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ABSTRACT. Let G be a semisimple algebraic group over a field K whose characteristic is very good for
G, and let σ be any G-equivariant isomorphism from the nilpotent variety to the unipotent variety; the
map σ is known as a Springer isomorphism. Let y ∈ G(K), let Y ∈ Lie(G)(K), and write Cy = CG(y) and
CY = CG(Y) for the centralizers. We show that the center of Cy and the center of CY are smooth group
schemes over K. The existence of a Springer isomorphism is used to treat the crucial cases where y is
unipotent and where Y is nilpotent.

Now suppose G to be quasisplit, and write C for the centralizer of a rational regular nilpotent element.
We obtain a description of the normalizer NG(C) of C, and we show that the automorphism of Lie(C) de-
termined by the differential of σ at zero is a scalar multiple of the identity; these results verify observations
of J-P. Serre.
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1. INTRODUCTION

Let G be a reductive group over the field K and suppose G to be D-standard; this condition means
that G satisfies some standard hypotheses which will be described in §3.2. For now, note that a semisim-
ple group G is D-standard if and only if the characteristic of K is very good for G.

Consider the closed subvariety N of nilpotent elements of the Lie algebra g = Lie(G) of G, and
the closed subvariety U of unipotent elements of G. Since G is D-standard, one may follow the
argument given by Springer and Steinberg [SS 70, 3.12] to find a G-equivariant isomorphism of va-
rieties σ : N → U . The mapping σ is called a Springer isomorphism. There are many such maps: the
Springer isomorphisms can be viewed as the points of an affine variety whose dimension is equal to
the semisimple rank of G; see the note of Serre found in [Mc 05, Appendix] which shows that de-
spite the abundance of such maps, each Springer isomorphism induces the same bijection between
the (finite) sets of G-orbits in N and in U . For some more details, see §3.3 below.

Let y ∈ G(K) and Y ∈ g(K). Since G is D-standard, we observe in (3.4.1) – following Springer and
Steinberg [SS 70] – that the centralizers CG(y) and CG(Y) are smooth group schemes over K. The first
main result of this paper is as follows:

Theorem A. Let Zy = Z(CG(y)) and ZY = Z(CG(Y)) be the centers of the centralizers.
(a) Zy and ZY are smooth group schemes over K.
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(b) Y ∈ Lie(ZY).

See §2.6 for more details regarding the subgroup schemes Zy ⊂ CG(y) and ZY ⊂ CG(Y). The
existence of a Springer isomorphism plays a crucial role in the proof of Theorem A.

Keep the assumptions on G, and suppose in addition that G is quasisplit over K; under these as-
sumptions, one can find a K-rational regular nilpotent element X ∈ g(K) [Mc 05, Theorem 54]. Write
C = CG(X) for the centralizer of X; it is a smooth group scheme over K (3.4.1).

Our next result concerns the normalizer of C in G; write N = NG(C).

Theorem B. (i) N is smooth over K and is a solvable group.
(ii) If r denotes the semisimple rank of G, then dim N = 2r + dim ζG, where ζG denotes the center of G.

(iii) There is a 1 dimensional torus S ⊂ N which is not central in G such that S · ζo
G is a maximal torus of

N.

Fix now a cocharacter φ associated with the nilpotent element X; cf. (5.2.1).

Theorem C. Assume that the derived group of G is quasi-simple. Then the Lie algebra of N/C decomposes as
the direct sum

Lie(N/C) = Lie(S0)⊕
r⊕

i=2

Lie(N/C)(φ; 2ki − 2),

where k1 ≤ k2 ≤ k3 ≤ · · · ≤ kr are the exponents of the Weyl group of G, and where S0 is the image of S in
N/C.

We will deduce several consequences from Theorems B and C. First,

Theorem D. The unipotent radical of N/Kalg
arises by base change from a split unipotent K-subgroup of N.

In older language, Theorem D asserts that the unipotent radical of N is defined and split over K.
Next, fix a Springer isomorphism σ and write u = σ(X). The unipotent radical of the group C is
defined over K, and C is the product of Ru(C) with the center ζG of G; see (5.2.4). The restriction of σ
to Ru(C) yields an isomorphism of varieties

γ = σ|Lie(RuC) : Lie(RuC) ∼−→ RuC

satisfying γ(0) = σ|Lie(RuC)(0) = 1. So the tangent mapping dγ0 yields a linear automorphism of the
tangent space

Lie(RuC) = T1(RuC).

Theorem E. Suppose that the derived group of G is quasi-simple.
(1) The mapping (dγ)0 is a scalar multiple of the identity automorphism of Lie(RuC).
(2) Let B a Borel subgroup of G with unipotent radical U. Then σ|Lie U : Lie U → U is an isomorphism,

and d(σ|Lie U)0 : Lie U → Lie U is a scalar multiple of the identity.

We remark that Theorems B, C, and E confirm the observations made by Serre at the end of [Mc
05, Appendix].

The paper is organized as follows. In §2 we recall some generalities about group schemes and
smoothness; in particular, we describe conditions under which the center of a smooth group scheme
is itself smooth. In §3 we recall some facts about reductive groups that we require; in particular,
we define D-standard groups and we recall that element centralizers in D-standard groups are well-
behaved. In §4 we give the proof of Theorem A. Finally, §5 contains the proofs of Theorems B, C, D
and E.

2. RECOLLECTIONS: GROUP SCHEMES

The main objects of study in this paper are group schemes over a field K. For the most part, we
restrict our attention to affine group schemes A of finite type over K. We begin with some general
definitions.
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2.1. Basic Definitions. We collect here some basic notions and definitions concerning group schemes;
for a full treatment, the reader is referred to [DG 70] or to [Ja 03, part I].

For a commutative ring Λ, let us write AlgΛ for the category of “all” commutative Λ-algebras 1.
We will write Λ′ ∈ AlgΛ to mean that Λ′ is an object of this category – i.e. that Λ′ is a commutative
Λ-algebra.

We are going to consider affine schemes over Λ; an affine scheme X is determined by a commuta-
tive Λ-algebra R: the algebra R determines a functor X : AlgΛ → Sets by the rule

X(Λ′) = HomΛ−alg(R, Λ′).

The scheme X “is” this functor, and one says that X is represented by the algebra R. One usually
writes R = Λ[X] and one says that Λ[X] is the coordinate ring of X. The affine scheme X has finite
type over Λ provided that Λ[X] is a finitely generated Λ-algebra.

A group valued functor A on AlgΛ which is an affine scheme will be called an affine group scheme.
If A is an affine group scheme, then Λ[A] has the structure of a Hopf algebra over Λ.

If Λ′ ∈ AlgΛ, we write A/Λ′ for the group scheme over Λ′ obtained by base change. Thus A/Λ′ is
the group scheme over Λ′ represented by the Λ′-algebra Λ[A]⊗Λ Λ′.

Let us fix an affine group scheme A of finite type over the field K. Write K[A] for the coordinate
algebra of K, and choose an algebraic closure Kalg of K.

2.2. Comparison with algebraic groups. In many cases, the group schemes we consider may be
identified with a corresponding algebraic group; we now describe this identification.

If the algebra K[A] is geometrically reduced – i.e. is such that Kalg[A] = K[A]⊗K Kalg has no non-zero
nilpotent elements – then also K[A] is reduced. The Kalg-points A(Kalg) of A may be viewed as an
affine variety over Kalg; since it is reduced, Kalg[A] is the algebra of regular functions on A(Kalg).
Moreover, A(Kalg) together with the K-algebra K[A] of regular functions on A(Kalg) may be viewed
as a variety defined over K in the sense of [Bor 91] or [Sp 98].

Conversely, an algebraic group B defined over K in the sense of [Bor 91] or [Sp 98] comes equipped
with a K-algebra K[B] for which Kalg[B] = K[B]⊗K Kalg is the algebra of regular functions on B. The
Hopf algebra K[B] represents a group scheme.

The constructions in the preceding paragraphs are inverse to one another, and these constructions
permit us to identify the category of linear algebraic groups defined over K with the full subcategory
of the category of affine group schemes of finite type over K consisting of those group schemes with
geometrically reduced coordinate algebras.

There are interesting group schemes in characteristic p > 0 whose coordinate algebras are not
reduced. Standard examples of non-reduced group schemes include the group scheme µp repre-
sented by K[T]/(Tp − 1) with co-multiplication given by ∆(T) = T ⊗ T, and the group scheme αp
represented by K[T]/(Tp) with co-multiplication given by ∆(T) = T ⊗ 1 + 1⊗ T. Note that µp is a
subgroup scheme of the multiplicative group Gm, and αp is a subgroup scheme of the additive group
Ga.

2.3. Smoothness. For Λ ∈ AlgK, let Λ[ε] denote the algebra of dual numbers over Λ; thus Λ[ε] is a
free Λ-module of rank 2 with Λ-basis {1, ε}, and ε2 = 0. If A is a group scheme over K, the natural
Λ-algebra homomorphisms

Λ ↪→ Λ[ε]
π−→ Λ

yield corresponding group homomorphisms

A(Λ) ↪→ A(Λ[ε])
A(π)−−−→ A(Λ).

The Lie algebra Lie(A) of A is the group functor on AlgK given for Λ ∈ AlgK by

Lie(A)(Λ) = ker(A(Λ[ε])
A(π)−−−→ A(Λ)).

1Taken in some universe, to avoid logical problems.
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Abusing notation somewhat, we are going to write also Lie(A) for Lie(A)(K). We have:

(2.3.1) ([DG 70, II.4]). (a) Lie(A) has the structure of a K-vector space, and the mapping Lie(A) →
Lie(A)(Λ) induces an isomorphism

Lie(A)(Λ) ' Lie(A)⊗K Λ

for each Λ ∈ AlgK.
(b) For Λ ∈ AlgK and g ∈ A(Λ), the inner automorphism Int(g) determines by restriction a Λ-linear au-

tomorphism Ad(g) of Lie(A)(Λ) ' Lie(A)⊗K Λ; thus Ad : A→ GL(Lie(A)) is a homomorphism
of group schemes over K.

(2.3.2) ([DG 70, II.5.2.1, p. 238] or [KMRT, (21.8) and (21.9)]). One says that the group scheme A is smooth
over K if any of the following equivalent conditions hold:

(a) A is geometrically reduced – i.e. A/Kalg
is reduced.

(b) the local ring K[A]I is regular, where I is the maximal ideal defining the identity element of A.
(c) the local ring K[A]I is regular for each prime ideal I of K[A].
(d) dimK Lie(A) = dim A, where dim A denotes the dimension of the scheme A, which is equal to the

Krull dimension of the ring K[A].

If A is a group scheme over K, we often abbreviate the phrase “A is smooth over K” to “A is
smooth”;

2.4. Reduced subgroup schemes. The following result is well known; a proof may be found in [MT
07, Lemma 3].

(2.4.1). If K is perfect, there is a unique smooth subgroup Ared ⊂ A which has the same underlying topological
space as A. If B is any smooth group scheme over K and f : B → A is a morphism, then f factors in a unique
way as a morphism B→ Ared followed by the inclusion Ared → A.

Note that if K is not perfect, the subgroup scheme (A/Kalg
)red of A/Kalg

may not arise by base
change from a subgroup scheme over K; see [MT 07, Example 4].

2.5. Fixed points and the center of a group scheme. For the remainder of §2, let us fix a group
scheme A which is affine and of finite type over the field K. Let V denote an affine K-scheme (of finite
type) on which A acts. Define a K-subfunctor W of V as follows: for each Λ ∈ AlgK, let

W(Λ) = {v ∈ V(Λ) | av = v for each Λ′ ∈ AlgΛ and each a ∈ A(Λ′)}.
We write W = VA; it is the functor of fixed points for the action of A.

In general one indeed must define the set W(Λ) as the fixed point set of all a ∈ A(Λ′) for varying
Λ′: e.g. if A is infinitesimal, A(K) = {1} while W(K) is typically a proper subset of V(K).

Since V is affine – hence separated – and since K is a field so that K[A] is free over K, we have:

(2.5.1) ([DG 70, II.1 Theorem 3.6] or [Ja 03, I.2.6(10)]). VA is a closed subscheme of V.

The following assertion is somewhat related to [Ja 03, I.2.7 (11) and (12)].

(2.5.2). Suppose in addition that A is smooth over K. Then for any commutative K-algebra K′ which is an
algebraically closed field, we have VA(K′) = V(K′)A(K′). 2

Proof. It is immediate from definitions that VA(K′) ⊂ V(K′)A(K′). In order to prove the inclusion
V(K′)A(K′) ⊂ VA(K′), we will assume (for notational convenience) that K = K′ is algebraically closed.
Suppose that v ∈ V(K) and that v is fixed by each element of A(K).

Consider now the morphism φ : A → V given for each Λ ∈ AlgK and each a ∈ A(Λ) by the
rule a 7→ av. The result will follow if we argue that φ is a constant morphism. But we know that
φ : A(K) → V(K) is constant. Since A is a reduced scheme, the morphism φ is determined by its
values on closed points; since K is algebraically closed, the closed points are in bijection with A(K);
the fact that φ is constant now follows. �

2Here V(K′)A(K′) denotes the subset of V(K′) fixed by each element of the group A(K′).
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Consider now the action of A on itself by inner automorphisms. For any Λ ∈ AlgK and any
a ∈ A(Λ), let us write Int(a) for the inner automorphism x 7→ axa−1 of the Λ-group scheme A/Λ.
The fixed point subscheme for this action is by definition the center Z of A; thus we have the following
result (see also [DG 70, II.1.3.9]):

(2.5.3). The center Z is a closed subgroup scheme of A. For any Λ ∈ AlgK, we have

Z(Λ) = {a ∈ A(Λ) | Int(a) is the trivial automorphism of the group scheme A/Λ}.

2.6. Smoothness of the center. Write a = Lie(A) for the Lie algebra of A. Recall from (2.3.1) the
adjoint action Ad of A on a.

(2.6.1). Regarding a as a K-scheme, the Lie algebra of Z is the fixed point subscheme of a for the adjoint action
of A.

Proof. Since Z is the fixed point subscheme of A for the action of A on itself by inner automorphisms,
the assertion follows from [DG 70, II.4.2.5]. �

In particular, Lie(Z) identifies with the K-points aAd(A)(K) of this fixed point functor, and one
recovers the fixed point functor from the K-points [Ja 03, I.2.10(3)]:

aAd(A)(Λ) = Lie(Z)⊗K Λ.

(2.6.2). The center Z of A is smooth over K if and only if

dim Z = dimK aAd(A)(K) = dimK Lie(Z).

Proof. Immediate from (2.3.2) and the observation (2.6.1). �

Example. Let K be a perfect field of characteristic p > 0, and let A be the smooth group scheme over
K for which

A(Λ) =


t 0 0

0 tp s
0 0 1

 | t ∈ Λ×, s ∈ Λ


for each Λ ∈ AlgK. The Lie algebra a is spanned as a K-vector space by the matrices

X =

1 0 0
0 0 0
0 0 0

 Y =

0 0 0
0 0 1
0 0 0

 .

Write Z = Z(A) for the center of A. Since K is perfect, we may form the corresponding reduced
subgroup scheme Zred ⊂ Z – see e.g. [MT 07, Lemma 3]; Zred is a smooth group scheme over K.

We are going to argue that Z is not smooth – i.e. that Z 6= Zred. Observe first that a is an Abelian
Lie algebra; thus its center z(a) is all of a.

Now, if Kalg is an algebraic closure of K, it is easy to check that the center of the group A(Kalg) is
trivial. It follows that the smooth group scheme Zred satisfies Zred(Kalg) = 1; thus Zred is trivial and
Lie(Zred) = 0.

It is straightforward to verify that the multiples of X are the only fixed points of a under the adjoint
action of A. Thus Lie(Z) = aAd(A) has dimension 1 as a K-vector space. Since dim Z = dim Zred = 0,
it follows that Z is not smooth.

Note that for this example, both containments in the following sequence are proper:

Lie(Zred) ⊂ Lie(Z) ⊂ z(a).



6 GEORGE J. MCNINCH AND DONNA M. TESTERMAN

2.7. Smoothness of certain fixed point subgroup schemes. Recall that a group scheme D over K is
diagonalizable if K[D] is spanned as a linear space by the group of characters X∗(D). The group scheme
D is of multiplicative type if D/Kalg

is diagonalizable.
Suppose in this section that D is either a group scheme of multiplicative type, or that D is an étale

group scheme over K for which the finite group D(Kalg) has order invertible in K.
Assume that D acts on the group scheme A by group automorphisms: for any Λ ∈ AlgK and any

x ∈ D(Λ), the element x acts on the group scheme A/Λ as a group scheme automorphism.
The fixed points AD form a closed subgroup scheme of A . Moreover, we have:

(2.7.1). If A is smooth over K, then also the fixed point subgroup scheme AD is smooth over K.

Proof. According to the “Théorème de lissité des centralisateurs” [DG 70, II.5.2.8 (p. 240)] the result
will follow if we know that H1(D, Lie(A)) = 0. It suffices to check this condition after extending
scalars; thus we may and will suppose that D is diagonalizable or that D is the constant group scheme
determined by a finite group whose order is invertible in K.

In each case, one knows that the cohomology group Hn(D, M) is 0 for all D-modules M and all
n ≥ 1; for a finite group with order invertible in K, this vanishing is well-known; for a diagonalizable
group, see [Ja 03, I.4.3]. �

2.8. Possibly disconnected groups. Let G be a smooth linear algebraic group over K.

(2.8.1). Suppose that 1 → G → G1 → E → 1 is an exact sequence, where E is finite étale and E(Kalg) has
order invertible in K. If the center of G is smooth, then the center of G1 is smooth.

Proof. Write Z for the center of G, write Z1 for the center of G1. Note that E acts naturally on Z.
There is an exact sequence of groups

1→ ZE → Z1 → H → 1

for a subgroup H ⊂ E. Since Z is smooth, the smoothness of ZE follows from (2.7.1); since H is
smooth, one obtains the smoothness of Z1 by applying [KMRT, Cor. (22.12)]. �

2.9. Split unipotent radicals. Fix a smooth group scheme A over K. A smooth group scheme B over
K is unipotent if each element of B(Kalg) is unipotent. Recall that the unipotent radical of A/Kalg

is the
maximal closed, connected, smooth, normal, unipotent subgroup scheme of A/Kalg

.

(2.9.1). [Sp 98, Prop. 14.4.5] If K is perfect, there is a smooth subgroup scheme Ru A ⊂ A such that Ru A/Kalg

is the unipotent radical of A/Kalg
.

If K is not perfect, then in general Ru A/Kalg
does not arise by base change from a K-subgroup

scheme of A. The unipotent group B is said to be split provided that there are closed subgroup
schemes

1 = B0 ⊂ B1 ⊂ · · · ⊂ Bn = B

such that Bi/Bi−1 ' Ga for 1 ≤ i ≤ n.

Theorem. Let A be a connected, solvable, and smooth group scheme over K. Let T ⊂ A be a maximal torus,
and suppose that φ : Gm → T is a cocharacter. Write S for the image of φ. If Lie(T) is precisely the set of fixed
points Lie(A)S, and if each non-zero weight λ of S on Lie(A) satisfies 〈λ, φ〉 > 0, then Ru A is defined over K
and is a split unipotent group scheme.

Proof. Write P = P(φ) for the smooth subgroup scheme of A determined by φ as in [Sp 98, §13.4]; it
is the subgroup contracted by the cocharacter φ. Write M = CA(S); M is connected [Sp 98, p. 110] and
smooth [DG 70, p. 476, cor. 2.5]. There is a smooth, connected, normal, unipotent subgroup scheme
U(φ) ⊂ P for which the product morphism

M×U(φ)→ P
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is an isomorphism of varieties; [Sp 98, 13.4.2]. Moreover, since 〈λ, φ〉 > 0 for each weight of S on
Lie(A), it follows that U(−φ) is trivial. Thus loc. cit. 13.4.4 shows that A = P.

Evidently T ⊂ M. Since Lie(T) = Lie(M), it follows that M = T. It follows that U(φ)/Kalg
is the

unipotent radical of A/Kalg
as desired.

Finally, it follows from [Sp 98, 14.4.2] that U(φ) is a K-split unipotent group, and the proof is
complete. �

2.10. Torus actions on a projective space. Let T be a split torus over K, and let V be a T-representation.
For λ ∈ X∗(T), let Vλ be the corresponding weight space; thus T acts on Vλ through the character
λ : T → Gm. There are distinct characters λ1, . . . , λn ∈ X∗(T) such that

V =
n⊕

i=1

Vλi ;

the λi are the weights of T on V. Let us fix a vector 0 6= v ∈ Vλ1 .
Consider now the projective space P(V) of lines through the origin in V; for a non-zero vector

w ∈ V, write [w] for the corresponding point of P(V). The linear action of T on V induces in a natural
way an action of T on P(V).

Since v is a weight vector for T, the point [v] ∈ P(V)(K) determined by v is fixed by the action of
T. Consider the tangent space M = T[v]P(V); since [v] is a fixed point of T, the action of T on P(V)
determines a linear representation of T on M.

(2.10.1). The non-zero weights of T on M = T[v]P(V) are the characters λi − λ1 for 1 < i ≤ n. Moreover,

dim M0 = dim Vλ1 − 1 and dim Mλi−λ1 = dim Vλi , 1 < i ≤ n.

Proof. Choose a basis S1, S2, . . . , Sr for the dual space of V∨ for which Si ∈ V∨−λi
for 1 ≤ i ≤ r – i.e.

the vector Si has weight −λi for the contragredient action of T on V∨. Without loss of generality, we
may and will assume that S1 satisfies S1(v) 6= 0 and that Si(v) = 0 for 2 ≤ i ≤ n.

Now consider the affine open subset V = P(V)S1 of P(V) defined by the non-vanishing of S1. One
knows that [v] is a point of V . Moreover, V ' Affr−1 where r = dim V. Since S1 is a weight vector for
the action of the torus T, it is clear that V is a T-stable subvariety of P(V). More precisely, V identifies
with the affine scheme Spec(A) where A is the T-stable subalgebra

A = k
[

S2

S1
,

S3

S1
, . . . ,

Sr

S1

]
of the field of rational functions k(P(V)).

Under this identification, the point [v] ∈ V corresponds to the point~0 of Affr−1; i.e. to the maximal

ideal m =

(
S2

S1
,

S3

S1
, . . . ,

Sr

S1

)
⊂ A. Now, m and m2 are T-invariant; since

Si
S1

has weight −λi + λ1,

evidently the weights of T in its representation on m/m2 are of the form −λi + λ1, and one has

dim(m/m2)0 = dim Vλ1 − 1 and dim(m/m2)−λi+λ1 = dim Vλi , 1 < i ≤ n.

The assertion now follows since there is a T-equivariant isomorphism between the tangent space
to P(V) at [v] – i.e. the space M = T[v]P(V) – and the contragredient representation (m/m2)∨. �

2.11. Surjective homomorphisms between group schemes; normalizers. In this section, let us fix
group schemes G1 and G2 over K, and suppose that f : G1 → G2 is a surjective homomorphism
of group schemes; recall that f is surjective provided that the comorphism f ∗ : K[G2] → K[G1] is
injective (cf. [KMRT, Prop. 22.3]).

The mapping f is said to be separable provided that d f : Lie(G1)→ Lie(G2) is surjective as well.
Let C2 ⊂ G2 be a subgroup scheme, and let C1 = f−1C2 be the scheme-theoretic inverse image.

(2.11.1). (a) The mapping obtained by restriction f|C1
: C1 → C2 is surjective.

(b) If C1 is smooth, then C2 is smooth.
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(c) If f is separable and C2 is smooth, then C1 is smooth.
(d) Suppose that f is separable, and that either C1 or C2 is smooth. Then both C1 and C2 are smooth, and

f|C1
is separable.

Proof. (a) and (b) follow from [KMRT, Prop. 22.4].
We now prove (c). Since f is separable and surjective, [KMRT, Prop. 22.13] shows that ker f is

a smooth group scheme over K. Note that ker f ⊂ C1. If C2 is smooth, the smoothness of C1 now
follows from [KMRT, Cor. 22.12].

We finally prove (d). The smoothness assertions have already been proved. We again know ker f
to be smooth over K. In particular, dim ker f = dim ker d f . Since ker f ⊂ C1, we have

dim image(d f|C1
) = dim Lie(C1)− dim ker d f|C1

= dim C1 − dim ker f|C1
= dim C2,

where we have used [KMRT, Prop. 22.11] for the final equality; since C2 is smooth, it follows that
d f|C1

: Lie(C1)→ Lie(C2) is surjective. �

Write N2 = NG2(C2) for the normalizer of C2 in G2. Thus N2 is the subgroup functor given for
Λ ∈ AlgK by the rule

N2(Λ) ={g ∈ G2(Λ) | g normalizes the subgroup scheme C2/Λ ⊂ G2/Λ}
={g ∈ G2(Λ) | gC2(Λ′)g−1 = C2(Λ′) for all Λ′ ∈ AlgΛ}.

According to [DG 70, II.1 Theorem 3.6(b)], N2 is a closed subgroup scheme of G2.
As a consequence of (2.11.1), we find the following:

(2.11.2). Set N1 = f−1N2.
(a) N1 = NG1(C1).
(b) f|N1

: N1 → N2 is surjective.
(c) If N1 is smooth, then N2 is smooth.
(d) If f is separable and N2 is smooth, then N1 is smooth.
(e) Suppose that f is separable and that either N1 or N2 is smooth. Then both N1 and N2 are smooth, and

f|N1
is separable.

3. RECOLLECTIONS: REDUCTIVE GROUPS

Let G be a connected and reductive group over K. Thus G is a smooth group scheme over K, or
equivalently G is a linear algebraic group defined over K. To say that G is reductive means that the
unipotent radical of G/Kalg

is trivial. We are going to write ζG = Z(G) for the center of G.
Some results will be seen to hold for a reductive group G in case G is D-standard; in the next few

sections, we explain this condition. We must first recall the notions of good and bad characteristic.

3.1. Good and very good primes. Suppose that H is a smooth group scheme over K – i.e. an algebraic
group over K – for which H/Kalg

is quasisimple; thus H is geometrically quasisimple. Write R for the
root system of H. The characteristic p of K is said to be a bad prime for R – equivalently, for H – in
the following circumstances: p = 2 is bad whenever R 6= Ar, p = 3 is bad if R = G2, F4, Er, and p = 5
is bad if R = E8. Otherwise, p is good.

A good prime p is very good provided that either R is not of type Ar, or that R = Ar and r 6≡ −1
(mod p).

If H is any reductive group, one may apply [KMRT, Theorems 26.7 and 26.8] 3 to see that there is a
possibly inseparable central isogeny

(1) R(H)×
m

∏
i=1

Hi → H

3[KMRT] only deals with the semisimple case; the extension to a general reductive group is not difficult to handle, and an
argument is sketched in the footnote found in [MT 07, §2.4].
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where the radical R(H) of H is a torus, and where for 1 ≤ i ≤ m there is an isomorphism Hi ' RLi/K Ji
for a finite separable field extension Li/K and a geometrically quasisimple, simply connected group
scheme Ji over Li; here, RLi/K Ji denotes the “Weil restriction” – or restriction of scalars – of Ji to K,
cf. [Sp 98, §11.4]. The Hi are uniquely determined by H up to order of the factors. Then p is good,
respectively very good, for H if and only if that is so for Ji for every 1 ≤ i ≤ m.

3.2. D-standard. Recall from §2.7 the notion of a diagonalizable group scheme, and of a group scheme
of multiplicative type.

(3.2.1). If D is subgroup scheme of G of multiplicative type, the connected centralizer CG(D)o is reductive.

When D is smooth, the preceding result is well-known: the group D is the direct product of a
torus and a finite étale group scheme all of whose geometric points have order invertible in K. The
centralizer of a torus is (connected and) reductive, and one is left to apply a result of Steinberg [St
68, Cor. 9.3] which asserts that the centralizer of a semisimple automorphism of a reductive group
has reductive identity component. In fact, the result remains valid when D is no longer smooth; a
proof will appear elsewhere.

Consider reductive groups H which are direct products

(∗) H = H1 × T

where T is a torus, and where H1 is a semisimple group for which the characteristic of K is very good.

Definition. A reductive group G is D-standard if there exists a reductive group H of the form (∗), a
subgroup D ⊂ H such that D is of multiplicative type, and a separable isogeny between G and the
reductive group CH(D)o. 4

(3.2.2) ([Mc 05, Remark 3]). For any n ≥ 1, the group GLn is D-standard. The group SLn is D-standard if
and only if p does not divide n.

In order to prove (3.2.4) below, we first observe:

(3.2.3). Let M, G1, G2 be affine group schemes of finite type over K. Let f : G1 → G2 be a surjective morphism
of group schemes, suppose that ker f is central in G1, and let φ : M → G2 be a homomorphism of group
schemes for which φ−1(ζG2) is central in M. Consider the group scheme M̃ defined by the Cartesian diagram:

M̃ = M×G2 G1 M

G1 G2

?

φ̃

-
f̃

?

φ

-
f

Then
(a) φ̃−1(ζG1) is central in M̃.
(b) Suppose that G1, G2 are connected and reductive, that f is a separable isogeny, and that M is connected

and quasisimple. Then M̃ is connected and quasisimple.

Proof. To prove (a), let N = φ̃−1(ζG1). It is enough to show that φ̃(N) is central in G1 and that f̃ (N) is
central in M. The first of these observations is immediate from definitions, while the second follows
from assumption on the mapping φ : M→ G2 once we observe that f̃ (N) ⊂ φ−1(ζG2).

For (b), we view f̃ as arising by base change from f . Then f̃ is an isogeny since ker( f )/Kalg
and

ker( f̃ )Kalg coincide. Moreover, it follows from [Li 02, Prop 4.3.22] that f̃ is separable (since it is étale).

Thus f̃ is a separable isogeny; since M̃ is separably isogenous to a connected quasisimple group, it is
itself connected and quasisimple. �

4This definition does not require the knowledge that CH(D)o is reductive: if there is an isogeny between G and CH(D)o ,
then CH(D)o is reductive.
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(3.2.4). Suppose that the D-standard reductive group G is split over K. There are D-standard reductive groups
M1, . . . , Md together with a homomorphism Φ : M→ G, where M = ∏d

i=1 Mi, such that the following hold:
(a) The derived group of Mi is geometrically quasisimple for 1 ≤ i ≤ d.
(b) Φ is surjective and separable.
(c) For 1 ≤ i < j ≤ d, the image in G of Mi and Mj commute.
(d) The subgroup scheme Φ−1(ζG) is central in ∏d

i=1 Mi.

Proof. We argue first that it suffices to prove the result after replacing G be a separably isogenous
group. More precisely, we prove: (∗) if f : G1 → G2 is a separable isogeny between D-standard
reductive groups G1 and G2, then (3.2.4) holds for G1 if and only if it holds for G2.

Suppose first that the conclusion of (3.2.4) is valid for G1. If Φ : M → G1 is a homomorphism for
which (a)–(d) hold, then evidently (a)–(d) hold for f ◦Φ.

Now suppose that the conclusion of (3.2.4) is valid for G2, and that Φ : M → G2 is a homomor-
phism for which (a)–(d) hold. For each 1 ≤ j ≤ d write Φj for the composite of Φ with the inclusion
of Mj in the product. Form the group M̃j = Mj ×G2 G1 as in (3.2.3). Then by (b) of loc. cit., M̃j is
quasisimple. Moreover, loc. cit. (a) shows the kernel of Φ̃j it be central in M̃j.

Note that the image of Φ̃j is mapped to the image of Φj by f . Now, f is a separable isogeny, hence
in particular f is central; i.e. ker f is central. It follows that the image of Φ̃i commutes with the image
of Φ̃j whenever 1 ≤ i 6= j ≤ n. We can thus form the homomorphism Φ̃ : ∏d

j=1 M̃j → G1 whose

restriction to each M̃j is just Φ̃j, and it is clear that (a)–(d) hold for Φ̃; this completes the proof of (∗).
In view of the definition of a D-standard group, we may now suppose that G is the connected

centralizer CH1(D)o of a diagonalizable subgroup scheme D ⊂ H1 = H× S, where H is a semisimple
group in very good characteristic and S a torus.

We may use [Sp 98, 8.1.5] to write G as a commuting product of its minimal non-trivial connected,
closed, normal subgroups Ji for i = 1, 2, . . . , n. Fix a maximal torus T ⊂ G, so that Ti = (T ∩ Ji)

o is a
maximal torus of Ji for each i.

Now set Ti = ∏i 6=j Tj; then Ti is a torus in G. Moreover, Ji is the derived subgroup of the reductive
group Mi = CG(Ti).

Now, Mi is the connected centralizer in H1 of the diagonalizable subgroup 〈Ti, D〉; thus Mi is
D-standard.

Finally, putting M = ∏i Mi, we have a natural surjective mapping M → G for which (a)-(d) hold,
as required. �

3.3. Existence of Springer Isomorphisms. Let G denote a D-standard reductive group. We write
N = N (G) ⊂ g for the nilpotent variety of G and U = U (G) ⊂ G for the unipotent variety of G.

By a Springer isomorphism, we mean a map

σ : N → U
which is a G-equivariant isomorphism of varieties over K.

The first assertion of the following Theorem – the existence of a Springer isomorphism – is due
essentially to Springer; see e.g. [SS 70, III.3.12] for the case of an algebraically closed field, or see
[Spr69]. The second assertion was obtained by Serre and appears in the appendix to [Mc 05].

Theorem (Springer, Serre). (1) There is a Springer isomorphism σ : N → U .
(2) Any two Springer isomorphisms induce the same mapping between the set of G(Kalg)-orbits in U (Kalg)

and the set of G(Kalg)-orbits in N (Kalg), where Kalg is an algebraic closure of K.

Proof. We sketch the argument for assertion (1) in order to point out the role of the D-standard as-
sumption made on G.

If G is semisimple in very good characteristic, the nilpotent variety N and the unipotent variety
U are both normal. Indeed, for U , one knows [SS 70, III.2.7] that U is normal whenever G is simply
connected (with no condition on p). Moreover, one knows that the normality of U is preserved by
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separable isogeny 5. In positive characteristic the normality of N for a semisimple group G is a
result of Veldkamp (for most p) and of Demazure when the characteristic is very good for G; see [Ja
04, 8.5]. Using the normality of U and of N , Springer showed that [Spr69] there is a G-equivariant
isomorphism as required.

To conclude that assertion (1) is valid for any D-standard groups, it suffices to observe the fol-
lowing: (i) if π : G → G1 is a separable isogeny, then there is a Springer isomorphism for G if and
only if there is a Springer isomorphism for G1, and (ii) if H is a reductive group for which there is a
Springer isomorphism, and if D ⊂ H is a subgroup of multiplicative type, then Co

H(D) has a Springer
isomorphism. �

We note a related result for certain not-necessarily-connected reductive groups.

(3.3.1). Let G be a connected reductive group for which there is a Springer isomorpism σ : N (G) → U (G).
Let D ⊂ G be a subgroup of multiplicative type, and let M = CG(D).

(a) σ restricts to an isomorphism N (M)→ U (M).
(b) The finite group M(Kalg)/Mo(Kalg) has order invertible in K.

Proof. Assertion (a) follows from the observations: N (M) = N (G)D and U (M) = U (G)D. To prove
(b), note thatN (M) = N (Mo) is connected, so that by (a), also U (M) is connected. Thus U (M) ⊂ Mo

and (b) follows at once. �

3.4. Smoothness of some subgroups of D-standard groups. For any algebraic group, and any ele-
ment x ∈ G, let CG(x) denote the centralizer subgroup scheme of G. Then by definition Lie CG(x) =
cg(x), where cg(x) denotes the centralizer of x in the Lie algebra g, but since the centralizer may not
reduced, the dimension of cg(x) may be larger than the dimension dim CG(x) = dim CG(x)red, where
CG(x)red denotes the corresponding reduced – hence smooth – group scheme. Similar remarks hold
when x ∈ G is replaced by an element X ∈ g.

When G is a D-standard reductive group, this difficulty does not arise. Indeed:

(3.4.1). Let G be D-standard, let x ∈ G(K), and let X ∈ g = g(K). Then CG(x) and CG(X) are smooth over
K. In other words,

dim CG(x) = dim cg(x) and dim CG(X) = dim cg(X).
In particular,

Lie CG(x)red = cg(x) and Lie CG(X)red = cg(X).

Proof. When G is semisimple in very good characteristic, the result follows from [SS 70, I.5.2 and
I.5.6]. The extension to D-standard groups is immediate; the verification is left to the reader. 6 �

Similar assertions holds for the center of G, as follows:

(3.4.2). Let G be a D-standard reductive group. Then the center ζG of G is smooth.

Proof. Indeed, for any field extension L of K, the center of G/L is just the group scheme (ζG)/L ob-
tained by base change. To prove that ζG is smooth, it suffices to prove that (ζG)/L is smooth. So we
may and will suppose that K is algebraically closed; in particular, G is split.

Fix a Borel subgroup B of G and fix a maximal torus T ⊂ B. Let X = ∑α Xα ∈ Lie(B) be the sum
over the simple roots α, where Xα ∈ Lie(B)α is a non-zero root vector; then X is regular nilpotent.

For a root β ∈ X∗(T) of T on Lie(G), write β∨ ∈ X∗(T) for the corresponding cocharacter β∨ :
Gm → T, and consider the cocharacter φ : Gm → T given by φ = ∑β β∨ ∈ X∗(T), where the sum is
over all positive roots β. Then Ad(φ(t))X = t2X for each t ∈ Gm(K) so that the image of φ normalizes
the centralizer C = CG(X).

5More precisely, if π : G → G1 is a separable central isogeny, the restriction of π determines an isomorphism between U (G)
and U (G1).

6Complete details of the reduction from the case of a D-standard group to that of a semisimple group in very good charac-
teristic can be given along the lines of the argument used in the proof of (5.4.2).
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Now, C is a smooth subgroup of G by (3.4.1). The image of φ is a torus, hence is a diagonalizable
group. So the fixed points Cim φ of the image of φ on C form a smooth subgroup by (2.7.1).

Finally, since X is contained in the dense B-orbit on Lie(RuB), X is a distinguished nilpotent element;
cf. [Ja 04, 4.10, 4.13]. So it follows from [Ja 04, Prop. 5.10], that Cim φ is precisely ζG, the center of G.
Thus indeed ζG is smooth. �

Remark. In case G is semisimple in very good characteristic one can instead apply [Hum 95, 0.13] to
see that the center of the Lie algebra Lie(G) is trivial; this shows in this special case that ζG is smooth.

3.5. The centralizer of a semisimple element of g. Suppose G is D-standard, let X ∈ g = g(K) be
semisimple, and write M = CG(X). Recall that the closed subgroup scheme M is smooth over K; cf.
(3.4.1).

(3.5.1). (a) X is tangent to a maximal torus T of G.
(b) Mo is a reductive group.

Proof. [Bor 91, Prop. 11.8 and Prop. 13.19]. �

Now fix a maximal torus T with X ∈ Lie(T) as in (3.5.1). Let us recall the following:

(3.5.2). If S ⊂ G is a torus, there is a finite, separable field extension L ⊃ K and a parabolic subgroup P ⊂ G/L
such that CG(S)/L is a Levi factor of P.

Proof. Let the finite separable field extension L ⊃ K be a splitting field for S. The result then follows
from [BoT 65, 4.15]. �

Suppose for the moment that the characteristic p of K is positive. Let Ksep be a separable clo-
sure of K, and consider the (additive) subgroup B of Ksep generated by the elements dβ(X) for
β ∈ X∗(T/Ksep); since dβ(X) = 0 whenever β ∈ pX∗(T/Ksep), B is a finite elementary Abelian p-
group. Write Γ = Gal(Ksep/K) for the Galois group; since X ∈ g(K), the group B is stable under the
action of Γ.

Let µ = D(B) be the K-group scheme of multiplicative type determined by the Γ-module B. The
Γ-equivariant mapping X∗(T/Ksep) → B given by β 7→ dβ(X) determines an embedding of µ as a
closed subgroup scheme of T.

(3.5.3). We have Mo = CG(µ)
o.

Sketch. Since Mo and CG(µ)
o are smooth groups over K, it suffices to give the proof after replacing K

by an algebraic closure. In that case µ is diagonalizable. Let R ⊂ X∗(T) be the roots of G for the torus
T, and for α ∈ R let Uα ⊂ G be the corresponding root subgroup of G.

Then using the Bruhat decomposition of G, one finds that

Mo = 〈T, Uα | dα(X) = 0〉 = CG(µ)
o;

the required argument is essentially the same as that given in [SS 70, II.4.1] except that loc. cit. does
not treat infinitesimal subgroup schemes; cf. [Mc 08a] for the details. �

Theorem. There is a finite separable field extension L ⊃ K for which the connected centralizer Mo
/L =

Co
G(X)/L is a Levi factor of a parabolic subgroup of G/L.

Proof. Suppose first that K has characteristic p > 0. In view of (3.5.3), the reductive group Mo is D-
standard, since µ is a group of multiplicative type. According to (3.4.2), the center Z of Mo is smooth.
Let S be a maximal torus of Z. We have evidently Mo ⊂ CG(S). It follows that Lie(Z) = Lie(S). We
may now use (2.6.1) to see that X ∈ Lie(Z) = Lie(S). Thus Mo ⊃ CG(S).

It follows that Mo = CG(S), and we conclude via (3.5.2).
The situation when K has characteristic zero is simpler. In that case, the center Z of the reductive

group Mo is automatically smooth. If S is a maximal torus of Z then Mo = CG(S) as before. �
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3.6. Borel subalgebras. Suppose that K is algebraically closed. By a Borel subalgebra of g, we mean
the Lie algebra b = Lie(B) of a Borel subgroup B ⊂ G.

Proposition ([Bor 91, 14.25]). g is the union of its Borel subalgebras. More precisely, for each X ∈ g, there is
a Borel subalgebra b with X ∈ b.

4. THE CENTER OF A CENTRALIZER

For a D-standard reductive group G over K, let x ∈ G(K) and X ∈ g(K). We are going to consider
the centralizers CG(X) and CG(x), and in particular, the centers Zx = Z(CG(x)) and ZX = Z(CG(X))
of these centralizers. As we have seen, Zx is a closed subscheme of CG(x) and ZX is a closed sub-
scheme of CG(X). In this section, we will prove Theorem A from the introduction; namely, in §4.2,
we prove that Zx and ZX are smooth. In §4.1, we establish some preliminary results under the as-
sumption that K is perfect. Since the smoothness of Zx and of ZX will follow if it is proved after base
change with an algebraic closure Kalg of K, this assumption on K is harmless for our needs.

4.1. Unipotence of the center of the centralizer when X is nilpotent. Suppose in this section that the
field K is perfect; thus if A is a group scheme over K, we may speak of the reduced subgroup scheme
Ared – cf. (2.4.1). We begin with the following observation which is due independently to R. Proud
and G. Seitz. For completeness, we include a proof.

(4.1.1). Let x be unipotent, let X be nilpotent, write C for one of the groups CG(x) or CG(X), and write
Z = Z(C); thus Z is one of the groups Zx or ZX .

(a) Co is not contained in a Levi factor of a proper parabolic subgroup of G.
(b) The quotient (Zred)

o/(ζG)
o is a unipotent group, where Zred is the corresponding reduced group, and

(Zred)
o is its identity component.

(c) Let Y ∈ Lie(Z) be semisimple. Then Y ∈ Lie(ζG).

Proof. It suffices to prove each of the assertions after extending scalars; thus, we may and will suppose
in the proof that K is algebraically closed. Moreover, if σ : N → U is a Springer isomorphism, then
CG(X) = CG(σ(X)). Thus it suffices to give the proof for the centralizer of X.

We first prove (a). Suppose that L is a Levi factor of a parabolic subgroup P, and assume that Co is
a subgroup scheme of L. Then Co = Co

L(X) so that Lie C = Lie CL(X). Since L is again a D-standard
reductive group, we see by the smoothness of centralizers that Lie CL(X) is the centralizer in Lie L of
X (3.4.1); in particular, it follows that every fixed point of ad(X) on Lie(G) lies in Lie(L). If L were a
proper subgroup of G, the nilpotent operator ad(X) would have a non-zero fixed point on Lie RuP; it
follows that L = G.

We will now deduce (b) and (c) from (a). For (b), let S ⊂ Z be a torus. The assertion (b) will follow
if we prove that S is central in G. But L = CG(S) is a Levi factor of some parabolic subgroup P of G
by (3.5.2), and Co ⊂ L. Thus by (a) we have P = G = L; this shows that S is central in G, as required.

For (c), let Y ∈ Lie(Z) be semisimple. According to Theorem 3.5, L = Co
G(Y) is a Levi factor of

some parabolic subgroup P, and Co ⊂ L. So again (a) shows that P = G = L. Since CG(Y) = G, it
follows that Y is a fixed point for the adjoint action of G on Lie(G). But according to (2.6.1), we have
Lie(ζG) = Lie(G)Ad(G); thus indeed Y ∈ Lie(ζG) as required. �

As a consequence, we deduce the following structural results:

(4.1.2). With notation and assumptions as in (4.1.1), we have:
(a) Zred is the internal direct product ζG · RuZred.
(b) The set of nilpotent elements of Lie(Z) forms a subalgebra u for which

Lie Z = Lie(ζG)⊕ u.

Proof. Note that Z and also Lie(Z) are commutative; since the product of two commuting unipotent
elements of G is unipotent and the sum of two commuting nilpotent elements of Lie(G) is nilpotent,
results (a) and (b) follow from (4.1.1)(b) and (c). �
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4.2. Smoothness of the center of the centralizer. In this section, K is again arbitrary. Let x ∈ G(K),
X ∈ g(K) be arbitrary, write C for one of the groups CG(x) or CG(X), and write Z = Z(C), so that Z
is one of the groups Zx or ZX . We are now ready to prove the following:

Theorem. The center Z = Z(C) is a smooth group scheme over K.

Proof. Since a group scheme is smooth over K if and only if it is smooth upon scalar extension, we
may and will suppose K to be algebraically closed (hence in particular perfect). So as in §4.1, we may
speak of the reduced subgroup scheme Ared of a group scheme A over K.

Let x = xsxu and X = Xs + Xn be the Jordan decompositions of the elements; thus xs ∈ G and
Xs ∈ g are semisimple, xu ∈ G is unipotent, Xn ∈ g is nilpotent, and we have: xsxu = xuxs and
[Xs, Xn] = 0.

Then
CG(x) = CM(xu) and CG(X) = CM(Xn)

where M = CG(xs) resp. M = CG(Xs).
Now, the Zariski closure of the group generated by xs is a smooth diagonalizable group whose

centralizer coincides with CG(xs). And according to §3.5 the centralizer of Xs is reductive and is
the centralizer of a (non-smooth) diagonalizable group scheme. Thus in both cases, the connected
component of M is itself a D-standard reductive group.

Moreover, (3.3.1) shows that xu is a K-point of Mo. There is an exact sequence

1→ CMo (xu)→ CM(xu)→ E→ 1

resp.
1→ CMo (XN)→ CM(XN)→ E′ → 1

for a suitable subgroup E resp. E′ of M/Mo. Since M/Mo has order invertible in K (3.3.1), apply
(2.8.1) to see that the smoothness of Z follows from the smoothness of the center of CMo (xu) resp.
CMo (Xn); thus the proof of the theorem is reduced to the case where x is unipotent and X is nilpotent.
Since in that case CG(X) = CG(σ(X)) where σ : N → U is a Springer isomorphism, we only discuss
the centralizer of a nilpotent element X ∈ g.

We must argue that dim Z = dim Lie Z. Since it is a general fact that dim Lie Z ≥ dim Z, it suffices
to show the following:

(∗) dim Lie Z ≤ dim Z.
By (4.1.2) we have Lie Z = Lie(ζG)⊕ u where u is the set of all nilpotent Y ∈ Lie Z. According to

(3.4.2), the center ζG of G is smooth. Thus dim ζG = dim Lie ζG. In view of (4.1.2), the assertion (∗)
will follow if we prove that

(∗∗) dim u ≤ dim RuZred.
In order to prove (∗∗), we fix a Springer isomorphism σ : N → U – see Theorem 3.3 –, and we

consider the restriction of σ to u.
We first argue that σ maps u to RuZred. Since u is smooth – hence reduced – and since K is alge-

braically closed, it suffices to show that σ maps the K-points of u to RuZred. Fix Y ∈ u(K).
If g ∈ CG(X)(K), the inner automorphism Int(g) of C is trivial on Z; thus, the automorphism

Ad(g) of Lie C is trivial on Lie Z. It follows that

gσ(Y)g−1 = σ(Ad(g)Y) = σ(Y).

Since K is algebraically closed, it now follows from (2.5.2) that

σ(Y) ∈ Z(K) = CG(X)Int(CG(X))(K).

Since u is reduced, one knows σ(Y) ∈ Zred(K). Since σ(Y) is unipotent, it follows that σ(Y) ∈
RuZred(K).

Thus the restriction of the Springer isomorphism σ gives a morphism σ|u : u → RuZred. Since σ is
a closed morphism, it follows that the image of σ|u is a closed subvariety of RuZred whose dimension
is dim u, so that indeed (∗∗) holds.

�
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With notation as in the preceding proof, we point out a slightly different argument. Namely, rea-
soning as above, one can show that the inverse isomorphism τ = σ−1 : U → N maps RuZred to u. It
follows that RuZred and u are isomorphic varieties, hence they have the same dimension.

Note that we have now proved Theorem A from the introduction.

5. REGULAR NILPOTENT ELEMENTS

In this section, we are going to prove Theorems B, C, and E from the introduction. We denote by
G a D-standard reductive group over the field K. Let T ⊂ G be a maximal torus, and let T0 ⊂ T
where T0 is a maximal torus of the derived group G′ = (G, G) of G. Let us write r = dim T0 for the
semisimple rank of G. Finally, let W = NG(T)/T ' NG′(T0)/T0 be the corresponding Weyl group.

5.1. Degrees and exponents. We give here a quick description of some well-known numerical invari-
ants associated with the Weyl group W. We suppose that the derived group G′ of G is quasi-simple,
and we suppose that T (and hence G) is split over K.

Let V = X∗(T0) ⊗Z Q and note that the action of the Weyl group W on T0 determines a linear
representation (ρ, V) of W. The algebra of polynomials (regular functions) on V may be graded by
assigning the degree 1 to each element of the dual space V∨ ⊂ Q[V]. The action via ρ of W on
V determines an action of W on Q[V] by algebra automorphisms, and it is known that the algebra
Q[V]W of W-invariant polynomials on V is generated as a Q-algebra by r algebraically independent
homogeneous elements of positive degree [Bou 02, V.5.3 Theorem 3]. The degrees of W are the degrees
d1, d2, . . . , dr of a system of homogeneous generators for Q[V]W . The degrees depend – up to order –
only on W; see [Bou 02, V.5.1]. The exponents of W are the numbers k1, k2, . . . , kr where ki = di − 1 for
1 ≤ i ≤ r.

Recall that the “exponents” earn their name as follows. Let c ∈ W be a Coxeter element [Bou
02, V.6.1], and write h for the order of c. If E is a field of characteristic 0 containing a primitive h-th
root of unity v ∈ E×, then [Bou 02, V.6.2 Prop. 3] the eigenvalues of ρ(c) on V ⊗Q E are the values

vk1 , vk2 , · · · , vkr .

The exponents and degrees are known explicitly; cf. [Bou 02, Plate I – IX].

5.2. The centralizer of a regular nilpotent element. In this section, G is again a D-standard reductive
group (whose derived group is not required to be quasisimple) which we assume to be quasisplit over
K.

If φ : Gm → G is a cocharacter and i ∈ Z, we write g(φ; i) for the i-weight space of the action of
φ(Gm) on g under the adjoint action of φ(Gm); thus

g(φ; i) = {Y ∈ g | Ad(φ(t))Y = tiY ∀t ∈ K×alg}.

Any cocharacter φ determines a unique parabolic subgroup P = P(φ) whose Kalg points are given
by:

P(Kalg) = {g ∈ G(Kalg) | lim
t→0

Int(φ(t))g exists}.

One knows that p = Lie(P) = ∑i≥0 g(φ; i).
Let X ∈ g(K) be nilpotent. Following [Ja 04, §5.3], we say that a cocharacter ψ : Gm → G is said to

be associated to a nilpotent element X in case (i) X ∈ g(ψ; 2), and (ii) there is a maximal torus S of the
centralizer CG(X) such that the image of ψ lies in (L, L), where L = CG(S).

(5.2.1). (a) There are cocharacters associated to X.
(b) If φ and φ′ are cocharacters associated to X, then P(φ) = P(φ′).
(c) The centralizer CG(X) is contained in P = P(φ) for a cocharacter φ associated to X.
(d) The unipotent radical R of CG(X)/Kalg

is defined over K and is a K-split unipotent group.
(e) Any two cocharacters associated to X are conjugate by a unique element of R(K).
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Proof. In the geometric setting, these assertions may be found in [Ja 04]; the existence of an associated
cocharacter is an essential part of the Bala-Carter, a conceptual proof of which may be found [Pr 03].
Over the ground field K, (a) and (c) follow from [Mc 04, Theorem 26 and Theorem 28]. (b) follows
since associated cocharacters are optimal for the unstable vector X in the sense of Kempf; see [Pr 03].
Finally, (d) and (e) follow from [Mc 05, Prop/Defn 21]. �

Finally, recall that a nilpotent element X ∈ g is distinguished provided that a maximal torus of the
centralizer CG(X) is central in G.

(5.2.2). Let X ∈ g be nilpotent. The following are equivalent:
(a) X is regular – i.e. dim CG(X) is equal to the rank of G.
(b) X ∈ Lie(B) for precisely one Borel subgroup of G.

Moreover, if X is regular then X is distinguished, and if φ is a cocharacter associated with X, then B = P(φ)
is the unique Borel subgroup with X ∈ Lie(B).

Proof. The equivalence of (a) and (b) can be found in [Ja 04, Cor. 6.8]. Note that in loc. cit. it is
assumed that K is algebraically closed. But, it suffices to prove that (b) implies (a) after replacing K
by an extension field. It remains to argue that (a) implies (b). But given (a), one knows there to be a
unique Borel subgroup B ⊂ G/Kalg

with X ∈ Lie(B), where Kalg is an algebraic closure of K. It now
follows from [Mc 04, Prop. 27] that B is a parabolic subgroup of G [i.e. that B is defined over K], and
(b) follows.

That a regular element is distinguished follows from the Bala-Carter theorem; it can be seen per-
haps more directly just by observing that B is a distinguished parabolic subgroup, so that an elment
of the dense orbit of B on Lie RuB is distinguished by [Ca 93, 5.8.7].

Finally, write P = P(φ). It follows from [Ja 04, 5.9] that X is in the dense P-orbit on Lie(RuP) and
that CP(X) = CG(X); thus dim Ad(G)X = 2 dim RuP so that indeed P must be a Borel subgroup. �

Since G is assumed to be quasisplit, we have

(5.2.3) ([Mc 05, Theorem 54]). There is a regular nilpotent element X ∈ g(K).

We fix now a regular nilpotent element X. Let C = CG(X) be the centralizer of X, and write ζG for
the center of G.

(5.2.4). For the group C = CG(X) we have:
(a) the maximal torus of C is the identity component of the center ζG of G.
(b) C = ζG · Ru(C).
(c) C is commutative.

Proof. Assertions (a) and (b) follow from [Ja 04, §4.10, §4.13] precisely as in the proof of (3.4.2).
For (c), use a Springer isomorphism σ : N → U , to see that C is the centralizer of the regular

unipotent element u = σ(X). Then the commutativity of C follows from a result of Springer – see
[Hum 95, Theorem 1.14] – which implies that the centralizer of u contains a commutative subgroup
of dimension equal to the rank of G. This shows that the identity component of C is commutative.
Since RuC is connected and since C = ζGRuC, the group C is itself commutative. �

We now fix a cocharacter φ of (G, G) associated to X.

(5.2.5). The image φ normalizes C. Suppose that the derived group of G is quasisimple. We have
(a)

Lie(RuC) =
r⊕

i=1

Lie(C)(φ; 2ki)

where 1 = k1 ≤ · · · ≤ kr are the exponents of the Weyl group of G.
(b) dim Lie(RuC)(φ; 2) = 1.
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Proof. First suppose that K has characteristic 0. In that case, the assertions are a consequence of results
of [Ko 59]. One deduces (a) immediately from [Ko 59, §6.7]. For (b), one knows that the integers 2ki
are the highest weights for the action of a principal sl2 on g. Examining the roots of g, one knows that
the largest weight 2kr occurs precisely once; thus dim V(φ; 2kr) = 1.

Now the duality of the exponents [Ko 59, Theorem 6.7] shows that

dim V(φ; 2) = dim V(φ; 2k1) = dim V(φ; 2kr) = 1

as required.
For general K, consider a discrete valuation ring A whose residue field is K and whose field of

fractions L has characteristic 0, and denote by G a split reductive group scheme over A such that
upon base change with K one has G/K ' G. Of course, the Weyl groups of G/K and of G/L are
isomorphic.

According to [Mc 08, Theorems 5.4 and 5.7] we may find a suitable such A for which there is a
nilpotent section X0 ∈ Lie(G)(A) and a homomorphism of A-group schemes φ : Gm → G with the
following properties:

(i) the image X0(K) of X0 in g = Lie(G) = Lie(G/K) coincides with X,
(ii) the image X0(L) of X0 in Lie(G/L) is regular nilpotent,

(iii) the cocharacter φ/K of G = G/K is associated to X = X0(K), and
(iv) the cocharacter φ/L of G/L is associated to X0(L).

Moreover, it follows from [Mc 08, Prop. 5.2] that the centralizer subgroup scheme CG(X0) is smooth.
In particular, Lie(CG(X0)) is free as an A-module, and Lie(C) = Lie(CG(X0))⊗A K. We may regard
Lie(CG(X0)) as a representation for the diagonalizable A-group scheme Gm via Ad ◦φ. Decompose
this representation as a sum of its weight subspaces:

Lie(CG(X0)) =
⊕
i∈Z

Lie(CG(X0))(φ; i).

Extending scalars to L, one sees that Lie(CG(X0))(φ; i) is non-zero if and only if i/2 is one of the
exponents of the Weyl group of G, and Lie(CG(X0))(φ; 2) has rank 1. The assertions (a) and (b) now
follow by base change with K. �

5.3. Lifting regular nilpotent elements.

(5.3.1). Let f : G → H be a homomorphism between reductive groups such that f is surjective and central –
i.e. the subgroup scheme ker f is contained in the center of G. Then f restricts to a surjective homomorphism
f|ζG

: ζG → ζH .

Proof. The assertion is geometric, so we may and will suppose the field K to be algebraically closed.
Since ker f is central, the pre-image of each maximal torus S of H is a maximal torus T of G. Then
f|T : T → S is surjective. The result now follows because ζG is the (scheme theoretic) intersection of
all maximal tori in G , and ζH is the intersection of all maximal tori in H; see [SGA3, Exp. XII Prop.
4.10]. �

Suppose now that G1 and G2 are D-standard reductive groups, and that f : G1 → G2 is a separable
surjective homomorphism of reductive groups which is central, as before. Recall that the separability
of f means that the tangent mapping d f is surjective.

(5.3.2). (a) Suppose that X2 ∈ Lie(G2)(K) is regular nilpotent. There is a nilpotent element X1 ∈
Lie(G1)(K) for which d f (X1) = X2.

(b) If d f (Y1) = Y2 for nilpotent elements Yi ∈ Lie(Gi), then Y1 is regular if and only if Y2 is regular.

Proof. Let B ⊂ G2 be a Borel subgroup with X ∈ Lie(B)(K). The inverse image B1 of B in G1 is a
parabolic subgroup [Bor 91, 22.6]; since B1 is evidently solvable, B1 is a Borel subgroup of G1. Thus
f induces a morphism f̃ : B1 = G1/B1 → G2/B, and it is clear that the tangent map at the point B1
of B1 is an isomorphism. It follows from [Sp 98, Theorem 5.3.2(iii)] that f̃ is an isomorphism between
the flag varieties.
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Write u1 = Lie RuB1 and u = Lie RuB. According to [Bor 91, 22.5], f induces a bijection between
the roots of G1 (with respect to some maximal torus) and the roots of G (with respect to a compatible
maximal torus). In particular, dim RuB1 = dim RuB. Since ker f is central in G, ker d f is contained
in Lie(T) for each maximal torus T. It follows that the restriction of d f to u1 is injective, so that
d f (u1) = u. Since X ∈ Lie(B) is nilpotent, we have X ∈ u. It follows that there is a – necessarily
nilpotent – element X1 ∈ u1 with d f (X1) = X. This proves (a).

Now, f̃ induces a bijection between the varieties B1,Y1 and B2,Y2 , where Bi,Yi consists of those Borel
subgroups B with Yi ∈ Lie(B). Assertion (b) now follows from (5.2.2). �

(5.3.3). Suppose that the elements Xi ∈ Lie(Gi) are nilpotent for i = 1, 2, that d f (X1) = X2, and that X1 is
regular, equivalently that X2 is regular. If C1 = CG1(X1) and C = CG2(X2), then C1 = f−1C. In particular,
f restricts to a surjective separable mapping f|C1

: C1 → C.

Proof. As before, the assertion is geometric; thus we may and will suppose that K is algebraically
closed for the proof. We only must argue that (∗) C1 = f−1C. Indeed, the remaining assertions
follow from (∗) by using (2.11.1)(d) and the smoothness of C1 (3.4.1).

We will argue that f|C1
: C1 → C is surjective; assertion (∗) will then follow since ker f is central

in G1. Recall that C1 = ζG1 · RuC1 and C = ζG2 · RuC. The restriction f|ζG1
: ζG1 → ζG2 is surjective

(5.3.1).
It remains to argue that f|RuC1

yields a surjective mapping RuC1 → RuC. Since G1 and G2 are D-
standard, the centralizers C1 and C are smooth by (3.4.1). Thus the unipotent radicals of C1 and of C
are smooth group schemes over K. So the surjectivity of f|RuC1

: RuC1 → RuC will follow if we only
prove that d f : Lie(RuC1)→ Lie(RuC) is surjective.

But d f|Lie RuC1
is injective since ker d f is central. Moreover, dim RuC1 is the semisimple rank of G1,

and dim RuC is the semisimple rank of G2. Since f is surjective with central kernel, the semisimple
ranks of G1 and G2 coincide. Thus d f|Lie RuC1

is bijective and the assertion follows. �

5.4. The normalizer of C. Let us again fix a regular nilpotent element X together with a cocharacter
φ associated to X. Let N = NG(C) be the normalizer of C.

We will argue in (5.4.2) below that N is a smooth group scheme over K. Meanwhile, we consider
in the next assertion the N-orbit of X. Viewing this orbit as a subspace of Lie(RuC), we may consider
its closure; that closure has a unique structure of reduced subscheme [Li 02, Prop. 2.4.2]. Since the
orbit of X is open in its closure, that orbit inherits a structure as a reduced subscheme.

The following argument essentially just records observations made by Serre in his note found in
[Mc 05, Appendix].

(5.4.1). (a) The N-orbit of X is the open subset of Lie(RuC) consisting of the regular elements; i.e.

Ad(N)X = Lie(RuC)reg

(b) The group N/C is connected and has dimension equal to the semisimple rank r of G.
(c) In particular, dim N = 2r + dim ζG.

Proof. Before giving the proof, we recall that (∗) C = Co · ζG where ζG is the center of G; see (5.2.4).
For the proof of (a), we have evidently Ad(N)X ⊂ Lie(RuC)reg. Since Ad(N)X is a reduced

scheme, to prove equality it suffices to show that any closed point of Lie(RuC)reg is contained in this
orbit. If Kalg is an algebraic closure of K and Y ∈ Lie(RuC)reg(Kalg), then Y is a Richardson element
for B, where B is the Borel subgroup as in (5.2.2). Since the Richardson elements form a single orbit
under B, there is x ∈ B(Kalg) for which Ad(x)Y = X. Since C is commutative, a dimension argument
shows that Co

G(Y) = Co. Since also CG(Y) = Co
G(Y) · ζG; it follows from (∗) that C = CG(Y). Since

xCx−1 = xCG(Y)x−1 = CG(Ad(x)Y) = CG(X) = C,

one sees that x ∈ N(Kalg). It follows that Ad(N)X = Lie(RuC)reg.
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For (b), first suppose that K = Kalg is algebraically closed. By (a), (N/C)red identifies with
Lie(RuC)reg, an open subvariety of the affine space Lie(RuC). It follows that (N/C)red is an irre-
ducible variety; thus the variety N/C is connected.

But then relaxing the assumption on K, it follows that N/C is connected in general. Since Lie(RuC)
has dimension equal to r, conclude that dim N/C = r.

Finally, (c) follows since dim C = r + dim ζG. �

We can now prove:

(5.4.2). N is a smooth subgroup scheme of G.

Proof. The statement is geometric; thus we may and will suppose K to be algebraically closed. Let
f : G1 → G2 be a surjective separable morphism with central kernel, and suppose that G is one of the
groups G1 or G2.

If G = G1, write X1 for X and set X2 = d f (X1). If G = G2, write X2 for X and use (5.3.2) to find a
regular nilpotent X1 ∈ Lie(G1) for which d f (X1) = X2.

Now write Ci = CGi (Xi). It follows from (5.3.3) that C1 = f−1C2, so we may apply (2.11.2) to see
that

(∗) NG1(C1) is smooth over K if and only if NG2(C2) is smooth over K.
We are now going to argue: it suffices to prove the result when G is quasisimple in very good

characteristic.
Well, if the result is known for quasisimple G in very good characteristic, it follows easily for any

semisimple, simply connected group in very good characteristic (since any such is a direct product
of simply connected quasisimple groups). But any semisimple group in very good characteristic is
separably isogenous to a simply connected one, so (∗) then permits us to deduce the result for any
semisimple G in very good characteristic.

For a general D-standard group G, we must consider a reductive group H of the form H = H1× T
where H1 is semisimple in very good characteristic, together with a diagonalizable subgroup scheme
D ⊂ H. We suppose that G is separable isogenous to CH(D)o. The above arguments show that the
desired result holds for H, and we want to deduce the result for G. Again using (∗), we may suppose
that G = CH(D)o.

But if N = NG(C), we see that N = NH(CH(X))D. Our assumption means that NH(CH(X)) is
smooth. But then [SGA3, Exp. XI, Cor. 5.3] shows that N = NH(CH(X))D is smooth, as required.

Thus, we now suppose G to be quasisimple in very good characteristic. Now, dim N = 2r by
(5.4.1), where r is the rank of G. Thus to show that N is smooth, we must show that 2r = dim Lie(N).
Since one has always dim Lie(N) ≥ dim N, it is enough to argue that dim Lie(N) ≤ 2r.

Write n = {Y ∈ g | [Y, Lie C] ⊂ Lie C} for the normalizer in g of Lie(C). Evidently Lie(N) ⊂ n; it
therefore suffices to show that dim n ≤ 2r.

Suppose that Y ∈ n. Since C is commutative, evidently [[Y, X], X] = 0, so that Y ∈ ker(ad(X)2).
Thus, it suffices to show that

(∗) dim ker(ad(X)2) = 2r.
But in view of our assumptions on the characteristic of K, (∗) follows from [Spr 66, Cor. 2.5 and

Theorem 2.6]. �

(5.4.3). N is a solvable group.

Proof. Let B be the unique Borel subgroup of G with X ∈ Lie(B) as in (5.2.2). Since B is solvable, the
result will follow if we argue that N ⊂ B.

Since N is smooth – in particular, reduced – it suffices to argue that B contains each closed point of
N. Thus, it is enough to suppose that K is algebraically closed and prove that N(K) ⊂ B(K).

Recall first that according to (5.2.1)(c), we have C ⊂ B. If y ∈ N(K) it follows that Int(y)B contains
C, hence Lie(Int(y)B) contains X. This proves that Int(y)B = B, so y normalizes B. Since Borel
subgroups are self normalizing, we deduce N(K) ⊂ B(K), and the result follows. �
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(5.4.4). Write S for the image of φ and write ζo
G for the connected center of G. Then S · ζo

G is a maximal torus
of N.

Proof. Let T ⊂ N be any maximal torus of N containing S. Since T commutes with the image of φ,
it follows that the space Lie(C)(φ; 2) is stable under T. But that space is one dimensional (5.2.5) and
has X as a basis vector; it follows that X is a weight vector for T so that T lies in the stabilizer in G
of the line [X] ∈ P(Lie(G)). We know by (5.2.4) that ζo

G is a maximal torus of C; applying [Ja 04, 2.10
Lemma and Remark], one deduces that S · ζo

G is a maximal torus of that stabilizer, which completes
the proof. �

Note that together (5.4.1), (5.4.3), and (5.4.4) yield Theorem B from the introduction.

(5.4.5). Consider the line [X] ∈ P(Lie(RuC)) and let O be the N-orbit of [X].
(a) The orbit mapping (a 7→ [Ad(a)X]) : N → O is smooth.
(b) The stabilizer StabN([X]) of [X] in N is smooth and is equal to S · C.
(c) The N-orbit of [X] is open and dense in P(Lie(RuC)).

Proof. Recall that a mapping f : X → Y between smooth varieties over K is smooth if the tangent
map d fx is surjective for all closed points of X. If X and Y are homogeneous spaces for an algebraic
group, it suffices to check that d fx is surjective for one point x of X.

Moreover, it follows from [Sp 98, Prop. 12.1.2] that if an algebraic group H acts on a variety X, and
if x ∈ X is a closed point, then the stabilizer StabH(x) is a smooth subgroup scheme if and only if the
orbit mapping H → H.x determined by x is a smooth morphism.

Now, assertion (a) is the content of [Mc 04, Lemma 23] As to (b), first note that the fact that the orbit
mapping N → O is smooth shows that stabilizer StabN([X]) is smooth over K. Now, according to [Ja
04, 2.10] the stabilizer in G of the line [X] is S · C. Since S · C is a closed subgroup of N, the remaining
assertion of (b) follows.

For (c), notice that dim N/(S ·C) = dim N/C− 1 = r− 1 by (5.4.1). Since we have also dim P(Lie(RuC)) =
r− 1, it follows that the N-orbit of [X] is open and dense in P(Lie(RuC)), as required. 7 �

Let us write D = StabN([X]) = S · C, and let 1 be the closed point of N/D determined by the
trivial coset of D in N. From the adjoint action of the torus S on Lie(N) one deduces an action of S on
the tangent space T1(N/D); thus one may speak of the weight spaces T1(N/D)(φ; j) for j ∈ Z.

(5.4.6). Assume that the derived group of G is quasi-simple, and let the positive integers k1, k2, . . . , kr be as in
5.1. Then we have the following:

T1(N/D) =
r⊕

i=2

T1(N/D)(φ; 2ki − 2)

Proof. Let O ⊂ P(Lie RuC) be the N-orbit of [X]. By (5.4.5)(c), one knows that O is an open subset
of P(Lie(RuC)); in particular, T[X]O = T[X]P(Lie(RuC)). Also by (5.4.5)(c), one knows that the orbit
mapping α : N → O given by α(y) = [Ad(y)X] induces an S-equivariant isomorphism ᾱ : N/D →
O. Since ᾱ(1) = [X], the tangent map to ᾱ at 1 yields an S-isomorphism between T1(N/D) and
T[X]O = T[X]P(Lie(RuC)). The assertion now follows from (5.2.5) and the description of the S-module
structure on the tangent space T[X]P(Lie(RuC)) given in (2.10.1). . �

We can now complete the proofs of Theorems C and D from the introduction.

Proof of Theorem C. Consider the quotient morphism

Φ : N/C → N/(S · C) = N/D

7Alternatively, one can argue as follows. Write L for the tautological line bundle – corresponding to the invertible sheaf
OP(Lie RuC)(−1) – over P(Lie RuC). Then (Lie RuC) {0} identifies with the total space of L with the zero-section removed. It
follows that the natural mapping (Lie RuC) {0} → P(Lie RuC) is flat and hence open.
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and again write 1 for the closed point of N/C determined by the trivial coset, and 1 for the closed
point of N/D determined by the trivial coset. Then differentiating Φ gives an S-equivariant mapping

dΦ1 : T1(N/C)→ T1(N/D).

Evidently the kernel of dΦ1 is the image of Lie(S) in T1((N/C). Regard T1(N/C) as an S-module; by
complete reducibility one can find an S-subrepresentation V ⊂ T1(N/C) which is a complement to
ker dΦ1. Then evidently dΦ1 yields an isomorphism between V and T1(N/D), and the assertion of
Theorem C follows. �

Proof of Theorem D. We must argue that RuN is defined over K and split. Keep the preceding notations
of this section; in particular, S is the image of the cocharacter φ associated to the regular nilpotent
element X ∈ Lie(G). According to Theorem 2.9, it will suffice to show that Lie(S) = Lie(N)S and
that each non-0 weight of S on Lie(N) is positive. It suffices to prove these statements after extending
scalars; thus we may and will suppose that K is algebraically closed.

If G is any D-standard reductive group, we may find D-standard groups M1, . . . , Md together with
a homomorphism Φ : M→ G where M = ∏d

i=1 Mi, satisfying (a)–(d) of (3.2.4).
Using (5.3.3) we may find a regular nilpotent element X1 ∈ Lie(M) such that – writing C1 =

CM(X1) – the restriction Φ|C1
: C1 → C = CG(X) is surjective (and separable). Moreover, we may

choose a cocharacter φ1 : Gm → M associated with X1 such that φ = Φ ◦ φ1 is associated with X.
Write S1 ⊂ M for the image of φ1 and S ⊂ G for the image of φ.

Now, by (3.2.4)(a) each Mi has quasisimple derived group. In the case where M itself has qua-
sisimple derived group – i.e. if M = M1 – one uses (5.2.5) and Theorem C to deduce that

(i) Lie(S1) = Lie(N1)
S1 , and

(ii) the non-zero weights of S1 on Lie(N1) are positive,
where we have written N1 = NM(C1). Since in general M is a direct product of reductive groups each
having quasisimple derived group, one sees readily that (i) and (ii) hold for M.

The normalizer N1 = NM(C1) is smooth by Theorem B. Since Φ is separable, it follows from (2.11.2)
that Φ|N1

: N1 → N is surjective and separable – i.e. dΦ|N1
: Lie(N1) → Lie(N) is surjective. Using

the fact that (i) and (ii) hold together with the surjectivity of dΦ|N1
, one sees that Lie(S) = Lie(N)S

and that the non-zero weights of S on Lie(N) are positive, and the proof is complete. �

5.5. The tangent map to a Springer isomorphism. In this section, we give the proof of Theorem
E. Thus we suppose in this section that the derived group of G is quasisimple. We fix a Springer
isomorphism σ : N ∼−→ U , and we write u = σ(X) where u ∈ G is regular unipotent and X ∈ g is
regular nilpotent.

Since σ is G-equivariant, one knows that C = CG(X) = CG(u).

(5.5.1). The restriction of σ to Lie RuC determines an isomorphism γ : Lie RuC ∼−→ RuC. In particular, the
tangent mapping dγ = (dγ)0 determines an isomorphism dγ : Lie RuC ∼−→ Lie RuC.

Proof. Indeed, recall that C is a smooth group scheme, and that C = ζG · RuC by (5.2.4), so that RuC
is the space of fixed points of Int(u) on U and Lie RuC is the space of fixed points of Ad(u) on N ; the
assertion is now immediate. �

Write V = Lie RuC. Then dγ is an endomorphism of V as an N-module, where N is the normalizer
in G of C. As in §5.4, we fix a cocharacter φ associated to X; write S ⊂ N for the image of φ. We now
give the

Proof of Theorem E. For (1), note first that the mapping γ is in particular an S-module endomorphism
of V. Since dim V(φ; 2) = 1 by Theorem (5.2.5), one knows that X spans V(φ; 2). It follows that
dγ(X) = αX for some α ∈ K×.

If now Y ∈ Vreg = (Lie Ru(C))reg, there is an element g ∈ N with Ad(g)X = Y; cf. (5.4.1). Then

dγ(Y) = dγ(Ad(g)X) = Ad(g)dγ(X) = α Ad(g)X = αY.
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It follows that dγ and α · 1V agree on the dense subset (Lie(RuC))reg ⊂ Lie(RuC) so that indeed
dγ = α · 1V .

For (2), recall that B is a Borel subgroup of G with unipotent radical U. That σ|Lie U is an isomor-
phism onto U follows from [Mc 05, Remark 10].

Now fix a Richardson element X ∈ Lie(U)(K); then X is a regular nilpotent element of g, and
part (1) shows that dσ|Lie U(X) = αX for some α ∈ K×. If Y ∈ Lie(U)(Kalg) is a second Richardson
element, then Y = Ad(g)X for g ∈ B(Kalg), and it is then clear by the equivariance of d(σ|Lie U)0 that
d(σ|Lie U)0(Y) = αY. Since the Richardson elements are dense in Lie U, the result follows. �

Note that Theorem E need not hold when the derived group of G fails to be quasi-simple. Indeed,
take for G the D-standard group G = GLn×GLm where n, m ≥ 2. Then g = gln ⊕ glm, and the
mapping

(X, Y) 7→ (1 + αX, 1 + βY)
defines a Springer isomorphism σ for any α, β ∈ K×. If X0 ∈ gln and Y0 ∈ glm are regular nilpotent,
then X = (X0, Y0) ∈ g is regular nilpotent; the mapping dσ has eigenvalues α and β on Lie RuCG(X)
and hence is not a multiple of the identity if α 6= β.

We finally conclude with an argument which gives an alternate proof of (b) of Theorem A in case
G has quasi-simple derived group. This argument does not rely on the fact that Z(C1) is smooth; on
the other hand, in order to make sense of Z(C1)red, we are forced to assume K to be perfect.

(5.5.2). Let K be perfect, let X1 ∈ g(K) be nilpotent, and let C1 = CG(X1) be its centralizer. Then the rule
t 7→ σ(tX1) defines a mapping Φ : Aff1 → Z(C1)red, and X1 = c · dΦ0(1) ∈ Lie(Z(C1)red) for some
c ∈ K×.

Proof. Let u = σ(X1) and observe that C1 = CG(u) by the G-equivariance of σ, so in particular, u ∈ C1.
Then for each t ∈ Aff1, and for each g ∈ C1, we have

g · σ(tX1) · g−1 = σ(t Ad(g)X1) = σ(tX1).

Since Aff1 is reduced, it follows that σ(tX1) indeed lies in Z(C1)red.
The formula for the tangent mapping of Φ is now immediate from Theorem E. �
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