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Abstract

Let g be the Lie algebra of a semisimple linear algebraic group. Under mild conditions on the characteristic of the underlying
field, one can show that any subalgebra of g consisting of nilpotent elements is contained in some Borel subalgebra. In this Note,
we provide examples for each semisimple group G and for each of the torsion primes for G of nil subalgebras not lying in any
Borel subalgebra of g. To cite this article: P. Levy et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Sous-algebres nilpotentes d’algebres de Lie semi-simples. Soit g 1’algébre de Lie d’un groupe algébrique linéaire semi-simple.
Si ’on impose certaines conditions a la caractéristique du corps de définition, on peut montrer que toute sous-algebre de g ne
contenant que des éléments nilpotents est contenue dans une sous-algébre de Borel. Dans cette Note, nous donnons des exemples,
pour chaque groupe semi-simple G et pour chaque nombre premier de torsion pour G, de sous-algebres d’éléments nilpotents qui
ne sont contenues dans aucune sous-algebre de Borel de g. Pour citer cet article : P. Levy et al., C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version francaise abrégée

Soit k un corps algébriquement clos de caractéristique p > 0. Par « groupe algébrique sur k » nous entendons un
schéma en groupes affine de type fini sur k. Soit G un groupe algébrique semi-simple défini sur k (G est lisse et
connexe) et soit U un sous-groupe (algébrique) unipotent de G. Si U est réduit, on sait que U est contenu dans un
sous-groupe de Borel de G (cf. [4, 30.4]). Nous nous intéressons au cas ou U n’est pas réduit, plus précisément au
cas des p-sous-algebres de Lie de Lie(G).

Théoreme 0.1. Supposons que p ne soit pas un nombre premier de torsion de G. Alors tout sous-groupe unipotent
(non nécessairement réduit) de G est contenu dans un sous-groupe de Borel de G.
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La démonstration repose essentiellement sur [7, Theorem A].

Théoreme 0.2. Supposons que p soit un nombre premier de torsion pour G. Il existe un sous-groupe unipotent de G,
de dimension 0, qui n’est contenu dans aucun sous-groupe de Borel de G.

On démontre ce théoréme en construisant des p-sous-algebres de Lie de Lie(G), formées d’éléments nilpotents, et
qui ne sont contenues dans aucune sous-algebre de Borel. Il y a deux types de constructions :

a) Si G — G est le revétement universel de G et si p divise 1’ordre du noyau (schématique) de G — G, on peut
construire une p-sous-algebre commutative de Lie(G), formée d’éléments nilpotents, dont I’image réciproque
dans Lie(G) n’est pas commutative ; une telle sous-algebre n’est pas contenue dans une sous-algebre de Borel
de G. Lorsque G est simple, 1’algebre ainsi construite est de dimension 2, et elle est annulée par la puissance
p-ieme.

b) Si p est de torsion pour le systeme de racines de G (par exemple p =2, 3, ou 5 si G est de type E3y), il existe une
p-sous-algebre commutative de Lie(G), de dimension 3, annulée par la puissance p-ieme, et non contenue dans
une sous-algebre de Borel.

1. Introduction

Let £ be an algebraically closed field of characteristic p > 0 and let G be a semisimple linear algebraic group
over k. Let g be the Lie algebra of G. Under mild conditions on G and p it is straightforward to show that any
nil subalgebra of g, that is, a subalgebra consisting of nilpotent elements, is contained in a Borel subalgebra (see
Section 2 below). J.-P. Serre has asked the following question: is it true that if p is a torsion prime for G then there
exists a nil subalgebra of g which is contained in no Borel subalgebra? In this Note, we establish a positive answer
to this question. Moreover, if p is not a torsion prime for G, every nil subalgebra of g lies in a Borel subalgebra. Our
argument in fact applies to the more general setting of unipotent subgroup schemes of a semisimple group scheme
over k.

We outline two separate cases. First, assume that G is simply connected. The scheme-theoretic center Z of G
is a finite group scheme. Now by a Heisenberg-type subalgebra of g, we mean a p-subalgebra which is a central
extension of an abelian nil algebra by a 1-dimensional algebra. If p divides the order of Z, we exhibit a Heisenberg-
type restricted subalgebra of g whose center is central in g. This gives a construction of a suitable nil algebra in
Lie(G4q), where G4 is the corresponding adjoint group. Secondly, assume p is a torsion prime for the root system
of G. Then we will exhibit a commutative 3-dimensional restricted nil subalgebra of g which is not contained in any
Borel subalgebra.

In [3], Draisma, Kraft and Kuttler study subspaces of g, rather than subalgebras, consisting of nilpotent elements;
they exhibit examples in Lie algebras defined over fields of certain small characteristics of subspaces of maximal
possible dimension which do not lie in a Borel subalgebra. We refer the reader as well to the article of Vasiu [12] in
which he studies normal unipotent subgroup schemes of reductive groups.

2. Good characteristics

Throughout this Note, k is an algebraically closed field of characteristic p > 0. By ‘linear algebraic group defined
over k> we mean an affine group scheme of finite type over k. Let G be a semisimple linear algebraic group over k; in
particular, G is a smooth group scheme with restricted Lie algebra g, the p-operation being denoted by X — X7, Let
T be a fixed maximal torus of G, W = W(G, T) the Weyl group of G, @ = ®(G, T) the root system, @ a positive
system in @, A = {«y, ..., ar} the corresponding basis and B C G the associated Borel subgroup containing 7. For
a € @, let ¥ denote the corresponding coroot. If @ is an irreducible root system then there is a unique root of
maximal height with respect to A, noted here by 8. Write 8 = Zle m;a; and BY = Zle m'e;. Recall that p is
bad for @ if m; = p for some i, 1 <i < ¥, and p is torsion for @ if m; = p for some i, 1 <i < £. (If the Dynkin
diagram is simply-laced then m; = m/ for all i.) We say that p is good for @ if p is not bad for @ and that p is very
good for @ if p is good for @ and p t (€ 4+ 1) when @ is of type A,. Finally, we will say p is good (respectively, very
good) for G if p is good (resp. very good) for every irreducible component of @ = @ (G, T'). We will say that p is bad



P. Levyetal./C. R. Acad. Sci. Paris, Ser. 1 347 (2009) 477482 479

for G if p is bad for some irreducible component of @ and that p is torsion for G if p is torsion for some irreducible
component of @ or p divides the order of the fundamental group of G. (See [11] for a discussion of torsion primes.)
Before considering the case of non-torsion primes, we introduce one further definition:

Definition 2.1 (/8, Exposé XVII, 1.1]). An algebraic group U over k is said to be unipotent if U admits a composition
series whose successive quotients are isomorphic to some subgroup scheme of the algebraic group G .

Theorem 2.2. Let G be a semisimple group and p a non-torsion prime for G. Let U be a unipotent subgroup scheme
of G. Then U is contained in a Borel subgroup of G.

Proof. Consider first the case where G is of type A,. The result follows from [8, 3.2, Exposé XVII] and induction if
G = SLy41. For the other cases, as p does not divide the order of the fundamental group of G, we have a separable
isogeny 7 : SLy4+1 — G which induces a bijection on the set of Borel subgroups, whence the result follows.

In case G = Sp,,, we argue similarly: a unipotent subgroup of G fixes a non-zero, isotropic vector in the natural
representation of G and again by induction lies in a Borel subgroup of G. Indeed, this argument works as well for the
orthogonal groups when p # 2.

Consider now the case where G = G, and p = 3. By the result for SO7, we know that U fixes a nontrivial singular
vector in the action of G on its 7-dimensional orthogonal representation. One checks that the stabilizer of such a
vector is a parabolic subgroup of G,. Indeed this is clear for the group of k-points as the long root parabolic lies in
the stabilizer and is a maximal subgroup. One checks directly that the stabilizer in g of a maximal vector with respect
to the fixed Borel subgroup is indeed a parabolic subalgebra with Levi factor a long root sl,.

Now consider the case where p is a very good prime for G. As G is separably isogenous to a simply connected
group, we may take G to be simply connected. Then G satisfies the following so-called standard hypotheses for a
reductive group G (cf. [5, 5.8]):

— p is good for each irreducible component of the root system of G,
— the derived subgroup (G, G) is simply connected, and
— there exists a non-degenerate G-equivariant symmetric bilinear form x : g x g — k.

We proceed by induction on dim G, the case where dim G = 3 and G = SL; having been handled above. By [8,
3.5], U has a nontrivial center Z(U) and either there exists X € Lie(Z(U)) with X? =0 and so U C Cg(X) or there
exists u € Z(U) withu? =1 and U C Cg(u). By [10, 3.12] there exists a G-equivariant bijective morphism between
the variety of nilpotent elements and the variety of unipotent elements; so applying Theorem A of [7] we have that U
lies in a proper parabolic subgroup P of G. Let L be a Levi subgroup of P; then L satisfies the standard hypotheses
as well. Taking the image of U in P/R, (P), we obtain a unipotent subgroup scheme of (L, L) which is, by induction
on the dimension of G, contained in a Borel subgroup By, of L. We then have that By, - R, (P) is a Borel subgroup of
G containing U.

It remains to consider the case where the root system of G is not irreducible and p is not a very good prime for G.
In this case, G is separably isogenous to a direct product of simply connected almost simple groups, and the result
follows as in the case of type A, above. O

Remarks.

a) Given an arbitrary nil subalgebra n of g, that is not necessarily a restricted subalgebra, one can check via a faithful
representation g — gl(V') that the p-closure n of n in g is again nil. Assume now that p is a non-torsion prime
for G. Then by the preceding theorem, the infinitesimal unipotent subgroup scheme n lies in a Borel subalgebra
of G and hence n does as well.

b) We note that the conclusion of Theorem 2.2 holds for reduced unipotent subgroup schemes even if the character-
istic is a torsion prime for G. (See [4, 30.4].)

Before presenting our examples, we fix some additional notation. If G is separably isogenous to a simply connected
group then we can and will choose a Chevalley basis {h;, ey, fo: 1 <i < ¥, @€ @T} for g, satisfying the usual
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relations. If G is not separably isogenous to a simply connected group, then we can choose {h;, ey, fo: 1 <i < ¢,
a € @7} satisfying the usual Chevalley relations; however, the &; will not be linearly independent and a basis of g
can be obtained by extending {h;: 1 <i < £} to a basis of Lie(7). We use the structure constants given in [9] for
g of type Fy; for g of type E,;, we use those given in [6]. Our labeling of Dynkin diagrams is taken as in [2]. It
will sometimes be convenient to represent roots as the £-tuple of integers giving the coefficients of the simple roots,
arranged as in a Dynkin diagram.

3. Heisenberg-type subalgebras

Here we take G to be simply connected. For G = SL,,p, let E;; denote the elementary mp X mp matrix with
_ -1 - -1,
(r,s) entry 8;,8;5. Set X = ZT:OI Zle Ejpti jpriv1 and Y = ZT:O] Zipzl iEjptit1,jp+i- Then XP =0=Y7,
[X, Y] = and hence the Lie algebra generated by X and Y is nilpotent.
Similar examples exist for other types with a nontrivial center:

— if p=2and G =Spin(2¢ + 1,k) thenlet X = ey, and ¥ = fy,;

— if p=2and G =Sp(2¢, k) thenlet X = Y[ e, and Y =Y bif,:

— if p=2and G =Spin(2¢, k) then let X =ey, |, +eq, and ¥ = fo, | + fu,;

— if p=3and G is of type E¢ then let X = ey, + €q; + €us +eqs and Y = fo, — foy + fas — fass
— if p=2and G is of type E7 then let X = ey, + €5 +eo; and ¥ = fo, + fos + foy.

In each of the above cases X” =0 = Y? and [X, Y] is a nontrivial element of 3(g), the center of g; in particular
[X, Y] is a nontrivial semisimple element. Hence there does not exist a Borel subalgebra of g which contains both X
and Y.

Now let G 44 denote an adjoint type group with root system @ and 7 : G — G4 the corresponding central isogeny
(cf. §22 of [1]); then ker(dr) is central in g. Applying 22.6 of [1], we see that 7 induces a bijection between Borel
subgroups of G and Borel subgroups of G,4. Moreover, by [1, 22.4], dr is bijective on nilpotent elements in the
unipotent radical of a Borel subgroup. We deduce that there is no Borel subalgebra of Lie(G,4) which contains both
dr(X) and dz (Y). Setting h = kdn (X) + kdz (Y), we have our desired example.

Suppose now that the root system of G is not irreducible. Set X = Zf: | €a; € 9,50 X € Lie(B). Then there exists
a cocharacter 7:G,, — T with X in g(t;2), the 2-weight space with respect to t and Lie(B) = @i>og(r; i). In
particular, ad(X) : g(t;i) — g(t; i +2) foralli € Z. Itis clear that ad(X) : g(t; —2) — g(t; 0) = Lie(T) is surjective.

Suppose now that G is isogenous to G and p divides the order of the fundamental group of Gg. Let 7 : G — Gy
be a central isogeny; our assumption on p implies that there exists 0 # W € ker(dw). Then W € Lie(T); hence there
exists a unique Y € g(r; —2) for which [X, Y] = W. Set b C Lie(Go) to be the restricted subalgebra generated by
dm (X) and dn (Y). The proof that fh does not lie in any Borel subalgebra of Lie(Gg) goes through as above. Note that
in most cases, X # 0.

4. Commutative subalgebras

In this section we study the case where p is a torsion prime for an irreducible component of the root system of G.
In each case we construct a 3-dimensional commutative restricted subalgebra of g spanned by nilpotent elements e,
X, Y, with e? = XP = Y? =0, which lies in no Borel subalgebra of G. It suffices to consider the case where G is
simple. In what follows we will use the Bala—Carter—Pommerening notation for nilpotent orbits in g.

The case p =2.

Here we take e to be an element of type A:f if G is of type Dy or Ey, of type A1 X Ay if G is of type By or Fy, and
of type A if G is of type Go.

If the Dynkin diagram of G is simply-laced then it has a (unique) subdiagram of type D4. We will work within this
subsystem subalgebra. Set

e=e e e X=e e e Y = .
100 T €04 €000 10 T 10 f116+f11?+f01}
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If G is of type By or F4 then the Dynkin diagram of G has a (unique) subdiagram of type B3, which we label with
roots B, B2, B3, where B3 is short. Here we let e = eg, +eg,, X =e110 +eo11, ¥ = fi11 + foiz.
Finally, if G is of type G, thenlete =¢,,, X = €11, Y = f21.

The case p = 3.
Here either G is of type E¢, £ =6,7,8 or G is of type F4. We take e to be an element of type A% x A1 if G is of

type E; and of type A; x Ay if G is of type F4. If G is of type E¢, E7 or Eg then we can restrict to the (standard)
subsystem of type Eg¢: let

e =¢10000 + €01000 + €00010 + €00001 + €00000 »
0 0 0 0 1
X =611(1)00 +600}10 +eoo(1)11 —601}00 +eo1(1)10,

Y=f11(1)10 +f00%11 +f11%00 —f01(1)11 +f01%10-

If G is of type Fy then let e = ey, + €q; + €qys X =e€0111 +€1110 — €o120 and ¥ =2 fi111 — 2 f1120 + Sfoi21-

The case p =5.
Here G is of type Eg. We choose e to be an element of type A4 x As. Let

e =¢ey + ey, + eu; + euy + eas + oy + €ay,

X=e11%1000 +Zeoo%111o +2e11(1)1100 +2600(1)1111 +2601(1)1110 —601%1000 —601{1100,
Y=f11(1)1110 +f11%1000 +f11%1100 +2f00%1111 +2f01%1110 +f01%1100 —2f01(1)1111-

Note that in each of the above cases, there exists e, (resp. eg, f,) in the expression for e (resp. X, Y) such that
a+p—y=0.

Proposition 4.1. Let h = ke + kX + kY, with e, X, Y as above. Then Yy is not contained in any Borel subalgebra of g.

Proof. Suppose § is contained in a Borel subalgebra. Then for some g € G, Adg(h) C b, where b is the Borel
subalgebra corresponding to the positive Weyl chamber. By the Bruhat decomposition, we have g = u’nu, where
u,u' e U and n € Ng(T). But now Ad g(h) C b if and only if Ad(nu)(h) C b, thus we may assume that u’ = 1. Let
w=nT € W. We will explain our argument for the case where G is of type D4 and p = 2. Note that Adu(e) = e +x,
where x is in the span of all positive root subspaces for roots of length greater than 1. Thus Adnu(e) € b implies, in
particular, that w(a;) € @*. Applying a similar argument to X and Y, we see that w(ap 4+ a3) € @+ and w(—(o; +
ar + a3)) € @, Taking the sum w(ay) + w(az + a3) + w(—(a; + oz + a3)) = 0, we have a contradiction. This
argument works for all the examples given above, using the observation that if e, and eg have non-zero coefficients
in the expression for e then o and 8 are not congruent modulo the subgroup Z@® (and similarly for X, ¥). O

Finally, the examples of Section 3 and Proposition 4.1 give the following result:

Theorem 4.2. Let G be a semisimple algebraic group over k and p a torsion prime for G. Then there exists a non-
reduced unipotent subgroup scheme of G which does not lie in any Borel subgroup of G.

We conclude with one further proposition which describes to some extent the nature of the 3-dimensional subalge-
bras defined above.

Proposition 4.3. Let ¢, X and Y be as in Proposition 4.1. Any non-zero element of h = ke ® kX ® kY is conjugate to
e and Ng(h)/Cg(h) =SL(@3, k).

Proof. In each case, ¢ is a regular nilpotent element in Lie((L, L)), for some Levi factor L of G normalized by T.
Note that (L, L) is a commuting product of type A,, subgroups and hence p is good for (L, L). We choose 7 to be a
cocharacter of (L, L) (and hence a cocharacter of G), associated to e (see [5, 5.3]). In particular e € g(2; t). Then one
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checks that g(z; —1) N Cy(e) = kX ® kY. This then implies that the group C = Cg(e) N C(t (k™)) normalizes b.
It can be checked that the adjoint representation induces a surjective morphism C — SL(kX @ kY). But we can
apply a similar argument to an analogous subgroup of C (Y). Thus Ng(h) contains the subgroups SL(ke @ kX) and
SL(kX @ kY), and hence contains SL(h). In particular, all non-zero elements of ) are conjugate by an element of
Ng (). It follows from our remark on root elements in the expressions for e, X and Y that there can be no cocharacter
in G for which e, X and Y are all in the sum of positive weight spaces. This then implies that Ng(h)/Cg(h) is
isomorphic to SL(h). O
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