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Abstract. Let G be a connected, semisimple algebraic group over a field k
whose characteristic is very good for G. In a canonical manner, one associates
to a nilpotent element X ∈ Lie(G) a parabolic subgroup P – in characteristic
zero, P may be described using an sl2-triple containing X; in general, P is the
“instability parabolic” for X as in geometric invariant theory.

In this setting, we are concerned with the center Z(C) of the centralizer
C of X in G. Choose a Levi factor L of P , and write d for the dimension of
the center Z(L). Finally, assume that the nilpotent element X is even. In
this case, we can deform Lie(L) to Lie(C), and our deformation produces a
d-dimensional subalgebra of Lie(Z(C)). Since Z(C) is a smooth group scheme,

it follows that dimZ(C) ≥ d = dimZ(L).

In fact, Lawther and Testerman have proved that dimZ(C) = dimZ(L).
Despite only yielding a partial result, the interest in the method found in
the present work is that it avoids the extensive case-checking carried out by
Lawther and Testerman.

1. Introduction

Let G be a connected and reductive group over the infinite field k, and suppose
that G is standard in the sense spelled out in §4 below. In the special case of a
semisimple group, G is standard if and only if the characteristic of k is very good
for G.

Now let g denote the Lie algebra of G, and let X ∈ g denote a nilpotent element.
We are concerned here with the centralizer C = CG(X) of X, and the center Z(C)
of C. We first recall that the group schemes C and Z(C) are smooth, i.e. both may
be viewed as linear algebraic groups over k. See Proposition 4.2 for the smoothness
of C and Proposition 6.1 for the smoothness of Z(C).

Now choose a cocharacter φ associated to X; see §5 and Theorem 5.1. Then
φ determines a parabolic subgroup P = P (φ) of G, together with a Levi factor
L = CG(im(φ)) of P .

Suppose that the nilpotent element X is even – i.e. that all weights of the image
of φ on Lie(G) are even integers. In that case, the equality dimL = dimC holds; see
Proposition 5.4 below. For various reasons, one might hope to somehow view the
(non-reductive) group C as a “deformation” of the reductive group L, and perhaps
relate features of C and L.
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In the present paper, this point of view is partially achieved. More precisely, we
view Lie(C) as a deformation of Lie(L); using rather general deformation results
found in §§2 and 3, we give a proof of the following theorem.

Theorem A. Suppose that X is an even nilpotent element. With notation as
above, we have dimZ(C) ≥ dimZ(L).

In their memoir [LT11], Lawther and Testerman also studied the centers Z(C)
and Z(L). In fact, in loc. cit., Lawther and Testerman already proved:

Theorem B ([LT11]). Assume that G is semisimple, that k is algebraically closed,
and that the characteristic of k is good for G. Suppose that X is an even nilpotent
element. With notation as above, dimZ(C) = dimZ(L).

In contrast to the proof of Theorem A given here, the proof given by Lawther
and Testerman of Theorem B depends on extensive analysis of cases using the
Bala-Carter classification of nilpotent orbits and the Cartan-Killing enumeration
of simple algebraic groups.

We formulate some generalities about standard reductive groups in §4, and we
recall important facts about nilpotent elements for these groups in §5. In §6 we
verify that a description of the center of a nilpotent centralizer given by Lawther
and Testerman in [LT11] for semisimple groups in very good characteristic remains
valid for standard reductive groups; see Theorem 6.4.

Finally, the proof of Theorem A is given in §7, using the deformation results of
§3. Note that we have chosen to work over an arbitrary field k, even though one
could prove Theorem A for a reductive group G over k by proving it after extending
scalars to an algebraic closure of k; it seems to us useful to work as we have done,
since the methods and intermediate results may prove useful for other applications.

One reason for interest in the results of this paper is to shed further light on
the structure of the centralizer of a unipotent element. As Lawther and Testerman
explain in the introduction to [LT11]:

Our interest in Z(CG(u)) is motivated by the desire to embed u
in a connected abelian unipotent subgroup of G satisfying certain
uniqueness properties.

Of course, here the unipotent element u corresponds to the nilpotent element X
via a Springer isomorphism (Remark 4.4(iv)); thus the center of CG(u) = CG(X)
is a natural place to look for such an abelian subgroup. It seems interesting and
suggestive to us that infinitesimally – at least when X is even – this center can be
viewed as arising by deformation from the center of a Levi factor of the parabolic
subgroup determined by X.

2. Deforming a kernel over a Dedekind variety

Let A be an integral domain which is Dedekind. Recall for example that a
principal ideal domain is Dedekind. For a maximal ideal m of A, write k(m) = A/m
for the residue field. For an A-module M , write M(m) = M ⊗A k(m). Write
K = Frac(A) for the field of fractions of A. We first recall some well-known facts;
see e.g. [Bou89, VII.4.10 and II.5.3].

Proposition 2.1. Let M be a finitely generated A-module.

(a) M = M0 ⊕ Mtor where M0 is a projective A-module and Mtor is the torsion
submodule. In particular, M is projective if and only if it is torsion free.
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(b) If M is projective, then dimk(m)M(m) = dimK M ⊗AK for each maximal ideal
m of A, and this common quantity is written RankA(M).

Let φ : M → N be a homomorphism between finitely generated projective A-
modules M and N , and write

P = kerφ, Q = cokerφ, Q = Q0 ⊕Qtor as in Proposition 2.1(a).

For each maximal ideal m of A, write φ(m) : M(m) → N(m) for the homomorphism
obtained from φ by base-change.

We first record the following:

Proposition 2.2. The A-module M/P is torsion free.

Proof. Indeed, M/P is isomorphic to a submodule of N . �

Proposition 2.3. Let m be a maximal ideal of A.

(a) TorA1 (Q, k(m)) � Qtor ⊗A k(m).
(b) If φ is injective and if Qtor ⊗A k(m) = 0, then φ(m) is injective.

Proof. Writem = RankA(M), p = RankA(P ), n = RankA(N) and q = RankA(Q0).
There is an exact sequence

0 → P → M
φ−→ N → Q → 0.

Since K is a flat A-module, the sequence remains exact after extending scalars to
K; thus we see that m− p = n− q.

Since the finitely generated A-module M/P is isomorphic to a submodule of
N , it is torsion free and thus it is projective by Proposition 2.1; in particular,
TorA1 (M/P, k(m)) = 0. Thus the sequence

(�) 0 → TorA1 (Q, k(m)) → (M/P )⊗A k(m)
φ(m)−−−→ N ⊗A k(m) → Q⊗A k(m) → 0

is exact, where φ is the mapping induced by φ. Now (�) implies that

m− p− dimk(m) Tor
A
1 (Q, k(m)) = n− q − dimk(m)Qtor ⊗A k(m).

It follows that

dimk(m)Qtor ⊗A k(m) = dimk(m)Tor
A
1 (Q, k(m)),

so that the k(m) vector spaces Qtor and TorA1 (Q, k(m)) are (non-canonically) iso-
morphic, proving (a). Now (b) follows from (a) together with (�). �

We record the following consequence of Proposition 2.3(b).

Proposition 2.4. If X is a finitely generated projective A-module, if Y ⊂ X is
a submodule, and if X/Y is torsion free, then for each maximal ideal m ⊂ A, the
natural mapping from Y (m) to X(m) is injective; in particular, we may view Y (m)
as a subspace of X(m).

Proof. Take Y = M and X = N . According to Proposition 2.1, Y is projective.
After applying Proposition 2.3(b) to the inclusion mapping Y = M → X = N , the
result follows at once. �

Returning to the previous notation, note in particular that we view P (m) as a
subspace of M(m).
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Proposition 2.5. For a maximal ideal m of A, we have:

P (m) ⊂ ker(φ(m)),

and equality holds if and only if Qtor ⊗A k(m) = 0. In particular, equality holds for
all but finitely many maximal ideals m of A.

Proof. If ι : P → M denotes the inclusion mapping, then 0 = (φ◦ι)(m) = φ(m)◦ι(m)
so that indeed P (m) ⊂ kerφ(m).

It follows from (�) (in the proof of Proposition 2.3) together with Proposition
2.3(a) that

ker(φ(m)) � Qtor ⊗A k(m).

Now the first assertion of the proposition follows since ker(φ(m)) � ker(φ(m))/P (m).
Moreover, Qtor is a finitely generated torsion A-module; since A is Dedekind, all
prime ideals containing the (non-zero) annihilator of Qtor are maximal, so Qtor has
finite length, e.g. by [Eis95, Cor. 2.17]. Since k(n1) ⊗A k(n2) = 0 for maximal
ideals n1 
= n2 of A, it follows that Qtor ⊗A k(m) = 0 for all but finitely many m.
The remaining assertion is immediate. �

Remark 2.6. With the notation of Proposition 2.5, suppose one knows in advance
that the quantity

dimk(m) ker(φ(m))

takes a constant value d for an infinite collection Γ of maximal ideals m of A.
Under this assumption, Proposition 2.5 and Proposition 2.1(b) together imply that
d = RankA(P ), and in particular the equality

ker(φ(m)) = P (m)

holds for every m in the collection Γ.

We now formulate some consequences of Proposition 2.5. For the first such
result, let M be a finitely generated and projective A-module, and let H1, H2 ⊂ M
be A-submodules for which the quotients M/Hi are torsion free.

Proposition 2.7. (a) The A-module M/(H1 ∩H2) is torsion free.
(b) For each maximal ideal m ⊂ A, the dimension of the k(m)-vector subspace

(H1 ∩H2)(m) of M(m) is a constant, independent of the choice of m.
(c) For each maximal ideal m of A, we have

(♥) (H1 ∩H2)(m) ⊂ H1(m) ∩H2(m)

and equality holds provided that (M/(H1 +H2))tor ⊗A k(m) = 0. In particular,
equality holds in (♥) for all but finitely many m.

(d) Suppose that there is an infinite collection Γ of maximal ideals of A together
with a non-negative integer d for which

dimk(m) H1(m) ∩H2(m) = d

whenever m belongs to Γ. Then d is equal to the rank of H1 ∩H2, and equality
holds in (♥) for any m in the collection Γ.

Remark 2.8. Before giving the proof, we point out that by Proposition 2.4, Hi(m)
may be viewed as a subspace of M(m) for i = 1, 2. Moreover, once we establish (a)
– i.e. the assertion that M/(H1 ∩H2) is torsion free – the same result shows that
(H1 ∩H2)(m) may be viewed as a subspace of M(m) as well.
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Proof. First observe that the sequence

0 → H1 ∩H2 → M
ψ−→ M/H1 ⊕M/H2

γ−→ M/(H1 +H2) → 0

is exact, where ψ and γ are given by

ψ(x) = (x+H1, x+H2) and γ(x+H1, y +H2) = x− y + (H1 +H2).

It follows from Proposition 2.2 that the A-module M/(H1∩H2) is torsion free; this
proves (a). Now (b) follows from Proposition 2.1; in fact, dimk(m)(H1 ∩ H2)(m)
coincides with RankA(H1 ∩H2).

For each maximal ideal m we have kerψ(m) = H1(m) ∩H2(m). Since

coker(ψ) � M/(H1 +H2),

(c) now follows from Proposition 2.5. Finally, (d) follows from (c) as in Remark
2.6. �

The second required consequence of Proposition 2.5 gives a result on the center
of a Lie algebra over A. Recall that a Lie algebra L over a commutative ring B is a
B-module L together with a B-bilinear mapping [−,−] : L× L → L satisfying the
usual axioms for a Lie bracket.

Let Z ⊂ L be the center of L; i.e

Z = {E ∈ L | [F,E] = 0 for all F ∈ L}.

Proposition 2.9. Let L be a Lie algebra over the Dedekind domain A which is
finitely generated and projective as an A-module. Then the center Z of L is an
A-Lie subalgebra such that

(a) The A-module L/Z is torsion free.
(b) The dimension of the k(m)-subalgebra Z(m) ⊂ L(m) is a constant, independent

of the maximal ideal m ⊂ A.
(c) For each maximal ideal m of A,

(♠) Z(m) ⊂ z(L(m)),

where z(L(m)) denotes the center z(L(m)) of the k(m)-Lie algebra L(m). More-
over, equality holds in (♠) for all but finitely many maximal ideals m of A.

(d) Suppose that there is an infinite collection Γ of maximal ideals of A and a
non-negative integer d for which

dimk(m) z(L(m)) = d

whenever m is in Γ. Then d = RankA(Z) and equality holds in (♠) for all m
in Γ.

Proof. Choose generators X1, . . . , X� for L viewed as an A-module, and consider
the mapping

Φ : L → L× · · · × L (� factors)

given by Φ(Y ) = ([Y,X1], . . . , [Y,X�]). Since the Xi generate L as an A-module,
we have Z = kerΦ. For any maximal ideal m ⊂ A, the images of the Xi generate
L(m). Thus kerΦ(m) is precisely the center z(L(m)).

Now (a) follows from Proposition 2.2, and (b) follows from Proposition 2.1; in
fact, dimk(m) Z(m) coincides with RankA Z.

Assertion (c) follows from Proposition 2.5, and finally (d) follows from (c) as in
Remark 2.6. �
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3. Deformation application

In this section, A denotes a Dedekind domain, and we now impose the additional
condition that A is also a finitely generated k-algebra for some field k. Moreover,
we suppose that the corresponding affine variety V = Spec(A) has infinitely many
k-points: in other words, we suppose that there are infinitely many maximal ideals
m ⊂ A for which A/m identifies with k.

We are going to fix a preferred k-point t0 ∈ Spec(A)(k). If M is an A-module
and if t ∈ Spec(A)(k), write mt for t “viewed as a maximal ideal of A”, and write
M(t) for the k-vector space M(mt).

In fact, we are mainly interested in the following two possibilities for A:

• A = k[T ], in which case V = Spec(A) is the affine line, and V(k) = k.
• A = k[T, T−1], in which case V = Spec(A) is the punctured affine line, and
V(k) = k×.

Of course, in both these cases the set of points V(k) is infinite if and only if the
field k is infinite.

We now fix some further notation. Consider finite dimensional Lie algebras over
k

h ⊂ b

and form the A-Lie algebra
L = b⊗k A.

In particular, L is a free A-module of finite rank, and for any t ∈ V(k), the algebra
L(t) may be canonically identified with b.

We now denote by σ one of the following two objects:

(S1) An element σ ∈ b ⊗k A = L, which we view as a morphism of varieties1

σ : V = Spec(A) → b.
(S2) An element σ ∈ J(A) for some linear algebraic k-subgroup J ⊂ GL(b) which

operates on b by Lie algebra automorphisms. In this case, we view σ as a
morphism V → J .

Remark 3.1. Let t ∈ V(k). In case (S1), the element σ(t) ∈ b is just the image of
σ in b = L(t) = L/mtL. In case (S2), the element σ(t) ∈ J(k) is just the image of
σ under the natural group homomorphism J(A) → J(A/mt) = J(k).

For t ∈ V(k), we can speak of the centralizer cb(σ(t)):

cb(σ(t)) = {Y ∈ b | [Y, σ(t)] = 0} in case (S1)

and
cb(σ(t)) = {Y ∈ b | σ(t)Y = Y } in case (S2).

Now let us fix t0 ∈ V(k), and write X = σ(t0). Thus X ∈ b in case (S1), while
X ∈ J(k) in case (S2).

We are going to formulate conditions under which we may view the centralizer
cb(X) as a “deformation” of the centralizers cb(σ(t)) for t ∈ V(k) {t0}. Under
some further assumptions, we will then use this deformation to study the intersec-
tion h ∩ z(cb(X)) of h with the center z(cb(X)) of the centralizer of X.

To formulate our assumptions, we require a finite subset

Θ ⊂ V(k)
1Abusing notation somewhat, we write b both for the affine variety over k determined by b,

and for the set of k-points of that variety.
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with t0 
∈ Θ. Here are the conditions of interest:

(A1) The dimension of cb(σ(t)) is given by a constant which is independent of
t ∈ V(k) Θ.

(A2) The dimension of the center z(cb(σ(t))) is constant for t ∈ V(k) (Θ∪{t0}).
(A3) The center z(cb(σ(t))) is contained in h for all t ∈ V(k) (Θ ∪ {t0}).
Consider the A-Lie algebra C which is the centralizer in L of σ – i.e.

C = {E ∈ L | [E, σ] = 0} in case (S1) and C = {E ∈ L | σE = E} in case (S2).

Write Z for the center of the A-Lie algebra C.
Since L is a free A-module of finite rank, and since A is Noetherian, an A-

submodule M of L is torsion free and finitely generated; since A is Dedekind, M
is projective as an A-module by Proposition 2.1. It follows that both C and Z are
projective A-modules, and in particular, for each t ∈ V(k) we have

dimk(t)C(t) = RankA C and dimk(t) Z(t) = RankA Z.

This shows that the k(t) dimension of C(t) is constant as a function of t, and
likewise the k(t) dimension of Z(t) is constant as a function of t.

Proposition 3.2. (a) If assumption (A1) holds, then C(t) = cb(σ(t)) for all t ∈
V(k) Θ.

(b) Assume that (A1) and (A2) hold. Then

Z(t) = z(cb(σ(t))) for all t ∈ V(k) (Θ ∪ {t0}),

and

Z(t0) ⊂ z(cb(X)).

(c) Assume that (A1), (A2) and (A3) all hold. Then

dimk z(cb(X)) ∩ h ≥ dimk z(cb(σ(t))) for any t ∈ V(k) (Θ ∪ {t0}).

Proof. The subalgebra C is the kernel of the A-module mapping Ψ : L → L given
by

Ψ(E) = [E, σ] in case (S1), and by Ψ(E) = σE − E in case (S2).

Moreover, for t ∈ V(k), the centralizer cb(σ(t)) is the kernel of the k-linear mapping
Ψ(t) : b → b given by

(E �→ [E, σ(t)]) in case (S1), and by (E �→ σ(t)E − E) in case (S2).

Since assumption (A1) holds, Remark 2.6 and Proposition 2.5 yield (a).
We have observed that Z is a projective A-module. Moreover, C/Z is also

projective, by Proposition 2.9. Using Proposition 2.4, it follows for t ∈ V(k) that
Z(t) may be identified with a subalgebra of b = C(t).

Now, Proposition 2.9 shows for all t ∈ V(k) that

(	) Z(t) ⊂ z(C(t)),

and that equality holds for all but finitely many points t ∈ V(k).
Now, for t ∈ V(k) Θ, (a) yields C(t) = cb(σ(t)). Combined with assumption

(A2), this equality shows that there is a non-negative integer d for which

d = dimk z(C(t)) = dimk z(cb(σ(t)))
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for any t ∈ V(k) (Θ ∪ {t0}). Now (	) together with Proposition 2.9(d) implies
that

(		) Z(t) = z(C(t)) = z(cb(σ(t)))

for each t ∈ V(k) (Θ ∪ {t0}), and the first assertion in (b) follows. For the
remaining assertion, first note since t0 
∈ Θ that C(t) = cb(σ(t0)) = cb(X). Now
the result follows from (	).

For (c), we apply Proposition 2.7 to the subalgebras Z and H = h ⊗k A of
L. According to that result, the quotient C/(Z ∩ H) is torsion free, so that by
Proposition 2.4 we may view (Z ∩ H)(t) as a subspace of C(t). Now Proposition
2.7 shows for t ∈ V(k) that
(♦) (Z ∩H)(t) ⊂ Z(t) ∩H(t) = Z(t) ∩ h,

and that equality holds for all but finitely many t ∈ V(k).
In particular when t = t0, we know by (b) that Z(t0) ⊂ z(cb(X)) so that (♦)

yields

(♦♦) (Z ∩H)(t0) ⊂ z(cb(X)).

For t ∈ V (Θ ∪ {t0}), by assumption (A3) the center of cb(σ(t)) is contained
in h. Thus for these t, (♦) and (		) together show that

(♦♦♦) (Z ∩H)(t) ⊂ Z(t) ∩ h = z(cb(σ(t))) ∩ h = z(cb(σ(t))).

Write e = RankA(Z∩H). Now (♦♦♦) implies that dimk Z(t)∩H(t) = d is constant
for t ∈ V (Θ ∪ {t0}); thus Proposition 2.7(d) shows that

e = dimk Z(t) ∩H(t) = dimk z(cb(σ(t))) = d

for t ∈ V (Θ ∪ {t0}).
On the other hand, (♦♦) shows that

e ≤ dimk z(cb(X)),

and (c) now follows. �

4. Standard reductive groups

Fix a ground field k of characteristic p ≥ 0. We consider the class C of all
reductive linear algebraic groups over k satisfying the following properties:

(S1) C contains all simple k-groups in very good characteristic.
(S2) C contains all k-tori.
(S3) If G1 and G2 are in C, then G1 ×G2 is in C.
(S4) If G is in C and H is a reductive k-group, and if there is a separable isogeny

between G and H, then H is in C.
(S5) If G is in C and D ⊂ G is a diagonalizable subgroup scheme, then CG(D)o is

in C.
(S6) If G is in C and G � H × T for a linear k-group H and a k-torus T , then H

is in C.
We say that the groups in C are the standard reductive groups over k.

Remark 4.1. (a) Herpel [Her13] has introduced a class of reductive groups – those
for which the characteristic of k is “pretty good”; see [Her13, 2.11]. Consider
for a reductive group G a splitting field L for G, and a maximal split torus T
of GL. If the characteristic p of k is positive, it is pretty good for G provided
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that the group X/Zψ has no p-torsion for each subset ψ ⊂ R of the system of
roots R ⊂ X = X∗(T ).

Since the conditions (S1)-(S6) are compatible with base extension, results
described by Herpel in [Her13, §5] show that the characteristic is pretty good
for any reductive group in the class C above; see [Her13, Remark 5.4]. On the
other hand, if k is algebraically closed, it is proved in [Her13] that the class C
coincides with the class of reductive groups in pretty good characteristic. It
does not seem to be clear whether this coincidence remains valid over k.

(b) The semisimple groups G which are standard – i.e. which are in C – are precisely
those for which the characteristic is very good. In particular, SLn is in C if and
only if n 
≡ 0 (mod p). On the other hand, GLn is in C for any n (argue as in
[McN05, Remark 3]).

Proposition 4.2. Let G be a standard reductive group over k, and let X∈Lie(G)(k)
and g ∈ G(k). Then CG(X) and CG(g) are smooth subgroups.

Proof. Argue as in [McN05, Prop. 5]. �

Remark 4.3. Let G be reductive over k and suppose that the characteristic of
k is pretty good for G. Let H be a closed subgroup scheme of G and consider
the centralizer subgroup scheme C = CG(H) ⊂ G. Herpel showed – see [Her13,
Theorem 3.3] – that C is smooth over k. This can be used to recover the conclusion
of Proposition 4.2 for G.

Remark 4.4. Consider the following classes of reductive groups studied in the indi-
cated citations:2

class of reductive groups citation

groups satisfying the “standard hypotheses” [JN04]
strongly standard [McN05]
strongly standard [MT07]
D-standard [McN08], [MT09]
T -standard [McN08]

In each case, the reader will easily check that the indicated class of reductive groups
is a subclass of C.

Here is a further (partial) list of properties which hold for a reductive group G
in C – together with a citation for a proof in the case of a “strongly standard”
or D-standard group in one of the above citations; the indicated proof generalizes
mutatis mutandum to all G in C:
(i) [MT07, Prop. 12] – If L is a Levi factor of a parabolic subgroup of G, then L

is in C.
(ii) [MT07, Prop. 12] – The Lie algebra Lie(G) has a non-degenerate G-invariant

bilinear form defined over k.
(iii) [MT09, (3.4.2)] – The center ζG of G is smooth over k.
(iv) [McN05, Prop. 9] or [Her13, Cor. 5.5] – There is a Springer isomorphism for

G – i.e. a G-equivariant isomorphism defined over k between the unipotent
variety in G and the nilpotent variety in Lie(G).

2Note that the notion of “strongly standard” in [MT07] is slightly more general than that used
in [McN05].
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In the spirit of the preceding remark, it seems reasonable to expect that the
results of [McN05], [McN08], [MT07], [MT09] – which were formulated for the
“strongly standard”, D-standard, or T -standard groups (see the above table) – in
fact hold for all groups in C; of course, a reader wishing to use results for this
apparently larger class of groups should carefully check this assertion.

5. Standard groups and nilpotent elements

Let k be an infinite field. Suppose that G is a standard reductive group over
k, as in §4, with Lie algebra g. Choose a G-equivariant isomorphism (a Springer
isomorphism) ε : N → U where N ⊂ g is the nilpotent variety and U ⊂ G is the
unipotent variety; see Remark 4.4(iv).

Let X ∈ g be a non-zero nilpotent element, and write u = ε(X) ∈ G(k) for
the unipotent element corresponding to X via the chosen Springer isomorphism.
If C = CG(X) denotes the centralizer of X in G, then of course also C = CG(u).
Write N for the stabilizer in G of the point in the projective space P(g) which “is”
the line through X; then N is a k-defined smooth subgroup of G [MT07, Prop. 15].

The following theorem essentially recapitulates an important part of Premet’s
2003 proof of the Bala-Carter Theorem which avoids the case-checking required in
previous proofs; see [Pre03].

Theorem 5.1. For each maximal torus S of N , there is a unique cocharacter
φ : Gm → S such that

(a) X ∈ g(φ; 2); i.e. X has weight two for the adjoint action of the torus which is
the image of φ, and

(b) the image of φ is contained in the derived group of L = CG(S).
(c) Write C = CG(X) and M = CG(X) ∩ CG(image(φ)). Then C is contained in

the parabolic subgroup P (φ) determined by φ, and M is a Levi factor of C; i.e.
C = R ·M is a semidirect product, where R = Ru(C) is the unipotent radical.

Proof. In the “geometric case” – when k is algebraically closed – the theorem is
essentially a consequence of Premet’s proof of the Bala-Carter Theorem. Working
over the ground field k, (a) and (b) follow from [McN04, Thm. 26], and (c) is
[McN04, Cor. 20 and Cor. 29]. �

Following [JN04], one says that the cocharacter φ of Theorem 5.1 is associated
with the nilpotent element X.

Lemma 5.2. Let H be a linear algebraic group over k, and let S ⊂ H be a subtorus.
There is a k-defined dense open subset U ⊂ S for which C0

H(S) = C0
H(x) – and in

particular hS = hx – for each x ∈ U(k).
Proof. This lemma is essentially contained in [Bor91, Cor. 9.5(2)], but we give
some details for clarity. If C0

H(S) = H0 the result is trivial, so suppose C0
H(S) 
=

H0. Recall that if C is either the centralizer of a semisimple element of G or
the centralizer of a subtorus of G, then C is a smooth subgroup scheme of G
[Bor91, 9.4(1)]. In particular, ch(S) = hS � h, where h is the Lie algebra of H.

Let ksep be a separable closure of k, and consider the set X∗ = X∗(Sksep
) of

cocharacters of Sksep
. For any linear representation V of S, it follows from [Spr 98,

13.1.1] that there is a set of non-zero weights ΔV ⊂ X∗ {0} for which

V ⊗k ksep =
⊕

λ∈ΔV ∪{0}
(V ⊗k ksep)λ,
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where (V ⊗kksep)λ denotes the λ-weight space; since the representation V is defined
over k, the Galois group Γ = Gal(ksep/k) acts on ΔV .

We apply these considerations to the adjoint action of S on h. Thus the set of
non-zero weights Δ = Δh for the action of Sksep

on h ⊗k ksep is Γ-stable. Since

hS 
= h, the set Δ is non-empty. Now, Δ ⊂ X∗ ⊂ ksep[S], and the non-zero regular
function F =

∏
λ∈Δ λ ∈ ksep[S] is stable under the action of Gal(ksep/k). Thus

F ∈ k[S] by Galois descent. Write U ⊂ S for the principal k-open subset defined
by the non-vanishing of F ; since F 
= 0, U is non-empty.

For x ∈ S(k), we have C0
H(S) ⊂ C0

H(x); thus we only must prove that the indi-
cated centralizers have the same dimension for x ∈ U(k). In view of the smoothness,
it is enough to observe that the infinitesimal centralizers ch(S) = hS and ch(x) = hx

coincide for x ∈ U(k), which is clear by the choice of U . �
Proposition 5.3. Let φ be a cocharacter associated to X, and let u = ε(X) ∈ G(k).
Then φ(t)u is G(k)-conjugate to φ(t) for all but finitely many t ∈ k×.

Proof. The nilpotent elementX is a distinguished nilpotent element in Lie(L) where
L is a Levi factor of a suitable k-parabolic subgroup and where the image of φ lies
in L. It is enough to show the required conjugacy using an element of L(k), thus
we may and will suppose that X is distinguished. In that case, a maximal torus of
the centralizer of X is central in G; in view of [JN04, Remark 2.10], we see that the
connected k-subgroup N0 is nilpotent (while [JN04] works in the setting in which
k is algebraically closed, note that a linear algebraic group A over k is nilpotent if
and only if Akalg

is nilpotent, where kalg is an algebraic closure of k).

Since N0 is nilpotent, N0 = S × U where U = Ru(N) = Ru(CG(X)) is the
unipotent radical of N (and of CG(X)), and S is the unique maximal torus of N0.
After extending scalars to an algebraic closure, it follows from [JN04, Prop 5.10]
that the image of φ has no fixed points on the unipotent radical of the centralizer
of X other than the identity. Thus, working over the original field k we may apply
Lemma 5.2 to learn that for all but possibly finitely many t ∈ k×, the element φ(t)
has no fixed points on U . Suppose that t is such an element; thus CU (φ(t)) = 1.
Now, the (geometric) U -orbit of φ(t) for the action by inner automorphisms is
clearly contained in φ(t)U ; since U is a unipotent group, its orbits on the affine
variety N are all closed [Ste74, Prop. 2.5]. Thus a dimension argument shows that
geometrically, the U -orbit Int(U)φ(t) is equal to φ(t)U .

Now [McN04, Theorem 28] shows that U is a k-split unipotent group; it then
follows from [McN04, Prop. 33] that Int(U(k))φ(t) = φ(t)U(k), and the proof is
complete. �

Write g(φ;n) for the subspace on which the image of φ acts via the weight
n ∈ Z. Recall that X is said to be even provided that g(φ; 1) = 0. If X is even,
then g(φ;n) 
= 0 implies that n ∈ 2Z.

Proposition 5.4. Let X be an even nilpotent element and choose a cocharacter φ
associated to X. Then

dimk CG(X) = dimk CG(im(φ)).

Proof. Since the image of φ is a torus, Lie(CG(im(φ))) coincides with g(φ; 0). It
follows from [JN04, Prop. 5.9] that the mapping

(♣) ad(X) :
∑

n≥0

g(φ;n) →
∑

n≥2

g(φ;n)
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is surjective. Recall by Theorem 5.1 that the centralizer C = CG(X) of X is
contained in P (φ). Since LieP (φ) =

∑
n≥0 g(φ;n), and since by Proposition 4.2 C

is smooth, LieC is equal to the kernel of the mapping ad(X) in (♣). Since X is
even, g(φ; 1) = 0, so that dimLieC = dimker ad(X) = dim g(φ; 0). Again since C
is smooth, the proposition follows. �

6. The center of a nilpotent centralizer

Keep the assumptions of the previous section; thus G is a standard reductive
group over the infinite field k, and g is the Lie algebra of G.

Let A ∈ Lie(G), and recall from Proposition 4.2 that CG(A) is a smooth subgroup
of G. Furthermore, we have the following result.

Proposition 6.1. The center Z(CG(A)) of CG(A) is a smooth group scheme over
k. In particular, A ∈ Lie(Z(CG(A))).

Proof. The smoothness of Z(CG(A)) is [MT09, Theorem A]. The smoothness im-
plies that Lie(Z(CG(A))) = Lie(CG(A))AdCG(A)), and the remaining assertion is
now clear. �

We recall the following result found in [LT11, Lemma 3.5]; since the proof is
short, we repeat it here for completeness.

Lemma 6.2. Let A,B ∈ Lie(G) with [A,B] = 0. Then Z(CG(A)) ⊂ CG(B), and
[Z(CG(A)), Z(CG(B))] = 1.

Proof. The adjoint action of the group Z(CG(A)) on Lie(CG(A)) is trivial; since
B ∈ cg(A) = Lie(CG(A)), where the equality holds by smoothness (Proposition
4.2), conclude that Z(CG(A)) centralizes B, which verifies the result. �

Fix now a nilpotent element X ∈ g together with a cocharacter φ associated with
X. Consider the centralizer C = CG(X); of course, C is smooth by Proposition 4.2
and in particular Lie(C) = cg(X). As in Theorem 5.1(c), denote by M ⊂ C the
Levi factor of C determined by the cocharacter φ.

The following result was proved in [LT11, Prop. 3.7] in case G is semisimple and
the characteristic is very good for G; since we will use the result in a slightly more
general situation, we give the proof.

Proposition 6.3. C = 〈M,Z(CG(Y )) | Y ∈ Lie(R)〉.

Proof. Write H for the group on the right-hand side of the stated equality. For
any Y ∈ Lie(R) ⊂ Lie(C), we have [X,Y ] = 0 and so Lemma 6.2 shows that
Z(CG(Y )) ⊂ CG(X). Since also M ⊂ C, conclude that H ⊂ C.

On the other hand, for any Y ∈ Lie(R), recall that by Proposition 6.1, Z(CG(Y ))
is smooth; thus

Lie(Z(CG(Y ))) = Lie(CG(Y ))AdCG(Y ).

In particular, Y ∈ Lie(Z(CG(Y ))). This proves that Lie(R) ⊂ Lie(H). Since also
Lie(M) ⊂ Lie(H), and since Lie(C) = Lie(M) + Lie(R), it follows that Lie(C) =
Lie(H). Since C is smooth, and since H ⊂ C, we conclude that C0 = H0.

Since R is connected and lies in C, it lies in C0 = H0; thus we have M,R ⊂ H.
Since C = M ·R, the equality C = H follows, as required. �

We require the following result, which extends [LT11, Theorem 3.9].
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Theorem 6.4. Lie(Z(C)) = z(Lie(C))Ad(M) = z(cg(X))Ad(M).

Proof. Of course, the second equality just reflects the fact that the centralizer
C = CG(X) is smooth.

For the first equality, note that

Lie(Z(C)) ⊂ z(Lie(C)) and Lie(Z(C)) ⊂ Lie(C)M ,

thus the inclusion “⊂” is clear.
We now prove the inclusion “⊃”. Suppose that A ∈ z(Lie(C))M ; we must argue

that A ∈ Lie(Z(C)). Now, for each Y ∈ Lie(R), [A, Y ] = 0. Thus it follows from
Lemma 6.2 that Z(CG(Y )) ⊂ CG(A), so that Z(CG(Y )) commutes with Z(CG(A)).
Since M centralizes A by assumption, we have M ⊂ CG(A) so that Z(CG(A))
commutes with M . Thus applying Proposition 6.3, we see that Z(CG(A)) ⊂ Z(C);
in particular, we have Lie(Z(CG(A))) ⊂ Lie(Z(C)). According to Proposition 6.1,
the group Z(CG(A)) is smooth and in particular, A ∈ Lie(Z(CG(A))). We now
conclude that A ∈ Lie(Z(C)). This completes the proof. �

7. The main result

Before formulating the main result of this paper, we first observe the following:

Proposition 7.1. Let G be a connected and reductive group over k and write ζG
for its center (viewed as a group scheme over k). Then Lie(ζG) coincides with the
center z(Lie(G)) of Lie(G).

Proof. Write g = Lie(G). Since z(g) is equal to the kernel of the adjoint representa-
tion Ad : g → gl(g), the assertion follows from the fact – see [SGA3, Prop. 5.7.14]
– that ζG is the (scheme theoretic) kernel of Ad : G → GL(g). �

We now adopt the assumptions of the previous section; in particular, X is an
even nilpotent element in Lie(G).

Theorem 7.2. We have

dimZ(CG(X)) ≥ dimZ(CG(im(φ))).

Proof. The group Z(CG(X)) is smooth by Proposition 6.1. The centralizer
CG(im(φ)) is again a standard reductive group – see §5 – and, in particular,
Z(CG(im(φ))) is smooth by Remark 4.4(iii). Thus, it suffices to prove that

dimk Lie(Z(CG(X))) ≥ dimk Lie(Z(CG(im(φ)))).

Let Θ ⊂ k× be the set of those t 
= 1 for which CG(φ(t)) fails to be conjugate
to CG(φ(t)u) or for which CG(φ(t)) fails to coincide with CG(imφ); according to
Proposition 5.3 and Lemma 5.2, the set Θ is finite.

According to Theorem 6.4, Lie(Z(CG(X))) = z(Lie(C))Ad(M). Moreover, ac-
cording to Proposition 7.1, Lie(Z(CG(im(φ)))) coincides with z(cg(φ(t))) for any
t ∈ k× Θ. Thus to prove the theorem, it suffices to prove that

(	) dim z(cg(X))Ad(M) = dim z(cg(X)) ∩ gAd(M) ≥ dim z(cg(φ(t)u))

for t ∈ k× Θ.
We are going to apply the results of §3; in particular, Proposition 3.2. Let

A = k[T, T−1] so that V(k) = k×. Let J = G and σ(T ) = φ(T )u, viewed as a
morphism σ : V → G. Finally, let

b = g and h = gM .
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It only remains to verify conditions (A1), (A2) and (A3).
Condition (A1) is a consequence of Proposition 5.4 and the choice of Θ. Now

(A2) follows since for t ∈ k× (Θ ∪ {1}) the element φ(t)u is a semisimple ele-
ment conjugate to φ(t). Thus CG(φ(t)u) is a standard reductive subgroup which is
conjugate to CG(imφ). In particular, the dimension of the center of CG(φ(t)u) is
independent of t ∈ k× (Θ ∪ {1}).

Finally, since M centralizes both u and the image of φ, it is contained in
CG(φ(t)u) for all t. Thus the center of CG(φ(t)u) is centralized by M for all
t ∈ k×, hence (A3) holds.

Now (	) – and thus the conclusion of the theorem – follows at once from Propo-
sition 3.2. �

Remark 7.3. Suppose that k has characteristic zero, and write H = dφ(1), so that
X and H may be prolonged to an sl2-triple whose span we write as s. We can apply
the results of §3 to this setting to give a second proof of Theorem 7.2 valid under
these hypotheses; in this way we recover arguments of Simion-Testerman [ST 14].

It follows from Theorem 6.4 that z(cg(X))M = Lie(Z(CG(X))). It remains to
argue that

(��) dim z(cg(X))M = dim z(cg(X)) ∩ gM ≥ dim z(cg(X + tH))

for t 
= 0; for this, we are going to use Proposition 3.2.
Take A = k[T ], so that V(k) = k. Write b = g and h = gM , and consider the

regular map σ : V → b given by t �→ X + tH.
We now verify conditions (A1), (A2) and (A3). The equality

dimCG(X) = dimCG(X + tH) for t ∈ k

can be verified as in [ST 14, Lemma 2.7]; it is essentially a consequence of the
representation theory of s. This verifies (A1).

Moreover, for t 
= 0, X + tH is a semisimple element of s which is conjugate to
H. Thus the dimension of the center of CG(X+ tH) is constant for t 
= 0 and (A2)
is verified. Finally B centralizes both X and H, so (A3) is immediate. Now (��)
follows at once from Proposition 3.2.
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de Géometrie Algébrique du Bois Marie, Lecture Notes in Math., vol. 151, 152, 153,
Springer Verlag, Heidelberg, 1965.

[Eis95] David Eisenbud, Commutative algebra, With a view toward algebraic geometry, Grad-
uate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR1322960
(97a:13001)

[JN04] Jens Carsten Jantzen and Karl-Hermann Neeb, Lie theory, Lie algebras and represen-
tations; Edited by Jean-Philippe Anker and Bent Orsted, Progress in Mathematics,
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Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

E-mail address: donna.testerman@epfl.ch

http://www.ams.org/mathscinet-getitem?mr=3042602
http://www.ams.org/mathscinet-getitem?mr=2780340
http://www.ams.org/mathscinet-getitem?mr=2780340
http://www.ams.org/mathscinet-getitem?mr=2052869
http://www.ams.org/mathscinet-getitem?mr=2052869
http://www.ams.org/mathscinet-getitem?mr=2142248
http://www.ams.org/mathscinet-getitem?mr=2142248
http://www.ams.org/mathscinet-getitem?mr=2423832
http://www.ams.org/mathscinet-getitem?mr=2423832
http://www.ams.org/mathscinet-getitem?mr=2309195
http://www.ams.org/mathscinet-getitem?mr=2309195
http://www.ams.org/mathscinet-getitem?mr=2497582
http://www.ams.org/mathscinet-getitem?mr=2497582
http://www.ams.org/mathscinet-getitem?mr=1976699
http://www.ams.org/mathscinet-getitem?mr=1976699
http://www.ams.org/mathscinet-getitem?mr=0352279
http://www.ams.org/mathscinet-getitem?mr=0352279

	1. Introduction
	2. Deforming a kernel over a Dedekind variety
	3. Deformation application
	4. Standard reductive groups
	5. Standard groups and nilpotent elements
	6. The center of a nilpotent centralizer
	7. The main result
	References

