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Abstract

Let g be the Lie algebra of a semisimple linear algebraic group. Under mild conditions on the characteristic of the underlying
field, one can show that any subalgebra of g consisting of nilpotent elements is contained in some Borel subalgebra. In this Note,
we provide examples for each semisimple group G and for each of the torsion primes for G of nil subalgebras not lying in any
Borel subalgebra of g. To cite this article: P. Levy et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Sous-algèbres nilpotentes d’algèbres de Lie semi-simples. Soit g l’algèbre de Lie d’un groupe algébrique linéaire semi-simple.
Si l’on impose certaines conditions à la caractéristique du corps de définition, on peut montrer que toute sous-algèbre de g ne
contenant que des éléments nilpotents est contenue dans une sous-algèbre de Borel. Dans cette Note, nous donnons des exemples,
pour chaque groupe semi-simple G et pour chaque nombre premier de torsion pour G, de sous-algèbres d’éléments nilpotents qui
ne sont contenues dans aucune sous-algèbre de Borel de g. Pour citer cet article : P. Levy et al., C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version française abrégée

Soit k un corps algébriquement clos de caractéristique p > 0. Par « groupe algébrique sur k » nous entendons un
schéma en groupes affine de type fini sur k. Soit G un groupe algébrique semi-simple défini sur k (G est lisse et
connexe) et soit U un sous-groupe (algébrique) unipotent de G. Si U est réduit, on sait que U est contenu dans un
sous-groupe de Borel de G (cf. [4, 30.4]). Nous nous intéressons au cas où U n’est pas réduit, plus précisément au
cas des p-sous-algèbres de Lie de Lie(G).

Théorème 0.1. Supposons que p ne soit pas un nombre premier de torsion de G. Alors tout sous-groupe unipotent
(non nécessairement réduit) de G est contenu dans un sous-groupe de Borel de G.
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La démonstration repose essentiellement sur [7, Theorem A].

Théorème 0.2. Supposons que p soit un nombre premier de torsion pour G. Il existe un sous-groupe unipotent de G,
de dimension 0, qui n’est contenu dans aucun sous-groupe de Borel de G.

On démontre ce théorème en construisant des p-sous-algèbres de Lie de Lie(G), formées d’éléments nilpotents, et
qui ne sont contenues dans aucune sous-algèbre de Borel. Il y a deux types de constructions :

a) Si G̃ → G est le revêtement universel de G et si p divise l’ordre du noyau (schématique) de G̃ → G, on peut
construire une p-sous-algèbre commutative de Lie(G), formée d’éléments nilpotents, dont l’image réciproque
dans Lie(G̃) n’est pas commutative ; une telle sous-algèbre n’est pas contenue dans une sous-algèbre de Borel
de G. Lorsque G est simple, l’algèbre ainsi construite est de dimension 2, et elle est annulée par la puissance
p-ième.

b) Si p est de torsion pour le système de racines de G (par exemple p = 2, 3, ou 5 si G est de type E8), il existe une
p-sous-algèbre commutative de Lie(G), de dimension 3, annulée par la puissance p-ième, et non contenue dans
une sous-algèbre de Borel.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0 and let G be a semisimple linear algebraic group
over k. Let g be the Lie algebra of G. Under mild conditions on G and p it is straightforward to show that any
nil subalgebra of g, that is, a subalgebra consisting of nilpotent elements, is contained in a Borel subalgebra (see
Section 2 below). J.-P. Serre has asked the following question: is it true that if p is a torsion prime for G then there
exists a nil subalgebra of g which is contained in no Borel subalgebra? In this Note, we establish a positive answer
to this question. Moreover, if p is not a torsion prime for G, every nil subalgebra of g lies in a Borel subalgebra. Our
argument in fact applies to the more general setting of unipotent subgroup schemes of a semisimple group scheme
over k.

We outline two separate cases. First, assume that G is simply connected. The scheme-theoretic center Z of G

is a finite group scheme. Now by a Heisenberg-type subalgebra of g, we mean a p-subalgebra which is a central
extension of an abelian nil algebra by a 1-dimensional algebra. If p divides the order of Z, we exhibit a Heisenberg-
type restricted subalgebra of g whose center is central in g. This gives a construction of a suitable nil algebra in
Lie(Gad), where Gad is the corresponding adjoint group. Secondly, assume p is a torsion prime for the root system
of G. Then we will exhibit a commutative 3-dimensional restricted nil subalgebra of g which is not contained in any
Borel subalgebra.

In [3], Draisma, Kraft and Kuttler study subspaces of g, rather than subalgebras, consisting of nilpotent elements;
they exhibit examples in Lie algebras defined over fields of certain small characteristics of subspaces of maximal
possible dimension which do not lie in a Borel subalgebra. We refer the reader as well to the article of Vasiu [12] in
which he studies normal unipotent subgroup schemes of reductive groups.

2. Good characteristics

Throughout this Note, k is an algebraically closed field of characteristic p > 0. By ‘linear algebraic group defined
over k’ we mean an affine group scheme of finite type over k. Let G be a semisimple linear algebraic group over k; in
particular, G is a smooth group scheme with restricted Lie algebra g, the p-operation being denoted by X �→ Xp . Let
T be a fixed maximal torus of G, W = W(G,T ) the Weyl group of G, Φ = Φ(G,T ) the root system, Φ+ a positive
system in Φ , � = {α1, . . . , α�} the corresponding basis and B ⊂ G the associated Borel subgroup containing T . For
α ∈ Φ , let α∨ denote the corresponding coroot. If Φ is an irreducible root system then there is a unique root of
maximal height with respect to �, noted here by β . Write β = ∑�

i=1 miαi and β∨ = ∑�
i=1 m′

iα
∨
i . Recall that p is

bad for Φ if mi = p for some i, 1 � i � �, and p is torsion for Φ if m′
i = p for some i, 1 � i � �. (If the Dynkin

diagram is simply-laced then mi = m′
i for all i.) We say that p is good for Φ if p is not bad for Φ and that p is very

good for Φ if p is good for Φ and p � (� + 1) when Φ is of type A�. Finally, we will say p is good (respectively, very
good) for G if p is good (resp. very good) for every irreducible component of Φ = Φ(G,T ). We will say that p is bad
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for G if p is bad for some irreducible component of Φ and that p is torsion for G if p is torsion for some irreducible
component of Φ or p divides the order of the fundamental group of G. (See [11] for a discussion of torsion primes.)

Before considering the case of non-torsion primes, we introduce one further definition:

Definition 2.1 ([8, Exposé XVII, 1.1]). An algebraic group U over k is said to be unipotent if U admits a composition
series whose successive quotients are isomorphic to some subgroup scheme of the algebraic group Ga .

Theorem 2.2. Let G be a semisimple group and p a non-torsion prime for G. Let U be a unipotent subgroup scheme
of G. Then U is contained in a Borel subgroup of G.

Proof. Consider first the case where G is of type A�. The result follows from [8, 3.2, Exposé XVII] and induction if
G = SL�+1. For the other cases, as p does not divide the order of the fundamental group of G, we have a separable
isogeny π : SL�+1 → G which induces a bijection on the set of Borel subgroups, whence the result follows.

In case G = Sp2�, we argue similarly: a unipotent subgroup of G fixes a non-zero, isotropic vector in the natural
representation of G and again by induction lies in a Borel subgroup of G. Indeed, this argument works as well for the
orthogonal groups when p �= 2.

Consider now the case where G = G2 and p = 3. By the result for SO7, we know that U fixes a nontrivial singular
vector in the action of G on its 7-dimensional orthogonal representation. One checks that the stabilizer of such a
vector is a parabolic subgroup of G2. Indeed this is clear for the group of k-points as the long root parabolic lies in
the stabilizer and is a maximal subgroup. One checks directly that the stabilizer in g of a maximal vector with respect
to the fixed Borel subgroup is indeed a parabolic subalgebra with Levi factor a long root sl2.

Now consider the case where p is a very good prime for G. As G is separably isogenous to a simply connected
group, we may take G to be simply connected. Then G satisfies the following so-called standard hypotheses for a
reductive group G (cf. [5, 5.8]):

– p is good for each irreducible component of the root system of G,
– the derived subgroup (G,G) is simply connected, and
– there exists a non-degenerate G-equivariant symmetric bilinear form κ :g × g → k.

We proceed by induction on dimG, the case where dimG = 3 and G = SL2 having been handled above. By [8,
3.5], U has a nontrivial center Z(U) and either there exists X ∈ Lie(Z(U)) with Xp = 0 and so U ⊂ CG(X) or there
exists u ∈ Z(U) with up = 1 and U ⊂ CG(u). By [10, 3.12] there exists a G-equivariant bijective morphism between
the variety of nilpotent elements and the variety of unipotent elements; so applying Theorem A of [7] we have that U

lies in a proper parabolic subgroup P of G. Let L be a Levi subgroup of P ; then L satisfies the standard hypotheses
as well. Taking the image of U in P/Ru(P ), we obtain a unipotent subgroup scheme of (L,L) which is, by induction
on the dimension of G, contained in a Borel subgroup BL of L. We then have that BL · Ru(P ) is a Borel subgroup of
G containing U .

It remains to consider the case where the root system of G is not irreducible and p is not a very good prime for G.
In this case, G is separably isogenous to a direct product of simply connected almost simple groups, and the result
follows as in the case of type A� above. �
Remarks.

a) Given an arbitrary nil subalgebra n of g, that is not necessarily a restricted subalgebra, one can check via a faithful
representation g → gl(V ) that the p-closure n of n in g is again nil. Assume now that p is a non-torsion prime
for G. Then by the preceding theorem, the infinitesimal unipotent subgroup scheme n lies in a Borel subalgebra
of G and hence n does as well.

b) We note that the conclusion of Theorem 2.2 holds for reduced unipotent subgroup schemes even if the character-
istic is a torsion prime for G. (See [4, 30.4].)

Before presenting our examples, we fix some additional notation. If G is separably isogenous to a simply connected
group then we can and will choose a Chevalley basis {hi, eα, fα: 1 � i � �, α ∈ Φ+} for g, satisfying the usual
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relations. If G is not separably isogenous to a simply connected group, then we can choose {hi, eα, fα: 1 � i � �,

α ∈ Φ+} satisfying the usual Chevalley relations; however, the hi will not be linearly independent and a basis of g

can be obtained by extending {hi : 1 � i � �} to a basis of Lie(T ). We use the structure constants given in [9] for
g of type F4; for g of type E�, we use those given in [6]. Our labeling of Dynkin diagrams is taken as in [2]. It
will sometimes be convenient to represent roots as the �-tuple of integers giving the coefficients of the simple roots,
arranged as in a Dynkin diagram.

3. Heisenberg-type subalgebras

Here we take G to be simply connected. For G = SLmp , let Eij denote the elementary mp × mp matrix with

(r, s) entry δirδjs . Set X = ∑m−1
j=0

∑p−1
i=1 Ejp+i,jp+i+1 and Y = ∑m−1

j=0
∑p−1

i=1 iEjp+i+1,jp+i . Then Xp = 0 = Yp ,
[X,Y ] = I and hence the Lie algebra generated by X and Y is nilpotent.

Similar examples exist for other types with a nontrivial center:

– if p = 2 and G = Spin(2� + 1, k) then let X = eα�
and Y = fα�

;

– if p = 2 and G = Sp(2�, k) then let X = ∑	�/2

i=1 eα2i−1 and Y = ∑�

1 ifαi
;

– if p = 2 and G = Spin(2�, k) then let X = eα�−1 + eα�
and Y = fα�−1 + fα�

;
– if p = 3 and G is of type E6 then let X = eα1 + eα3 + eα5 + eα6 and Y = fα1 − fα3 + fα5 − fα6 ;
– if p = 2 and G is of type E7 then let X = eα2 + eα5 + eα7 and Y = fα2 + fα5 + fα7 .

In each of the above cases Xp = 0 = Yp and [X,Y ] is a nontrivial element of z(g), the center of g; in particular
[X,Y ] is a nontrivial semisimple element. Hence there does not exist a Borel subalgebra of g which contains both X

and Y .
Now let Gad denote an adjoint type group with root system Φ and π :G → Gad the corresponding central isogeny

(cf. §22 of [1]); then ker(dπ) is central in g. Applying 22.6 of [1], we see that π induces a bijection between Borel
subgroups of G and Borel subgroups of Gad . Moreover, by [1, 22.4], dπ is bijective on nilpotent elements in the
unipotent radical of a Borel subgroup. We deduce that there is no Borel subalgebra of Lie(Gad) which contains both
dπ(X) and dπ(Y ). Setting h = k dπ(X) + k dπ(Y ), we have our desired example.

Suppose now that the root system of G is not irreducible. Set X = ∑�
i=1 eαi

∈ g, so X ∈ Lie(B). Then there exists
a cocharacter τ : Gm → T with X in g(τ ;2), the 2-weight space with respect to τ and Lie(B) = ⊕

i�0 g(τ ; i). In
particular, ad(X) :g(τ ; i) → g(τ ; i +2) for all i ∈ Z. It is clear that ad(X) :g(τ ;−2) → g(τ ;0) = Lie(T ) is surjective.

Suppose now that G0 is isogenous to G and p divides the order of the fundamental group of G0. Let π :G → G0
be a central isogeny; our assumption on p implies that there exists 0 �= W ∈ ker(dπ). Then W ∈ Lie(T ); hence there
exists a unique Y ∈ g(τ ;−2) for which [X,Y ] = W . Set h ⊂ Lie(G0) to be the restricted subalgebra generated by
dπ(X) and dπ(Y ). The proof that h does not lie in any Borel subalgebra of Lie(G0) goes through as above. Note that
in most cases, Xp �= 0.

4. Commutative subalgebras

In this section we study the case where p is a torsion prime for an irreducible component of the root system of G.
In each case we construct a 3-dimensional commutative restricted subalgebra of g spanned by nilpotent elements e,
X, Y , with ep = Xp = Yp = 0, which lies in no Borel subalgebra of G. It suffices to consider the case where G is
simple. In what follows we will use the Bala–Carter–Pommerening notation for nilpotent orbits in g.

The case p = 2.
Here we take e to be an element of type A3

1 if G is of type D� or E�, of type A1 × Ã1 if G is of type B� or F4, and
of type Ã1 if G is of type G2.

If the Dynkin diagram of G is simply-laced then it has a (unique) subdiagram of type D4. We will work within this
subsystem subalgebra. Set

e = e
10 0 + e

00 1 + e
00 0 , X = e

11 0 + e
01 1 + e

01 0 , Y = f
11 1 + f

11 0 + f
01 1 .
0 0 1 0 0 1 0 1 1
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If G is of type B� or F4 then the Dynkin diagram of G has a (unique) subdiagram of type B3, which we label with
roots β1, β2, β3, where β3 is short. Here we let e = eβ1 + eβ3 , X = e110 + e011, Y = f111 + f012.

Finally, if G is of type G2 then let e = eα1 , X = e11, Y = f21.

The case p = 3.
Here either G is of type E�, � = 6,7,8 or G is of type F4. We take e to be an element of type A2

2 × A1 if G is of
type E� and of type A1 × Ã2 if G is of type F4. If G is of type E6, E7 or E8 then we can restrict to the (standard)
subsystem of type E6: let

e = e 10000
0

+ e 01000
0

+ e 00010
0

+ e 00001
0

+ e 00000
1

,

X = e 11100
0

+ e 00110
1

+ e 00111
0

− e 01100
1

+ e 01110
0

,

Y = f 11110
0

+ f 00111
1

+ f 11100
1

− f 01111
0

+ f 01110
1

.

If G is of type F4 then let e = eα1 + eα3 + eα4 , X = e0111 + e1110 − e0120 and Y = 2f1111 − 2f1120 + f0121.

The case p = 5.
Here G is of type E8. We choose e to be an element of type A4 × A3. Let

e = eα1 + eα2 + eα3 + eα4 + eα6 + eα7 + eα8,

X = e 1111000
1

+ 2e 0011110
1

+ 2e 1111100
0

+ 2e 0011111
0

+ 2e 0111110
0

− e 0121000
1

− e 0111100
1

,

Y = f 1111110
0

+ f 1121000
1

+ f 1111100
1

+ 2f 0011111
1

+ 2f 0111110
1

+ f 0121100
1

− 2f 0111111
0

.

Note that in each of the above cases, there exists eα (resp. eβ , fγ ) in the expression for e (resp. X, Y ) such that
α + β − γ = 0.

Proposition 4.1. Let h = ke + kX + kY , with e, X, Y as above. Then h is not contained in any Borel subalgebra of g.

Proof. Suppose h is contained in a Borel subalgebra. Then for some g ∈ G, Adg(h) ⊂ b, where b is the Borel
subalgebra corresponding to the positive Weyl chamber. By the Bruhat decomposition, we have g = u′nu, where
u,u′ ∈ U+ and n ∈ NG(T ). But now Adg(h) ⊂ b if and only if Ad(nu)(h) ⊂ b, thus we may assume that u′ = 1. Let
w = nT ∈ W . We will explain our argument for the case where G is of type D4 and p = 2. Note that Adu(e) = e + x,
where x is in the span of all positive root subspaces for roots of length greater than 1. Thus Adnu(e) ∈ b implies, in
particular, that w(α1) ∈ Φ+. Applying a similar argument to X and Y , we see that w(α2 + α3) ∈ Φ+ and w(−(α1 +
α2 + α3)) ∈ Φ+. Taking the sum w(α1) + w(α2 + α3) + w(−(α1 + α2 + α3)) = 0, we have a contradiction. This
argument works for all the examples given above, using the observation that if eα and eβ have non-zero coefficients
in the expression for e then α and β are not congruent modulo the subgroup ZΦ (and similarly for X, Y ). �

Finally, the examples of Section 3 and Proposition 4.1 give the following result:

Theorem 4.2. Let G be a semisimple algebraic group over k and p a torsion prime for G. Then there exists a non-
reduced unipotent subgroup scheme of G which does not lie in any Borel subgroup of G.

We conclude with one further proposition which describes to some extent the nature of the 3-dimensional subalge-
bras defined above.

Proposition 4.3. Let e, X and Y be as in Proposition 4.1. Any non-zero element of h = ke ⊕ kX ⊕ kY is conjugate to
e and NG(h)/CG(h) ∼= SL(3, k).

Proof. In each case, e is a regular nilpotent element in Lie((L,L)), for some Levi factor L of G normalized by T .
Note that (L,L) is a commuting product of type Am subgroups and hence p is good for (L,L). We choose τ to be a
cocharacter of (L,L) (and hence a cocharacter of G), associated to e (see [5, 5.3]). In particular e ∈ g(2; τ). Then one
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checks that g(τ ;−1) ∩ Cg(e) = kX ⊕ kY . This then implies that the group C = CG(e) ∩ CG(τ(k×)) normalizes h.
It can be checked that the adjoint representation induces a surjective morphism C → SL(kX ⊕ kY ). But we can
apply a similar argument to an analogous subgroup of CG(Y ). Thus NG(h) contains the subgroups SL(ke ⊕ kX) and
SL(kX ⊕ kY ), and hence contains SL(h). In particular, all non-zero elements of h are conjugate by an element of
NG(h). It follows from our remark on root elements in the expressions for e, X and Y that there can be no cocharacter
in G for which e, X and Y are all in the sum of positive weight spaces. This then implies that NG(h)/CG(h) is
isomorphic to SL(h). �
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