, the image
ψ(µpa) is contained in H0. It was proved in [McN20, Theorem 3.4.1] that the image S = ψ(µpa) lies in
some maximal torus T of H0. Note that C0

H(S) is reductive and contains a maximal torus of H; thus it
suffices to complete the proof after replacing H by CH(S). Since now the image S is contained in every
maximal torus of H, it is enough to argue that the image S1 = ψ(µm) normalizes some maximal torus of
H. Since F is algebraically closed, that assertion now follows from [Ste68, Theorem 7.5]. �

Proposition A.3. Let H be a linear algebraic group over F which has a Levi decomposition; i.e. there is a reductive
F-subgroup M ⊂ H for which π|M : M → H/RuH is an isomorphism, where π : H → H/RuH is the quotient
mapping. IfD ⊂ H is a subgroup scheme of multiplicative type, then there is u ∈ (RuH)(F) for which uDu−1 ⊂M.

Proof. Write U = RuH, and write D ⊂ H/U for the image of D. It follows from [SGA3II, Exp. XVII Prop
4.3.1] that the restriction of the quotient mapping π : H→ H/U determines an isomorphism π|D : D

∼−→ D.
In particular, the group scheme E = π−1(D) is an extension of the group scheme D of multiplicative type
by the connected and F-split unipotent group U.

Write γ : H/U → M for the inverse of the isomorphism π|M : M → H/U, and let D1 = γ(D). Then
D1 ⊂ E and D1 ⊂ M. It now follows from [SGA3II, Exp. XVII Thm 5.1.1] applied to the extension E that
D and D1 are conjugate by an element of U(F), as required. �

Proposition A.4. Let X as above.
(a) The image of ψ centralizes some cocharacter φ associated with X in G.
(b) The image of ψ normalizes some maximal torus of CoG(X).

Proof. Write C = CG(X) and note that the image of ψ is contained in C. Fix a cocharacter φ associated to
X, and recall Proposition 3.3.2 that if φ is a cocharacter associated with X in G, the centralizer Cφ in C of
the image of φ is a Levi factor of C.

Now, the image of ψ is a diagonalizable subgroup of CG(X). According to Proposition A.3, this sub-
group is conjugate by an element u ∈ U(F) to a subgroup of the Levi factor Cφ of C. More precisely,
the image of Ad(u) ◦ψ is centralized by the image of φ. But then, the image of ψ is centralized by the
image of Ad(u−1) ◦φ; equivalently, Ad(u−1) ◦φ takes values in M = C0

G(ψ). Now, by Proposition 3.3.2(e)
Ad(u−1) ◦φ is a cocharacter associated with X; assertion (a) has now been proved.

Since Cφ is a Levi factor, it contains a maximal torus of C. Now (b) follows from Proposition A.2. �

Recall that for any n ∈ Z, a representation ρ : µn → GL(V) amounts to the data of a Z/nZ-grading
of V . Indeed, recall that F[µn] = F[T ]/〈Tn − 1〉. Now the representation ρ amounts to a comodule map
ρ∗ : V → F[µn]⊗F V ; for v ∈ V , write

ρ∗(v) =
∑

i+nZ∈Z/nZ

vi ⊗ T i.



30 GEORGE J. MCNINCH

We obtain a Z/nZ grading V =
⊕
i+nZ∈Z/nZ Vi by setting Vj = {v ∈ V | v = vj} for j+nZ ∈ Z/nZ.

We require the following technical result, which is a slight generalization of [MS03, Lemma 24]. For the
completeness and for the convenience of the reader, we repeat the proof.

Proposition A.5. Let H be a linear algebraic group over F. Assume that H0 is reductive, and let ψ : µn → H be
an F-homomorphism. Assume that S ⊂ H is a central torus in H which is normalized by the image of ψ and that
C0
S(ψ) is a maximal central torus of C0

H(ψ). Then

(C0
H(ψ),C

0
H(ψ)) = C

0
(H,H)(ψ).

In particular, the identity component of the centralizer in the derived group der(H) = (H,H) of the image of ψ is
semisimple.

Proof. Write N = C0
(H,H)(ψ). It is clear that (C0

H(ψ),C
0
H(ψ)) ⊂ N, and it remains to argue the reverse

inclusion. For that, it is enough to argue that N is semisimple. Indeed, we then have N = (N,N), and since
N ⊂ C0

H(ψ), we may deduce the required inclusion N ⊂ (C0
H(ψ),C

0
H(ψ)).

Choose a maximal torus T ⊂ H normalized by the image of ψ. The adjoint action of ψ yields Z/nZ-
gradings

Lie(H) =
⊕

i∈Z/nZ

Lie(H)(i), Lie((H,H)) =
⊕

i∈Z/nZ

Lie((H,H))(i) and Lie(T) =
⊕

i∈Z/nZ

Lie(T)(i),

and we have Lie(C0
T (ψ)) = Lie(T)(0), Lie(C0

H(ψ)) = Lie(H)(0) and Lie(C0
(H,H)(ψ)) = Lie((H,H))(0).

According to [Spr98, Cor. 8.1.6], the product mapping

µ : T × (H,H)→ H

is surjective. Moreover, for (X, Y) ∈ Lie(T)× Lie((H,H)), [Spr98, (4.4.12)] shows that dµ(1,1)(X, Y) = X+ Y.
Now, it follows from [Cor. 7.6.4 Spr98] that T = CH(T) and thus Lie(T) = Lie(H)T . Moreover, since
Lie((H,H)) contains each non-zero T -weight space of Lie(H), Lie(H) is the sum of Lie(T) and Lie((H,H))
– i.e. dµ(1,1) is surjective. Since this product map respects the action of the image of ψ, we find that
dµ(1,1) : Lie(T)(i)⊕ Lie((H,H))(i)→ Lie(H)(i) is surjective for each i ∈ Z/nZ. In particular,

dµ(1,1) : Lie(T)(0)⊕ Lie((H,H))(0)→ Lie(H)(0)

is surjective. This surjectivity implies that µ restricts to a dominant morphism

µ̃ : C0
T (ψ)×N→ C0

H(ψ).

Since C0
T (ψ) normalizes N, the image is a subgroup. Since C0

H(ψ) is connected, µ̃ is surjective; thus
C0
H(ψ) = C

0
T (ψ)N.

The group N is reductive; let R denote its maximal central torus. Now, R is contained in each maximal
torus of N; in particular R is contained in CT1(ψ) for some maximal torus T1 of H normalized by the image
of ψ. Choosing T = T1 in the preceding discussion, we find that C0

H(ψ) = C
0
T1
(ψ) ·N. Thus we find that R

is moreover central in C0
H(ψ). But we have assumed that C0

S(ψ) to be the maximal central torus of C0
H(ψ),

so we find that R ⊂ C0
S(ψ)∩N.

Finally, C0
S(ψ) is contained in the center Z of H. Since Z∩ (H,H) is finite – see [Spr98, (8.1.6)] – it follows

that C0
S(ψ)∩ (H,H) is finite, hence also C0

S(ψ)∩N is finite, as well. This proves that R = 1 so indeed N is
semisimple, as required. �

Proof of Theorem A.1. In view of the conjugacy of associated cocharacters Proposition 3.3.2, the Theorem
will follow if we argue that there is a cocharacter of M that is associated to X both for the action of M and
for the action of G.

As was already observed, if φ is a cocharacter of M, the condition that φ is associated to X in either G
or M is unaffected by extension of scalars. Thus, to prove the Theorem, we may and will suppose that F is
algebraically closed.

When M = L is a Levi factor of a parabolic of G, this conclusion is immediate from definitions, since we
can find a reductive subgroup L1 for which X ∈ Lie(L1) is distinguished, and for which L1 is a Levi factor
of a parabolic of G and L1 is a Levi factor of a parabolic of L.
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Recall that M = CoG(ψ) for a homomorphism ψ : µn → G for some n > 2. Fix a maximal torus S0 of
CM(X). If we now set G1 = CG(S0) and M1 = CM(S0), then G1 is a Levi factor of a parabolic of G, M1 is
a Levi factor of a parabolic of M, M1 = C0

G1
(ψ) is a subgroup of G1 of type C(µ), and X is distinguished

in Lie(M1).
Since the conclusion of the Theorem is valid for Levi factors of parabolic subgroups, a cocharacter of M1

associated to X in G1 is associated to X in G, and a similar statement holds for M1 and M. Thus in giving
the proof, we may and shall replace G by G1 and M by M1 and so we suppose that X is distinguished in
Lie(M).

According to Proposition A.4, we may choose a cocharacter φ associated to X which is centralized by
the image of ψ. In particular, φ is a cocharacter of M. We are going to argue that φ is associated to X in
M. In view of the conjugacy of associated cocharacters Proposition 3.3.2, this will complete the proof of
the Theorem. Since X is distinguished in Lie(M), and since evidently X ∈ Lie(M)(φ; 2), in order to argue
that φ is associated to X, we only must argue that the image of φ lies in the derived group M.

For this, use Proposition A.4 to choose a maximal torus S of CG(X) which is normalized by the image
of ψ. Now, X is distinguished in the Lie algebra of H = CG(S), so by definition the image of φ is contained
in (H,H). Thus we see that the image of φ is contained in C0

(H,H)(ψ). Since X is distinguished in Lie(M),
it follows that CS(ψ) is central in M. On the other hand, the connected center of M is a torus in CG(X)
normalized by the image of ψ, we see that CS(ψ) coincides with the connected center of M.

Now Proposition A.5 implies that (C0
H(ψ),C

0
H(ψ)) = C

0
(H,H)(ψ), so the image of φ lies in

(C0
H(ψ),C

0
H(ψ)) ⊂ (M,M)

as required. �

A result similar to Theorem A.1 was obtained in [MS03, Prop. 23] for “pseudo-Levi subgroups” M of
G, though the result was only stated in loc. cit. for distinguished X. In general, the class of subgroups of
type C(µ) is strictly larger than the class of pseudo-Levi subgroups – see the discussion in the introduction
to [McN20]. The proof we have given is basically that given in [MS03], except that we have used here
the result Proposition A.3 for diagonalizable group schemes deduced from [SGA3II, Exp. XVII Thm 5.1.1]
rather than the result [Jan04, (11.24)], which is formulated for smooth linearly reductive groups.
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