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ABSTRACT. If G is a connected linear algebraic group over the field k, a Levi factor of G is a reductive
complement to the unipotent radical of G. If k has positive characteristic, G may have no Levi factor,
or G may have Levi factors which are not geometrically conjugate. We give in this paper some sufficient
conditions for the existence and the conjugacy of Levi factors of G.

Let A be a Henselian discrete valuation ring with fractions K and with perfect residue field k of charac-
teristic p > 0. Let G be a connected and reductive algebraic group over K. Bruhat and Tits have associated
to G certain smooth A -group schemes P whose generic fibers P/K coincide with G; these are known as
parahoric group schemes. The special fiber P/k of a parahoric group scheme is a linear algebraic group over
k. If G splits over an unramified extension of K, we show that P/k has a Levi factor, and that any two Levi
factors of P/k are geometrically conjugate.
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1. INTRODUCTION

1.1. Linear groups. Let G be a connected, linear algebraic group over a field k, and suppose that the
unipotent radical of G/kalg

is defined over k; see §2.1. A Levi factor of G is a complement in G to the
unipotent radical. If k has characteristic p > 0, G may have no Levi factors, or G may non-conjugate
Levi factors; see the overview in §3. In this paper, we investigate the existence and conjugacy of Levi
factors. For some previous work on these matters, see the paper of J. Humphreys [Hu 67].

Our approach to Levi factors uses results from the cohomology of linear algebraic groups; see §4.
For example, suppose that the unipotent radical R of G is a vector group which is G-equivariantly iso-
morphic to a linear representation V of G. If H2(G, V) = 0, then G has a Levi factor, and if H1(G, V) = 0
then any two Levi factors of G are conjugate by an element of R(k) = V. Of course, these results are
well-known for “abstract” groups G; see e.g. [Br 94, Ch. IV]. We observe here their validity for a
linear algebraic group G.

In Theorems 5.1 and 5.2, we give straightforward extensions of these cohomological criteria for
the existence and conjugacy of Levi factors when R is no longer a vector group; note that our results
require G to satisfy condition (L) of §2.3; this condition means that R has a filtration for which each
consecutive quotient is a vector group with a linear action of Greduc.
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For a reductive group H in characteristic p, J. C. Jantzen has proved that any H-module V having
dim V ≤ p is completely reducible; see [Ja 97]. Assume that dim R < p and that condition (L) holds
for G. If G has a Levi factor, Jantzen’s result implies that any two Levi factors of G are conjugate by
an element of R(k). Under a further assumption on the character of the Greduc-module obtained from
R, Jantzen’s result implies the existence of a Levi factor of G. For these results, see Theorem 5.3.

Finally, if H is reductive and P is a parabolic subgroup, one knows for any linear representation V
of H that Hi(H, V) ' Hi(P, V) for i ≥ 0. Using this fact, we prove for a group G satisfying (L) that
the existence of a Levi factor follows from the existence of subgroup of G mapping isomorphically to
a Borel subgroup of the reductive quotient Greduc; see the results (5.4.1) and Theorem 5.5 which are
crucial to our investigation of Levi factors of the special fibers of parahoric group schemes undertaken
in §6.

1.2. Parahoric group schemes. We wish to apply the conditions just mentioned to the special fiber of
a parahoric group scheme; we begin our discussion by briefly describing these group schemes.

Fix a Henselian discrete valuation ring (DVR) A with fractions K and residues k (recall that if A
is complete, it is Henselian). We suppose the characteristic p of the residue field k to be positive.
Moreover, we suppose that k is perfect.

To a connected and reductive group G over K, Bruhat-Tits associate a topological space with an
action of the group of K-rational points G(K); it is known as the affine building I of G. To a facet F
of an apartment of I , there corresponds a smooth affine group scheme PF over A whose generic
fiber PF/K is equal to G; this group scheme has the property that its group of A -points PF (A ) is the
“connected stabilizer” of F in G(K).

If G is K-split and if F = {x} consists in a so-called special point x of I , then the group scheme Px
is split and reductive over A . For generalF , the group scheme P = PF is not reductive; in particular,
the special fiber P/k – the linear algebraic group obtained from P by base-change to Spec(k) – need
not be reductive over k.

In his article in the 1977 Corvallis proceedings [Ti 77, §3.5], J. Tits wrote that the linear group P/k
possesses a Levi factor. Since the article was intended – as Tits wrote in its opening paragraphs – for
utilizers, proofs were mostly omitted. In particular, no proof of this statement was given in loc. cit.,
and none seems to have appeared elsewhere.

We apply the results of §5 to obtain the following results:

Theorem A. Let P be a parahoric group scheme over A with generic fiber G = G/K.
(i) If G is split over K and if S is a maximal split torus of P/k, then P/k has a unique Levi factor containing

S. In particular, any two Levi factors of P/k are P(k)-conjugate.
(ii) If G/L is split for an unramified extension K ⊂ L, then P/k has a Levi factor, and any two Levi factors of
P/k are geometrically conjugate.

Recall that subgroups (or elements, or ...) are geometrically conjugate under the action of a linear
algebraic group H over k provided they are conjugate by an element of H(kalg) where kalg is an
algebraic closure of k.

We observe that if G/L is not split for any unramified extension L ⊃ K, the special fiber P/k of
a parahoric group scheme can possess Levi factors which are not geometrically conjugate; see the
example given in §7.2

After seeing a preliminary version of this manuscript, Gopal Prasad explained to the author that
Rousseau’s theorem ([Ro 77] and [Pr 01]) should allow one to prove the existence of a Levi factor in
the special fiber of a parahoric group scheme under the weaker assumption that G splits over a tamely
ramified extension of K; this result will appear in a subsequent paper.

1.3. Terminology. By a linear algebraic group G over a field k we mean a smooth, affine group
scheme of finite type over k. When we speak of a closed subgroup of an algebraic group G, we
mean a closed subgroup scheme over k; thus the subgroup is required to be “defined over k” in the
language of [Sp 98] or [Bo 91]. Similar remarks apply to homomorphisms between linear algebraic
groups. Note that we will occasionally use the terminology “k-subgroup” or “k-homomorphism” for
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emphasis. If ` ⊃ k is a field extension, we write G/` for the linear algebraic group over ` obtained by
extension of scalars. If g ∈ G(k) is a k-rational point of the linear algebraic group G, we write Int(g)
for the inner automorphism of G determined by g.

Following terminology in [Se 88, §VII.1], we will say that the sequence

1→ N i−→ G π−→ H → 1

of linear algebraic groups is strictly exact if the sequence

1→ N(kalg)
i−→ G(kalg)

π−→ H(kalg)→ 1

is exact for an algebraic closure kalg of k, and if i and π are separable so that π induces an isomorphism
G/N → H of algebraic groups.

1.4. Acknowledgments. The author would like to thank B. Conrad, J. Humphreys, J. C. Jantzen, and
an anonymous referee for useful remarks on a preliminary version of this manuscript. In particular, I
thank the referee for communicating the proof of Proposition 4.2 given here; it is much simpler than
the one I originally gave.

2. SOME PRELIMINARIES

Throughout this section, G denotes a linear algebraic group over the field k; we make further
assumptions on G and on k in the final paragraph §2.4.

2.1. The question of rationality of the unipotent radical over a ground field. The unipotent radical
of G is the largest connected, unipotent, normal subgroup R = RuG/kalg

of G/kalg
, where kalg is an

algebraic closure of k. As the following example shows, the subgroup R is in general not defined over
k.

(2.1.1). Let ` be a purely inseparable extension of k having degree p; say ` = k(a) with ap ∈ k. Consider
the k-group G = R`/kGm obtained from the multiplicative group Gm by restriction of scalars. The unipotent
radical of the `-group G/` is defined over ` and has dimension p− 1, but any normal, connected, unipotent,
smooth subgroup scheme of G defined over k is trivial.

Proof. See [CGP 10, Example 1.1.3], and see e.g. [CGP 10, §A.5] or [Sp 98, 11.4] for the notion of
“restriction of scalars”. �

In what follows, we will often consider the following assumption on G.
(R) The unipotent radical R = RuG is defined over k.

Note the following:

(2.1.2). If k is perfect, then condition (R) holds for the linear group G; i.e. R is a k-subgroup of G.

Proof. This follows by Galois descent; see [Sp 98, 11.2.8, 14.4.5(v)]. �

2.2. Groups with a normal, split unipotent subgroup. Recall [Sp 98, §14] that a connected, unipotent
linear group U is said to be k-split provided that there is a sequence

1 = Um ⊂ Um−1 ⊂ · · · ⊂ U1 ⊂ U0 = U

of closed, connected, normal subgroups of U such that each quotient Ui/Ui+1 is isomorphic to Ga/k.

(2.2.1) ([Sp 98, 14.3.10]). If k is perfect, every connected unipotent group over k is k-split

Definition. A vector group U is a connected, split, abelian, unipotent group having exponent p in case k has
characteristic p > 0.

(2.2.2). The linear algebraic group U is a vector group if and only if it is isomorphic to a direct product of copies
of Ga/k.

Proof. [Oe 84, V.2.3]. �
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Suppose now that R ⊂ G is a normal, connected, unipotent subgroup of G. By a splitting sequence
for R we mean a sequence

1 = Rm ⊂ Rm−1 ⊂ · · · ⊂ R1 ⊂ R0 = R
of closed, connected, k-subgroups of R which are normal in G with the property that each quotient
Ri/Ri+1 is a vector group.

If R possesses a splitting sequence, evidently R is k-split. Conversely:

(2.2.3). If R is k-split, then R has a splitting sequence.

Proof. Consider first the lower central series where for i > 0, Ri = (R, Ri−1). Since R is split, it
follows from [Sp 98, 14.3.12(3),(2)] that each Ri is k-split, and that each quotient Ri/Ri+1 is a k-split
abelian unipotent group. Thus we are reduced to the case where R is abelian k-split unipotent. If the
characteristic p of k is 0 there is nothing left to do, so suppose p > 0. If R has exponent p, it is a vector
group. The result for any commutative R now follows by induction on the exponent by considering
the filtration 1→ Rp → R; note that Rp is k-split by [Sp 98, 14.3.12(2)]. �

Proposition. Suppose that the linear algebraic group G has a normal, connected, k-split unipotent subgroup
R. Then there is a morphism of k-varieties s : G/R → G which is a section to π. In particular, π : G(k) →
(G/R)(k) is surjective.

Proof. This is a consequence of results of Rosenlicht [Ro 63]; Lemma 2 of loc. cit. shows that π : G →
G/R is a Zariski-locally trivial principal R-bundle, and Theorem 1 of loc. cit. shows, since G/R is
affine, that π has a regular cross-section defined over k. �

2.3. Condition (L). Let U be a vector group, and suppose that G acts by group automorphisms on U.

Definition. The action of G on U will be said to be linearizable if there is a G-equivariant isomorphism
between U and the Lie algebra Lie(U), where Lie(U) is viewed as a vector group with its natural action of G.

The next result is straightforward:

(2.3.1). The following are equivalent:
(a) The action of G on U is linearizable.
(b) There is a G-equivariant isomorphism U ' V for some linear representation V of G.
(c) There is an action of the 1 dimensional split torus Gm on U by G-equivariant group automorphisms such

that the resulting action on Lie(U) is scalar multiplication.

Suppose that condition (R) holds for the linear algebraic group G, and that the unipotent radical R
of G is k-split. For any splitting sequence of R as in (2.2.3), notice that the conjugation action of R on
the quotient Ri/Ri+1 is trivial for each i; i.e. the reductive quotient Greduc = G/R acts on each vector
group Ri/Ri+1.

We will be interested in the following condition on G:
(L) Condition (R) holds for G, the unipotent radical R is k-split, and for some splitting sequence

of R as in (2.2.3), the Greduc-action on the vector group Ri/Ri+1 is linearizable for each i.
A splitting sequence 1 = Rn ⊂ Rn−1 ⊂ · · · ⊂ R0 = R for which (L) holds will be called a linearizable
splitting sequence for R.

Remark. (a) If P is a parabolic subgroup of a reductive group G, then it is well-known that condition
(L) holds for P.

(b) Suppose that G is reductive and that G acts by group automorphisms on the vector group U.
The author is aware neither of a proof that the G-action on U is always linearizable, nor of a
counterexample to that statement.

(c) The proof of (2.2.3) amounts to a construction of a canonical splitting sequence for which the Ri
are characteristic in G. Nevertheless, we only require the condition in (L) to hold for some splitting
sequence; this raises the question: if k ⊂ ` is a separable field extension and (L) holds for G/`,
does (L) hold for G?
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2.4. Recollections: representations of a reductive group. In this section, let k be algebraically closed
and let G be a connected and reductive algebraic group over k. Fix a maximal torus T of G and a Borel
subgroup B containing T.

A dominant weight τ ∈ X∗(T), determines the standard module H0(τ) = indG
B (τ) [Ja 03, II.2.1]

which can be realized as the global sections of a suitable G-linearized line bundle on G/B. The Weyl
module V(τ) is the contragredient H0(−w0τ)∨ [Ja 03, II.2.13] (where w0 is the long word in the Weyl
group NG(T)/T).

There is a simple module L(τ) for which

L(τ) ' soc H0(τ) and L(τ) ' V(τ)/ rad V(τ),

where soc(−) denotes the largest semisimple submodule, and rad(−) denotes the largest submodule
for which the quotient is semisimple; see [Ja 03, II.2.3, II.2.14]. Moreover, if L is a simple G-module,
then L is isomorphic to L(τ) for a unique dominant weight τ [Ja 03, Prop. II.2.4].

We record the following:

(2.4.1) ([Ja 03, Prop. II.2.14]). If τ, γ ∈ X∗(T) are dominant weights for which γ 6> τ, then

Ext1
G(L(τ), L(γ)) ' HomG(rad V(τ), L(γ)).

(2.4.2) ([Ja 03, Prop. II.4.16]). If τ, γ ∈ X∗(T) are dominant weights, then

Exti(V(τ), H0(γ)) = 0 for all i > 0.

In particular, Hi(G, H0(γ)) = 0 for all i > 0.

For a G-module V, we may write V =
⊕

λ∈X∗(T) Vλ as a direct sum of its weight spaces; the
character of V is then

ch V = ∑
λ∈X∗(T)

dim Vλeλ

viewed as an element of the integral group ring Z[X∗(T)] (which has Z-basis consisting of the eλ).
For a dominant weight λ we write χ(λ) = ch H0(λ) = ch V(λ); note that χ(λ) is given by Weyl’s
character formula [Ja 03, II.5.10], so in particular dim H0(λ) = dim V(λ) is given by the Weyl degree
formula.

We record:

(2.4.3) ([Ja 03, II.5.8]). The set {ch L | L a simple G-module} is a Z-basis for Z[X∗(T)]W .

3. LEVI DECOMPOSITIONS

In this section, we discuss the existence and conjugacy of Levi factors in linear algebraic groups
over a field k. We will write G for a connected linear algebraic group defined over k.

3.1. Definitions and first remarks. Assume that (R) holds for G.

Definition. A Levi factor of G is a closed k-subgroup M of G such that the product mapping

(x, y) 7→ xy : M n R→ G

is a k-isomorphism of algebraic groups, where M n R denotes the semidirect product (for the action of M on
R by conjugation).

If there is such a Levi factor M, one says that G has a Levi decomposition over k. If M is a Levi
factor of G, then the projection mapping G → G/R induces an isomorphism M ∼−→ G/R so that M is
connected and reductive.

Suppose for a moment that k has characteristic zero. Apply Levi’s theorem [Jac 79, III.9] to the finite
dimensional Lie algebra g = Lie(G) to find a semisimple Lie subalgebra m ⊂ g such that g = m⊕ r
where r is the radical of g. Now, [m,m] = m, so that m is an algebraic Lie subalgebra by [Bo 91, 7.9]. This
condition means that there is a closed connected subgroup M ⊂ G with Lie(M) = m; evidently, M is
semisimple. Choosing a maximal torus T0 of M and a maximal torus T of G containing T0, one finds
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that M.T is a reductive subgroup of G which is a complement to the unipotent radical R. In summary:
linear algebraic groups in characteristic zero always have a Levi decomposition. Moreover, it follows
from Theorem 5.1 below that any two Levi factors of G are conjugate by an element of the unipotent
radical.

On the other hand, if k has positive characteristic, the situation is more complicated.
• G need not have a Levi factor; see §3.2 and §7.1.
• Two Levi factors for G need not be geometrically conjugate; see the example given by Borel

and Tits in [BoTi 65, 3.15] and see §7.2.
• Even in the case of an algebraically closed field k, in order that a subgroup M ⊂ G be a Levi

factor, it is crucial that multiplication determine an isomorphism M n R → G of algebraic
groups and not merely of the “abstract” group of points; see the example in §3.3.

3.2. Linear algebraic groups with no Levi decomposition: Witt vector construction. Suppose that k
is a perfect field of characteristic p > 0, let W(k) be the ring of Witt vectors over k, and let W2(k) =
W(k)/p2W(k) be the ring of length-two Witt vectors [Se 79, II.§6]. One may view W2(k) as a ring-
variety over k; as a variety, W2(k) is just affine 2-space A2

/k.
Let G/W2(k) be a split semisimple group scheme over W2(k), and let G/k be the corresponding

semisimple algebraic group obtained by G/k = G/W2(k) ⊗W2(k) k. Using the point-of-view found in
[CGP 10, A.6] – to which we refer for details concerning the following sketch –, we may view the
group G(W2(k)) as a linear algebraic group over k of dimension 2 · dim G/k. To do this, we note that
if X is an affine W2(k)-scheme of finite type, the functor on k-algebras

Λ 7→ X(W2(Λ))

is represented by an affine k-scheme X2 of finite type; the assignment X 7→ X2 is known as the
Greenberg functor.

Let H be the value of the Greenberg functor at the smooth affine W2(k)-group scheme G/W2(k). The
natural ring homomorphism W2 → k determines a surjective mapping of algebraic groups H → G/k.
According to [CGP 10, Lemma A.6.2], the kernel of the mapping H → G/k is a vector group which
identifies as a representation for G/k with the Frobenius twist g[1] of the adjoint representation g.

(3.2.1). [CGP 10, Prop. A.6.4] The group H has reductive quotient G/k, and H has no Levi decomposition.

Remark. (a) In case G = SL2, one can see also [Mc 03, Remark 5] for a different argument that SL2(W2)
has no Levi decomposition.

(b) In fact, the example of the 6-dimensional linear group SL2(W2) with reductive quotient SL2/k and
no Levi factor was communicated in 1967 by J. Tits (who learned it from P. Roquette) in a letter to
J. Humphreys in connection with Humphreys’ paper [Hu 67].

3.3. Complements to the unipotent radical as an abstract group are insufficient. We first recall the
following:

(3.3.1) ([Bo 91, 14.19]). Let P be a parabolic subgroup of a reductive group G. Then P has a Levi factor defined
over k, and any two Levi factors of P defined over k are conjugate by a unique element of Ru(P)(k).

In defining a Levi factor, the requirement that the product mapping MnR→ G be an isomorphism
of algebraic groups is essential. Write π : G → G/R = Greduc for the quotient mapping, and note that
if M is a Levi factor, then π|M is an isomorphism of algebraic groups (see (4.3.1) below). The following
example shows that a linear algebraic group may have a subgroup M′ for which π|M′ is a purely
inseparable isogeny M′ → Greduc – and in particular determines an isomorphism of “abstract” groups
M′(kalg)→ Greduc(kalg) for an algebraic closure kalg of k – but M′ is not a Levi factor of G.

Let W be a d dimensional k-vector space for some d ≥ 2 where k is an algebraically closed field of
characteristic p > 0, and let V = Symp W be the p-th symmetric power of W. Consider the subspace
W [1] of V consisting of the p-th powers wp of all vectors w ∈W. The stabilizer P in GL(V) of the point
determined by W [1] in the Grassmann variety Grd(V) is a (maximal) parabolic subgroup of GL(V).
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Choose any linear complement W ′ to W [1] in V and write M′ for the reductive subgroup of P
generated by the image of GL(W) under its representation on V together with the subgroup GL(W ′)
acting as the identity on W [1].

(3.3.2). Write Preduc for the reductive quotient of P. Then π|M′ : M′ → Preduc is a purely inseparable isogeny.
However, M′ is not a Levi factor of P.

Sketch. Since M′(k) ∩ RuP(k) is trivial, the group of points M′(k) maps isomorphically to the group
of k-points of the reductive quotient

(P/RuP)(k) ' GL(W [1])(k)×GL(V/W [1])(k).

Thus indeed π|M′ is a purely inseparable isogeny.
Viewing V as a representation for GL(W), the subspace W [1] is GL(W)-invariant; the reader may

verify that the exact sequence of GL(W)-modules

0→W [1] → V → V/W [1] → 0

is not split exact. In fact, as a representation for GL(W), V identifies with the standard GL(W)-module
H0(P(W), L ⊗p) of global sections of the line bundle L ⊗p on the projective space P(W), where L
is the GL(W)-linearized line bundle whose global sections H0(P(W), L ) afford the natural GL(W)-
module W; standard modules for GL(W) are known to be indecomposable with simple socle [Ja 03,
II.2.3]; in this case socGL(W)(V) = W [1] is the first Frobenius twist of the natural module W.

The “standard” Levi factor M = GL(W [1]) × GL(W ′) of P leaves invariant a linear complement
(namely W ′) to W [1] in V. Since there is no M′-stable complement to W [1] in V, M′ is not conjugate to
the Levi factor M. In particular, (3.3.1) shows that M′ is not a Levi subgroup of P. (It is in fact quite
easy to check that dπ|M′ is not an isomorphism – the kernel of this map coincides with the Lie algebra
of the image of GL(W).) �

4. COHOMOLOGY AND LEVI FACTORS

4.1. The Hochschild complex. Let G be a linear algebraic group over k. The functor V 7→ H•(G, V)
which assigns to V the cohomology groups Hn(G, V) for n ≥ 0 is the derived functor of the fixed
point functor V 7→ VG; cf. [Ja 03, §I.4].

Fix a representation V of G.

(4.1.1). For any commutative k-algebra Λ and any n ≥ 0, the natural mapping

Hn(G, V)⊗k Λ ∼−→ Hn(G/Λ, V ⊗k Λ)

is an isomorphism.

Proof. Since k is a field, V is flat over k and the assertion follows from [Ja 03, Prop. I.4.18]. �

The cohomology H•(G, V) can be computed using the Hochschild complex C•(G, V); cf. [Ja 03,
I.4.14]. Write C• = C•(G, V). Then C0 = V, and Cn = k[G]⊗n ⊗k V for n ≥ 1. When V is finite
dimensional, V may be viewed as an algebraic variety over k and then Cn is the collection of regular
functions ∏n G → V. The boundary mappings ∂n = ∂n

V : Cn → Cn+1 are described in [Ja 03, I.4.14]

(4.1.2). [Ja 03, Prop I.4.16] The group cohomology H•(G, V) is equal to the cohomology of the complex
(C•(G, V), ∂•).

In some arguments to follow, we shall need slightly more than the Hochschild complex itself.
Following the proof of [Ja 03, Prop I.4.16] one finds:

(4.1.3). There is an injective resolution V → I•(G, V) of V as G-module such that

C•(G, V) = (I•(G, V))G.
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Proof. Indeed, as in [Ja 03, §I.4.15] one takes

I•(G, V) = C•(G, k[G])⊗Vtr

where Vtr denotes V with trivial G-action. The G-module structure on

In(G, V) = k[G]⊗(n+1) ⊗Vtr

is given by the regular representation of G on the first tensor factor; G acts trivially on all other tensor
factors. The boundary mapping In(G, V)→ In+1(G, V) is simply ∂k[G] ⊗ 1V .

Now compose the natural mapping (v 7→ 1⊗ v) : V → k[G]⊗V with the G-isomorphism

k[G]⊗V ∼−→ k[G]⊗Vtr

of [Ja 03, I.3.7(3)] in order to find the required G-module mapping V → I0(G, V).
It is proved in [Ja 03, §1.4.15] that 0 → V → I•(G, V) is exact, and it is clear by construction that

the complex C•(G, V) identifies with (I•(G, V))G. �

4.2. Parabolic subgroups. If H ⊂ G is a (closed) subgroup, and if V is a representation of G, then the
co-morphism j∗ : k[G]→ k[H] to the inclusion j : H → G yields a chain mapping

ρ : C•(G, V)→ C•(H, V)

by the rule ρn = (j∗)⊗n ⊗ 1 : k[G]⊗n ⊗ V → k[H]⊗n ⊗ V. In particular, if V is finite dimensional
and f ∈ Cn(G, V) is viewed as a regular function f : Gn → V, then ρ( f ) is just the restriction
f|Hn : Hn → V.

Moreover, ρ̃ = ρ⊗ 1Vtr determines a chain mapping

ρ̃ : I•(G, V) = C•(G, V)⊗k Vtr → I•(H, V) = C•(H, V)⊗k Vtr.

We will be interested in these chain maps in the case where H = P is a parabolic subgroup of a
reductive group.

Proposition. Let G be a reductive algebraic group over k, let V be a representation of G, and let P be a parabolic
subgroup of G. Then ρ induces an isomorphism Hi(G, V)

∼−→ Hi(P, V) for all i ≥ 0.

Proof. Using Kempf’s vanishing theorem, it is proved in [Ja 03, II.4.7] that

Hi(G, W) ' Hi(P, W) for any representation W of G.

Note that H0(G, W) = WG ⊂ WP = H0(P, W), so that if W is finite dimensional it is immediate
for dimension reasons that WG = WP. Since any G-representation is locally finite [Ja 03, I.2.13], the
equality WG = WP in fact holds for all G-representations W.

For m ≥ 0 and i > 0, note that Hi(G, Im(G, V)) = 0 since Im(G, V) is injective for G. But then
Hi(P, Im(G, V)) = 0 by the result just cited, so the resolution I•(G, V) of V is acyclic for the functor
(−)P. It follows that H•(P, V) may be computed as the cohomology of the complex (I•(G, V))P.

Now, the chain map ρ̃ : I•(G, V) → I•(P, V) is a quasi-isomorphism; thus [We 94, Corollary 5.7.7,
5.7.9] shows that ρ̃ induces an isomorphism on hypercohomology

H•(P, I•(G, V))→H•(P, I•(P, V)).

Since I•(G, V) and I•(P, V) are (−)P-acyclic, the result just cited also shows that the hypercohomol-
ogy groups coincide respectively with the cohomology of the complexes I•(G, V)P and I•(P, V)P; this
implies that

ρ : C•(G, M) = (I•(G, V))G = (I•(G, V))P → C•(P, M) = (I•(P, V)P

is a quasi-isomorphism, as required. �

(4.2.1). Let P be a parabolic subgroup of G and let V be a linear representation of G. Then the restriction
mapping (h 7→ h|P) : Z1(G, V) → Z1(P, V) is surjective, where Z1(G, V) ⊂ C1(G, V) is the group of
cocycles.



LEVI DECOMPOSITIONS 9

Proof. Indeed, if f ∈ Z1(P, V), the Proposition shows that there is some h ∈ Z1(G, V) for which
[ f ] = [h|P] in H1(P, V). Thus there is some v ∈ V = C0(P, V) for which

f = h|P + ∂P(v)

where ∂P(v) : P → V given by x 7→ xv − v. Now form the 1-cocycle h1 = h + ∂G(v) ∈ Z1(G, V)
where ∂G(v) : G → V is given by g 7→ gv− v. Then evidently h1|P = f . �

4.3. Group extensions. When V is a finite dimensional vector space (say, underlying a module for
an algebraic group), we will sometimes view V as a vector group as in §2.2; in other words, we view V
as the linear algebraic group over k whose functor of points is given by the rule V(Λ) = V ⊗k Λ for
each commutative k-algebra Λ

Let G be a linear algebraic group over k, and let V be a finite dimensional G-module. By an extension
of G by V, we mean a strictly exact sequence of algebraic groups (see §1.3 for the terminology)

(∗) 0→ V i−→ H π−→ G → 1.

We occasionally abuse terminology and refer to the extension (∗) simply as H, but the reader should
be aware that i and π are “part of the data” of an extension of G by V.

(4.3.1). Consider an extension H of G by V given by a sequence (∗). Let C be a closed subgroup of H. The
following conditions are equivalent:
(a) Multiplication is an isomorphism µ : C n V → H.
(b) π|C : C → G is an isomorphism of algebraic groups.

Proof. Given (a), the map π ◦ µ : C n V → G is a separable surjection with kernel µ−1(V) = V, so
that π|C = (π ◦ µ)|C is an isomorphism; i.e. (b) holds.

Given (b), set σ = i ◦ (π|C)−1, where i is the inclusion i : C → H. Then the map H → C n V given
by h 7→ (σ ◦ π(h), (σ ◦ π(h))−1h) inverts µ so that (a) holds. �

A subgroup C as in (4.3.1) is a complement to V in H. We say that an extension (∗) of G by V is split
if there is a complement to V in H.

4.4. Cohomology and group extensions. Let V be a representation of the linear algebraic group G.
We relate in this section the cohomology group H2(G, V) and the extensions of G by the vector group
V in the sense of §4.3.

Consider an extension H of G by V as in (∗) of §4.3. Since the vector group V is k-split unipotent,
Proposition 2.2 shows that there is a regular function s : G → H which is a section to π. Consider
now the regular mapping αH : G× G → V defined by

s(g)s(g′) = i(αH(g, g′))s(gg′)

for all g, g′ ∈ G(Λ) and all commutative k-algebras Λ.
On the other hand, given a cohomology class [α] ∈ H2(G, V) represented by a 2-cocycle α : G ×

G → V, form
Eα = G×V

with the operation Eα × Eα → Eα given by

(g, v) · (g′, v′) = (gg′, v + v′ + α(g, g′)).

Let i : V → Eα be the inclusion of the left-hand factor, and let π : Eα → G be the projection on the
right-hand factor.

Proposition. (a) For any extension H of G by V, we have αH ∈ Z2(G, V) ⊂ C2(G, V), and the class [αH ]
of αH in H2(G, V) is independent of choices.

(b) The extension H of G by V is split if and only if [αH ] = 0 in H2(G, V).
(c) For a 2-cocycle α ∈ Z2(G, V), the indicated operation makes the variety E = Eα into a linear algebraic

group which forms an extension of G by V. Moreover, [αE] = [α] in H2(G, V).
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Proof. [DeGa 70, II§3.2.3] �

Remark. (a) Let G be a split, semisimple group over a perfect field k. Recall that by (3.2.1), there is
a non-trivial extension of a G by the Frobenius twist g[1] of its Lie algebra, viewed as a vector
group with G-action. Thus, the Proposition shows that H2(G/k, g[1]) 6= 0 for any split semisimple
algebraic group G over k.

(b) Using the non-vanishing of a certain second cohomology group, we give in §7.1 an example of a
linear algebraic group with no Levi decomposition

4.5. Conjugacy of complements. Let V be a representation for the linear algebraic group G, and form
the semidirect product H = G n V which we view as the split extension of G by V. Write π : H → G
for the quotient homomorphism (g, v) 7→ g, write σ0 : G → H for the inclusion g 7→ (g, 0) of G in H,
write i : V → H for the inclusion v 7→ (1, v) of V in H, and write ψ : H = G n V → V for the regular
map of varieties (g, v) 7→ v; i.e. ψ is given by projection on the V factor.

Let Σ = {σ : G → H | σ is both a section to π and a homomorphism of algebraic groups}.

(4.5.1). The assignment σ 7→ ψ ◦ σ determines a bijection Σ → Z1(G, V) where Z1(G, V) is the set of
co-cycles in C1(G, V).

Proof. Given σ ∈ Σ, one easily checks that f = ψ ◦ σ ∈ Z1(G, V). Conversely, given f ∈ Z1(G, V) we
may form the section σf : G → H = G n V given by the rule

g 7→ (g, f (g));

the co-cycle condition implies that σ is a homomorphism of algebraic groups.
It is clear that the assignments σ 7→ ψ ◦ σ and f 7→ σf are inverse to one another. �

(4.5.2). Let σ ∈ Σ, and let f = ψ ◦ σ ∈ Z1(G, V) be the corresponding co-cycle as in (4.5.1). The following
are equivalent:
(a) [ f ] = 0 in H1(G, V).
(b) The sections σ, σ0 ∈ Σ are conjugate by an element i(v) ∈ H(k) for some v ∈ V = V(k)
(c) The sections σ, σ0 ∈ Σ are conjugate by an element of H(kalg) where kalg is an algebraic closure of k.

Proof. By definition, the condition [ f ] = 0 in H1(G, V) is equivalent to the condition f = ∂v for some
v ∈ V = C0(G, V) which simply means that f : G → V is given by the rule f (g) = gv− v. Now, for
each commutative k-algebra Λ and each g ∈ G(Λ) we have

i(v) · σ0(g) · i(−v) = (1, v)(g, 0)(1,−v) = (g, gv− v) = (g, f (g)) = σ(g);

this proves the equivalence of (a) and (b).
Evidently (b) implies (c). If (c) holds, say σ = Int(h)σ0 for h ∈ H(kalg), we may write h = (g, v)

for v ∈ V(kalg) and g ∈ G(kalg). Since 1G = π ◦ σ = π ◦ σ0, evidently g is central so that in fact
σ = Int(i(v))σ0. But then [ f ] = 0 in H1(G/kalg

, V/kalg
) by the equivalence of (b) and (a) for G/kalg

,
whence (a) by application of (4.1.1). �

5. SOME COHOMOLOGICAL CRITERIA FOR EXISTENCE AND CONJUGACY OF LEVI FACTORS

Throughout this section, G will denote a connected linear algebraic group. We suppose throughout §5
that condition (L) of §2.3 holds for G.

We fix a linearizable splitting sequence 1 = Rn ⊂ Rn−1 ⊂ · · · ⊂ R0 = R for R and write Vi for the
linear Greduc-representations for which there are Greduc-equivariant isomorphisms Vi ' Ri/Ri−1.

5.1. A cohomological criteria for conjugacy of Levi factors.

Theorem. Suppose that G has a Levi factor, and suppose that

H1(Greduc, Vi) = 0 for 0 ≤ i ≤ n− 1.

Then any two Levi factors L, L′ of G are conjugate by an element of R(k).
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Proof. Proceed by induction on the length n of a linearizable splitting sequence for R. In case n = 1,
the result follows from (4.5.2).

Now let n > 1 and suppose the result holds for groups having linearizable splitting sequences of
length < n. Let L, L′ ⊂ G be Levi factors.

The images L, L′ of the Levi factors of G in G/R1 are Levi factor of G/R1. Identifying V0 and R/R1,
we view G/R1 as an extension

0→ V0 → G/R1 → Greduc → 1

and it follows from (4.5.2) (i.e. the case n = 1) that there is v ∈ V0 such that L = Int(i(v))L′. Now,
the morphism R(k) → (R/R1)(k) = V0 is surjective by Proposition 2.2. Choosing an x ∈ R(k) which
maps to v ∈ V0 and replacing L′ by Int(x)L′ we may suppose that L = L′.

Let π : G → G/R1 be the quotient mapping, and let M = π−1(π(L)) = π−1(L). Then M is an
extension

1→ R1 → M→ Greduc → 1;
since L = L′, we have L, L′ ⊂ M so that both L and L′ are Levi factors of M. Since a splitting sequence
for the unipotent radical R1 of M has length n− 1, we may apply induction to learn that L and L′ are
conjugate by an element of R1(k). �

5.2. A cohomological criteria for the existence of a Levi factor.

Theorem. Suppose that
H2(Greduc, Vi) = 0 for 0 ≤ i ≤ n− 1.

Then G has a Levi factor.

Sketch: One proves the result by induction on the length n of a linearizable splitting sequence for R;
the result in case n = 1 follows from Proposition 4.4. The induction step is similar to – in fact, easier
than – that given in the proof of Theorem 5.1; details are left to the reader. �

5.3. Dimensional criteria for existence and conjugacy of Levi factors. Let H be a reductive algebraic
group over k. A result of Jantzen permits some control on the cohomology of H-modules whose
dimension is small relative to the size of the characteristic of k, as follows:

(5.3.1) (Jantzen [Ja 97]). If V is an H-module with dim V ≤ p, then V is completely reducible.

(5.3.2). If V is a H-module with dim V < p, then H1(H, V) = 0.

Proof. Using (4.1.1) we may as well suppose that k is algebraic closed. Suppose that

0 6= H1(H, V) = Ext1
H(k, V).

Then a non-zero cohomology class determines a non-split extension of G-modules

0→ V → E→ k→ 0;

in particular, the H-module E is not completely reducible. Now (5.3.1) implies that dim E > p so that
dim V ≥ p. �

(5.3.3). Let V be an H-module with dim V ≤ p and suppose that there are dominant weights µ1, . . . , µn such
that the character of V satisfies ch V = ∑j χ(µj). Then Hi(H, V) = 0 for i ≥ 1.

Proof. The hypotheses imply that dim H0(µj) ≤ p for all j. Now Janzten’s result (5.3.1) implies that
V together with each H0(µj) is completely reducible. In particular, H0(µj) = L(µj) is simple. Thus
(2.4.3) implies that the composition factors of V are precisely the L(µj). In turn, the complete re-
ducibility of V shows that V is the direct sum V =

⊕
j L(µj) =

⊕
j H0(µj), and the result now follows

from (2.4.2). �

Theorem. Suppose that condition (L) holds for G and write p for the characteristic of k. Let 1 = Rn ⊂
Rn−1 ⊂ · · · ⊂ R0 = R be a linearizable splitting sequence for R, and suppose that Ri/Ri−1 ' Vi for
G-modules Vi.
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(a) Suppose that dim R < p. If G has a Levi factor, then any two Levi factors are conjugate by an element of
R(k).

(b) Suppose that dim R ≤ p. If there are dominant weights µ1, . . . , µm for Greduc such that
n−1

∑
j=0

ch Vj =
m

∑
i=1

χ(µi)

then G has a Levi factor.

Proof. Assertion (a) is a consequence of (5.3.2) and Theorem 5.1, and assertion (b) is a consequence of
(5.3.3) and Theorem 5.2. �

Remark. Suppose that the reductive group H has absolutely quasi-simple derived group and semisimple
rank r. The main result of [Mc 98] shows that any H-representation with dim V ≤ rp is completely
reducible; this leads to obvious analogues of (5.3.2) and (5.3.3). If H is isomorphic to the reductive
quotient of G, the conclusion of the preceding Theorem remains valid after replacing in (a) the con-
dition “dim R < p” by the condition “dim R < rp” and in (b) the condition “dim R ≤ p” by the
condition “dim R ≤ rp”.

5.4. Another criteria for the existence of a Levi factor. Suppose in this section that k is separably closed.
Then the reductive quotient Greduc = G/R is split and in particular has a Borel subgroup over k.

Fix a Borel subgroup B ⊂ Greduc = G/R, and write B̃ = π−1(B) ⊂ G where π : G → Greduc is the
quotient mapping. We may view B̃ as an extension

(5.4.a) 1→ R→ B̃→ B→ 1.

We assume that (5.4.a) is split, and we fix a homomorphism σ : B → B̃ which is a section to this
extension. Write B1 for the image of σ. Under these assumptions, we find:

(5.4.1). G has a Levi factor containing B1.

Proof. Recall that we have fixed a linearizable splitting sequence 1 = Rn ⊂ Rn−1 ⊂ · · · ⊂ R0 = R for R;
for each i, the vector group Ri/Ri+1 is Greduc-equivariantly isomorphic to the linear representation Vi
of Greduc.

We prove the result by induction on n. First suppose that n = 1; then R ' V0 = V is a linearizable
vector group. Viewing G as an extension of Greduc by V, we find a 2-cocycle α = αG ∈ Z2(G, V) as in
§4.4. The restriction to B (more precisely: to B× B) of α is the 2-cocycle determined by the extension
(5.4.a); thus by hypothesis and by Proposition 4.4, we have [α|B×B] = 0 in H2(B, V). But then [α] = 0
in H2(G, V) by Proposition 4.2, so another application of Proposition 4.4 shows that the extension

0→ V → G → Greduc → 1

is split. Let τ : Greduc → G be a homomorphism which is a section to this extension. Restricting τ to
the Borel group B gives a section τ|B : B→ B̃. According to (4.5.1), there is f ∈ Z1(B, V) for which

σ(b) = τ(b) · i( f (b)) for each commutative k-algebra Λ and each b ∈ B(Λ).

According to (4.2.1) we may find h ∈ Z1(G, V) such that f = h|B. Now the image of the section
Greduc → G given by g 7→ τ(g) · i(h(g)) is a Levi factor of G containing B1, as required.

Now suppose n > 1 and that the conclusion of the Theorem is known for groups having lineariz-
able splitting sequences of length < n. Let B1 be the image of B1 in G/R1. Then B1 is a complement
to R/R1 in B̃/R1, so that the extension

(5.4.b) 0→ R/R1 → B̃/R1 → B→ 1

is split; thus by the case n = 1, we may find a Levi factor M ⊂ G/R1 containing B1.
Write π : G → G/R1 for the quotient mapping, and consider

B̃1 = π−1(B1) ⊂ M = π−1(M).
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After identifying M with Greduc, we may view M and B̃1 as extensions

1→ R1 → M→ Greduc → 1 and 1→ R1 → B̃1 → B→ 1.

Moreover, B1 ⊂ B̃1 so that σ : B→ B̃1 is a section to the second extension. Since the unipotent radical
R1 of the linear algebraic group M has a linearizable splitting sequence of length n − 1, induction
gives a Levi factor N of M containing B1, and evidently N is the desired Levi factor of G. �

5.5. Existence of a unique Levi factor containing a fixed maximal torus. We prove in this section
the existence result for Levi factors that is applied below in §6.

Fix a maximal torus T of G, and let Treduc denote the image of T under π; then Treduc is a maximal
torus of Greduc.

(5.5.1). Suppose that there is a unique Levi factor M of G/ksep containing T/ksep . Then M is defined over k and
is the unique Levi factor of G containing T.

Proof. Write Γ for the Galois group of ksep/k. Since T is defined over k, it is stable by the action of
Γ. The unicity of M then shows that M is Γ stable; thus M is defined over k by Galois descent [Sp
98, 11.2.8]. �

Theorem. Let k be separably closed, fix a Borel subgroup B ⊂ Greduc containing Treduc, and write B̃ =
π−1(B) where π : G → Greduc = G/R is the quotient mapping. Assume that there is a unique closed
subgroup B1 ⊂ B̃ such that T ⊂ B1 and such that π|B1

: B1
∼−→ B is an isomorphism. Then G has a unique

Levi factor containing T.

Proof. Since k is assumed to be separably closed and since the extension 1→ R→ B̃→ B→ 1 is split
by hypothesis, we may apply (5.4.1); it gives a Levi factor M ⊂ G containing B1 and in particular
containing T. It only remains to argue the uniqueness.

Before proceeding further, we observe first that if B′ is any Borel subgroup of Greduc (over k) con-
taining Treduc, the hypothesis shows: (∗) there is a unique closed B′1 ⊂ π−1(B′) such that π|B′1

: B′1
∼−→

B is an isomorphism. Indeed, since k is separably closed, [Bo 91, Theorem V.20.9] shows that any two
Borel subgroups of Greduc are conjugate by an element of Greduc(k), and the claim follows since the
mapping G(k)→ Greduc(k) is surjective by Proposition 2.2.

Suppose now that M, M′ are two Levi factors of G each containing T. The assumption shows that
both M and M′ contain B1. Choose in the reductive group M, resp. M′, a Borel subgroup C, resp. C′,
containing T opposite to B1

Then π(C) and π(C′) are Borel subgroups of Greduc containing T and opposite to B. Hence π(C)
and π(C′) are equal by [Bo 91, Prop. IV.14.21(i)]. But then C = C′ by the observation (∗). Then M and
M′ each contain the variety CB1 = C′B1 as an open, dense subset [Bo 91, Prop. 1V.14.21(iii)], hence
M = M′ as required. �

6. PARAHORIC GROUP SCHEMES

Let A be a Henselian discrete valuation ring (DVR) with maximal ideal m = vA . Henselian
means that A satisfies the conclusion of Hensel’s Lemma; for example, the DVR A is Henselian if it
is complete in its m-adic topology. We write K for the field of fractions of A and k for the residue field
of A ; we assume throughout §6 that the residue field k is perfect.

We denote by G a connected and reductive group over the field K. We will be interested in certain
algebraic groups over k which arise in the study of this group G. These are the special fibers P/k of
certain smooth A -group schemes P associated with G known as parahoric group schemes.

As hinted at in the introduction, these parahoric group schemes are related to the stabilizers in
G(K) of certain subsets of the affine building I of G. The reader is referred to [Ti 77], [BrTi 72] and
[BrTi 84] for more on these matters.

For our purposes in this paper, we do not need to discuss in detail this affine building. When G is
split over K, we will just describe the parahoric group schemes associated to the “standard alcove”
in a fixed apartment; up to isomorphism of A -group schemes, these account for all parahoric group
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schemes associated with G. When G splits over an unramified extension L/K, every parahoric group
scheme for G is obtained by “étale descent” from one for the split group G/L.

These descriptions will permit us to give a proof of Theorem A from §1.

6.1. An apartment in case G is split over K. Suppose in §6.1 that G is split over K and that T is a
maximal split K-torus of G.

In order to describe the parahoric group schemes associated with G, we must first describe a part
of the Bruhat-Tits building I associated with G, namely, the apartment A corresponding to T.

Write Φ ⊂ X∗(T) for the roots of G, and for a ∈ Φ write Ua for the corresponding root subgroup
of G. Fix a Chevalley system, i.e. a choice of K-isomorphisms χa : Ga → Ua for each a ∈ Φ satisfying
the “usual” commutation relations; see [BrTi 84, (3.2.2)].

Now write A = X∗(T)⊗ R, where X∗(T) is the lattice of co-characters of the split torus T. An affine
function on A has the form φ = (ψ, r) where ψ ∈ A∨ = X∗(T)⊗R and r ∈ R; thus φ(a) = ψ(a) + r for
a ∈ A, and ψ is the gradient of φ. The affine roots Φaff of G with respect to T are the affine functions
on A of the form α = (a, γ) for a ∈ Φ and γ ∈ Z.

The walls of A are the subsets α−1(0) for α ∈ Φaff; the connected components of the complement
of the union of all walls are the alcoves of A, and the facets of these alcoves are the facets of A.

Write Φ =
⋃

i∈I Φi as the disjoint union of its irreducible components Φi, fix for each i a basis of
simple roots ∆i for the root system Φi, and let α̃i ∈ Φi be the highest root (i.e. the dominant long root
for the given choice of basis). Now write ∆0

i for the set of affine roots

∆0
i = {(a, 0) | a ∈ ∆i} ∪ {(−α̃i, 1)}

and write ∆0 =
⋃

i∈I ∆0
i .

The fundamental alcove is the set C =
⋂

α∈∆0

α−1((0, ∞)); when G is (quasi-) simple, C is a simplex;

for semisimple G, C is a direct product of simplices, and in general C is a direct product of simplices
and a Euclidean space.

(6.1.1). The facets in the closure of the fundamental alcove C are in bijection with the subsets Θ = ∪i∈IΘi ⊂ ∆0

where Θi is a non-empty subset of ∆0
i for each i ∈ I. The facet FΘ determined by the subset Θ is given by

FΘ =

( ⋂
α∈Θ

α−1((0, ∞))

)
∩
( ⋂

α∈∆0 Θ

α−1(0)

)
.

Proof. The assertion is easily reduced to the case where Φ is irreducible, and in that case it follows
from [Bou 02, Corollary VI.2.3]. �

(6.1.2). Let ΦΘ be the set of all roots a ∈ Φ such that there is α ∈ Φaff with gradient a for which α|F = 0.
Then ΦΘ is a closed system of roots in Φ. The Dynkin diagram of ΦΘ is obtained from the extended Dynkin
diagram of Φ by deleting the nodes corresponding to Θ and all edges adjacent to those nodes.

Proof. If a, b ∈ ΦΘ then there are integers γa, γb such that the affine roots (a, γa) and (b, γb) vanish on
F . Now, if a + b ∈ Φ then evidently (a + b, γa + γb) vanishes on F so that a + b ∈ ΦΘ, as required.
For the second assertion, see (e.g.) [PR 84, 2.22]. �

Remark. (a) Strictly speaking, the apartment A of the affine building I of G associated with the torus
T, should be instead an affine space under X∗(T)⊗ R; our choice of Chevalley system determines
an “origin” for A and permits our identification of A with X∗(T)⊗ R; see §1 of [Ti 77] for a nice
account of these matters.

(b) If W = NG(T)/T denotes the Weyl group of G and Waff = W n X∗(T) the affine Weyl group,
then any alcove in A is conjugate by Waff to the fundamental alcove C; for this reason, we focus
attention on the alcove C.
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6.2. Parahoric group schemes in case G is split over K. Keep the assumptions and notations of 6.1,
and fix a facet F of the standard alcove C. Thus F = FΘ for some Θ as in (6.1.1). We are going to
describe the parahoric group scheme associated with the facet F .

This parahoric group scheme is constructed from A -group schemes attached to T and the Ua.
Since T is a split K-torus, there is a canonical split A -torus T with generic fiber T/K = T for which
X∗(T) = X∗(T ); see [BrTi 84, 1.2.11].

Given α = (a, γ) ∈ Φaff with gradient a ∈ Φ, we get a subgroup Uα ⊂ Ua(K) by the rule
Uα = χa(vγA ) where χa : Ga → Ua is the isomorphism involved in the Chevalley system. We
get moreover a smooth A -group scheme Uα with generic fiber Ua obtained by transport of struc-
ture via χa from the A -group scheme defined by the A -module vγA as in [BrTi 84, (1.4.1)]; then
Uα(A ) = Uα.

For a ∈ Φ+, let ea = 0 if the root a vanishes on F ⊂ A, and let ea = 1 otherwise; note in the latter
case that 1 > a(x) > 0 for each x ∈ F . Consider the following set of affine roots:

Ψ = ΨΘ = {(a, 0) | a ∈ Φ+} ∪ {(−a, ea) | a ∈ Φ+}

(6.2.1). (T , (Uα)α∈ΨΘ) is a schematic root datum over A . There is a smooth A -group scheme P with
generic fiber G such that the injections of T and the Ua in G prolong to isomorphisms of T and the Ua onto
closed A -subschemes of P . With the obvious definitions of the sets of affine roots Ψ±, the product mappings
yield isomorphisms of ∏α∈Ψ± Uα onto closed subgroup schemes U± of P , and the product mapping yields an
isomorphism of U− × T × U+ onto an open subscheme of P .

Proof. This follows from [BrTi 84, 3.8.1, 3.8.3, §4.6 and 4.6.26]; we only need to observe that the func-
tion fF of loc. cit., 4.6.26 takes the value 0 on any a ∈ Φ+, while for a ∈ Φ+, fF (−a) = 0 if ea = 0 and
0 < fF (−a) < 1 if ea = 1. �

(6.2.2) ([PR 84, 2.22] or [BrTi 84, 4.6.12]). The root system of the reductive quotient of the special fiber P/k is
ΦΘ.

(6.2.3). Fix a Borel subgroup B containing T/k in the reductive quotient P/k,reduc of the special fiber of P ,
and let B̃ = π−1(B) ⊂ P/k where π is the quotient mapping. There is a unique subgroup B1 ⊂ B̃ such that
T/k ⊂ B1 and such that π|B1

: B1 → B is an isomorphism.

Proof. The existence of B1 follows from (6.1.2) together with [BrTi 84, Cor. 4.6.4(ii)], since a positive
system of roots in ΦΘ is quasi-closed in the terminology of loc. cit.. Uniqueness follows from op. cit.
Cor. 4.6.4(i) since any B1 must contain the root subgroup of P/k for each a ∈ Φ+

Θ . �

6.3. Condition (L) for the special fiber of a parahoric group scheme in the split case. Keep the
notation and assumptions of §6.2, and suppose in addition that the residue field k of A is algebraically
closed.

In this case, we verify that condition (L) holds for the special fiber P/k of the parahoric group
scheme PF determined by the facet F = FΘ.

Recall that Φ = ∪i∈IΦi.

(6.3.1) (see e.g. [PR 84, 2.10]). For an affine root α ∈ Φaff, let i ∈ I such that the gradient of α is in Φi. Then
we may write α = ∑

β∈∆0
i

tββ for unique integers tβ, and the tβ are either all non-negative or all non-positive.

We define a function `Θ on affine roots as follows: if α ∈ Φaff has gradient a ∈ Φi ⊂ Φ, we set

`Θ(α) = ∑
α∈Θi

tα

where the tα are as in (6.3.1).
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Write δ = (0, 1) for the constant affine function on A. Then for i ∈ I, we may write δ = ∑α∈∆0
i

m(i)αα

for unique positive integers m(i)α, and we set

(6.3.a) `i = ∑
α∈∆0

i

m(i)α for i ∈ I.

(6.3.2). The special fiber P/k satisfies condition (L) of §2.3.

Proof. It follows from [PR 84, 2.22] that the unipotent radical R of P/k is generated by the canonical
images in P(k) of the groups Uα(A ) for all affine roots α with `Θ(α) ≥ 1.

Moreover, it is straightforward to verify that R = ∏j R(j) is the direct product of the G-invariant
subgroups R(j) generated by the canonical images of those groups Uα(A ) as above for which α has
gradient in Φj. Thus it suffices to prove the assertion in the case where Φ = Φ1 is irreducible, which
we now suppose. Write ` for `1 as in (6.3.a).

Let 0 ≤ i ≤ `− 1. Since k is algebraically closed, the canonical images in P(k) of the groups Uα(A )
for which `Θ(α) ≥ i + 1 generate a closed, connected subgroup Ri ⊂ P/k.

It follows from [PR 84, 2.16] that R`−1 = 1 and loc. cit., 2.22 shows for 0 ≤ i ≤ `− 2 that the quotient
Ri/Ri+1 has a natural structure of a finite dimensional k-vector space. The usual commutator relations
[Sp 98, 8.2.3] for G imply that the reductive quotient of P/k acts linearly on each quotient, thus indeed
(L) holds for P/k. �

6.4. The maximal unramified extension. Fix a separable closure Ksep of K, and let Kun denote the
maximal unramified extension of K in Ksep. The integral closure Aun of A in Kun is a DVR whose
residue field is an algebraic closure kalg of the perfect field k.

We consider the reductive Kun-group G/Kun obtained from G by base-change. By a theorem of Lang
[Ser97, II.3.3], Kun is a C1 field. Thus, we have the following important result due to Steinberg (in case
K is perfect) and Borel-Springer:

(6.4.1) ([BS68]). The reductive group G/Kun is quasi-split; i.e. G/Kun has a Borel subgroup defined over Kun.

When G/Kun is split over Kun, we have the following result:

(6.4.2) ([BrTi 84, 5.1.12]). There is a maximal K-split torus S of G and a maximal torus T of G containing S
for which T/Kun is Kun-split.

6.5. Parahoric group schemes for G and étale descent. Let G be a connected, reductive group over
K.

If G is quasi-split - i.e. has a Borel subgroup over K - the parahoric group schemes associated with
G can be described in an explicit manner analogous to our description in §6.2 when G is split; see
[BrTi 84, §4].

In general, the parahoric group schemes for G arise by étale descent from those of G/Kun . We will
describe this descent when G/Kun is split over Kun. Fix S ⊂ T ⊂ G as in (6.4.2). Then TKun is a Kun-
split torus of G/Kun ; write Aun for the apartment associated with Tun as in §6.1. The Galois group
Σ = Gal(Kun/K) acts on Aun, and we have the following:

(6.5.1) (Étale descent). Let F be a Σ-invariant facet of Aun, and let Pun = Pun,F be the corresponding
parahoric group scheme for G/Kun . There is a smooth A -group scheme P whose generic fiber P/K may be
identified with G for which Pun = P ⊗A Aun.

Proof. It follows from [BrTi 84, 4.6.30] that the action of Σ on Kun[G/Kun ] = K[G] ⊗K Kun leaves in-
variant the subalgebra Aun[Pun], the coordinate algebra of Pun. Thus [BrTi 84, 5.1.8] shows that Pun
arises by base-change A → Aun from a smooth A -group scheme P . �

The parahoric group schemes associated with G are precisely the A -group schemes obtained via
(6.5.1); see [BrTi 84, §5.2].

Let Pun = P ⊗A Aun be a parahoric group scheme corresponding to a Σ-invariant facet in Aun.
The special fiber Pun/kalg

of Pun is a linear algebraic group over kalg, and the special fiber P/k of P is
a linear algebraic group over k. We now have:
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(6.5.2). The special fibers of Pun and P are related by Pun/kalg
= (P/k)/kalg

.

6.6. Levi factors for the special fiber of P . We prove in this section the Theorem stated in the intro-
duction:

Proof of Theorem A. We first consider the case where K = Kun and G is split over K. Let P be a
parahoric group scheme associated with G. Up to isomorphism of A -group schemes, P arises via
the construction in §6.2.

Since k = kalg, (6.3.2) shows that the special fiber P/k satisfies condition (L). Moreover, by (6.2.3)
P/k satisfies the hypotheses of Theorem 5.5. It follows that P/k has a unique Levi factor containing
a fixed maximal torus T. In particular, since k = kalg it follows that any two Levi factors of P/k are
conjugate by an element of P/k(k).

Returning to the general case, the parahoric group scheme P associated with G arises by étale
descent from a parahoric Aun-group scheme Pun associated with G/Kun (6.5.1); thus Pun = P ⊗A Aun
and Pun /kalg

= P/k ⊗k kalg = P/kalg
.

Thus for any maximal k-torus T of P/k, the result above for Pun /kalg
together with (5.5.1) shows

that P/k has a unique Levi factor (over k) containing T.
If G is split over K, then P/k has a maximal torus which is k-split, and any Levi factor of P/k

contains a maximal split torus. The existence assertions in parts (i) and (ii) of the Theorem now
follow at once. A result of Borel-Tits shows that any two maximal split tori of P/k are conjugate by an
element of P(k) [CGP 10, Theorem C.2.3] or [Sp 98, 15.2.6]; the conjugacy assertion in (i) now follows.
The geometric conjugacy assertion in (ii) follows from the observation that all maximal tori of P/k are
geometrically conjugate. �

7. EXAMPLES

7.1. Cohomological construction of a linear algebraic group with no Levi decomposition. For a
reductive group G, the non-vanishing of some H2(G,−) may be used to construct linear algebraic
groups having no Levi factor. We give here an example.

Let k be algebraically closed field of characteristic p ≥ 3, and let G = SL3/k. Write T for the
diagonal maximal torus in G, and B for the Borel subgroup of lower triangular matrices.

Let α1, α2 ∈ X∗(T) be the simple roots of G for the choice of B (the weights of T on Lie(B) are
non-positive), and let v1, v2 ∈ X∗(T) be the fundamental dominant weights corresponding to the αi.

(7.1.1). If τ is a dominant weight for which 〈τ, α∨1 + α∨2 〉 ≤ p− 2, then rad V(τ) = 0 so that L(τ) = V(τ) =

H0(τ).

Proof. The condition means that τ is in the closure of the lowest alcove for the dot-action of the affine
Weyl group Wp on X∗(T); see [Ja 03, II.6.2(6)]. Since that alcove closure is a fundamental domain for
the indicated action, one knows for any dominant weight γ ≤ τ that γ 6∈ Wp • τ; thus by (2.4.1) and
the linkage principle [Ja 03, II.6.17], HomG(rad V(τ), L(γ)) ' Ext1

G(L(τ), L(γ)) = 0. Since τ is the
highest weight of V(τ), it follows that rad V(τ) = 0 as required. �

According to [Ja 03, II.8.19], the G-module V(τ) has a filtration

V(τ) = V0 ⊃ V1 ⊃ V2 ⊃ · · ·
for which V1 = rad V(τ) and J(τ) = ∑i≥1 ch Vi is given by the Jantzen sum formula [Ja 03, II.8.19].
The following result follows from (2.4.3):

(7.1.2). Let τ be a dominant weight and suppose that J(τ) = ch L for a simple G-module L. Then rad V(τ) '
L.

We are going to apply the Jantzen sum formula to achieve some cohomology computations. Let

λ = pv1, µ = (p− 2)v1 + v2, γ = (p− 3)v1.

(7.1.3). rad V(µ) = L(γ), and ch L(µ) = χ(µ)− χ(γ).
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Proof. Evaluating the Jantzen sum formula, we find that J(µ) = χ(sα1+α2,p • µ) = χ(γ). Since 〈γ, α∨1 +
α∨2 〉 = p− 3, (7.1.1) shows that V(γ) = L(γ) so that ch L(γ) = χ(γ). The assertion now follows from
(7.1.2). �

(7.1.4). rad V(λ) = L(µ), and ch L(λ) = χ(λ)− χ(µ) + χ(γ).

Proof. Evaluating the Jantzen sum formula and using (7.1.3), we find that

J(µ) = χ(sα1,p • λ) + χ(sα1+α2,p • λ) = χ(µ)− χ(γ) = ch L(µ),

so the result follows from (7.1.2). �

(7.1.5). dim Ext2
G(L(λ), L(γ)) = 1.

Proof. Since L(γ) = H0(γ), it follows from (2.4.2) that Exti
G(V(λ), L(γ)) = 0 for i ≥ 1. Using (7.1.3)

and (7.1.4) together with (2.4.1), we find that dim Ext1
G(L(µ), L(γ)) = 1 and Ext1

G(V(λ), L(γ)) = 0.
Now apply HomG(−, L(γ)) to the short exact sequence 0 → L(µ) → V(λ) → L(λ) → 0 to get an
exact sequence

0 = Ext1
G(V(λ), L(γ))→ Ext1

G(L(µ), L(γ) ∂−→ Ext2
G(L(λ), L(γ)→ Ext2(V(λ), L(γ)) = 0;

then ∂ is an isomorphism and the claim follows. �

(7.1.6). There is a linear algebraic group E with reductive quotient SL3, with abelian unipotent radical W of

dimension
3
2
(p− 1)(p− 2), and with no Levi decomposition.

Proof. Write W = L(λ)∨ ⊗ L(γ); using Steinberg’s tensor product theorem [Ja 03, II.3.17], we observe
that W ' L(v2)

[1] ⊗ L((p− 3)v1); the Weyl degree formula together with (7.1.1) now shows that W
has the indicated dimension. According to (7.1.5), we may choose a non-zero cohomology class

[α] ∈ H2(G, W) = H2(G, L(λ)∨ ⊗ L(γ)) ' Ext2
G(L(λ), L(γ))

for α ∈ Z2(G, W); the extension E = Eα of G by W then has the required properties. �

7.2. Quasi-split unitary groups in even dimension. As in §6, let A be a Henselian DVR with frac-
tions K and residues k. We suppose in addition that the residue field k is algebraically closed and has charac-
teristic p 6= 2. In particular, any finite extension of K is totally ramified over K.

We are going to give an example of a non-split reductive group G over K and a parahoric group
scheme P over A associated with G for which the special fiber P/k has a Levi decomposition, but for
which there are Levi factors not conjugate by an element of P(k).

Let L/K be a quadratic (hence Galois) extension. Denote the action of the non-trivial element
τ ∈ Γ = Gal(L/K) by (x 7→ xτ). Write B for the integral closure of A .

(7.2.1). B ⊗A k ' k[ε] where k[ε] is the k-algebra of dual numbers with basis 1, ε for which ε2 = 0. The
action of τ on B induces the automorphism ε 7→ −ε on k[ε] = B ⊗A k.

Proof. Indeed, B is generated as A -algebra by a uniformizer which satisfies an Eisenstein equation
of degree 2 over A . �

Let V be a 2n dimensional L-vector space, and let h : V × V → L be a non-degenerate skew-
hermitian form on V. Let G = SU(V, h) be the corresponding special unitary group; thus G is a
K-form of SL2n.

The fact that G is quasisplit (6.4.1) means here that h has maximal index; thus writing I = {±1,±2, . . . ,±n},
we may find a basis {ei | i ∈ I} of V such that

h(v, w) =
n

∑
i=1

(vi)
τw−i − (v−i)

τwi

where we have written e.g. v = ∑i∈I viei for vi ∈ L.
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Consider the lattice L = ∑i∈I Bei ⊂ V in V. Note that h determines a skew hermitian form
L ×L → B. Viewing L as an A -lattice in the K-vector space V = RL/KV, we may consider the
schematic closure P [BrTi 84, I.2.6] of G in the A -group scheme GL(L ); put another way, P is the
A -structure on G defined by the A -lattice L .

(7.2.2). P is a parahoric group scheme for G.

Proof. Argue as in [Ti 77, §3.11], where instead the special unitary groups for odd dimensional L-vector
spaces are treated in detail. �

Write M = L ⊗A k; using (7.2.1) we view M as a free k[ε] = B ⊗A k-module of rank 2n. Write β
for the form β = h⊗ 1; one sees that

β : M×M→ k[ε]
is skew hermitian for the involution of k[ε] defined by ε 7→ −ε. Write X 7→ σ(X) for the involution (i.e.
anti-automorphism of order 2) of Endk[ε](M) determined by β; thus β(Xv, w) = β(v, σ(X)w) for all
v, w ∈ M.

The special fiber P/k identifies with the closed subgroup H = SU(Endk[ε](M), σ) of the linear
k-group Autk[ε](M) = Endk[ε](M)× defined by

H(Λ) = SU(Endk[ε](M), σ)(Λ) = {x ∈ Endk[ε](M)⊗k Λ | σ(x)x = 1, det(x) = 1}
for each commutative k-algebra Λ.

Since P is smooth over A , the group scheme H = P/k is smooth over k – i.e. H is a linear algebraic
group over k; of course, the smoothness of H can be checked directly from its definition.

The bilinear form β induced on M = M/εM from β by reduction mod ε is non-degenerate and
symplectic. The involution σ induced on Endk(M) by σ is evidently the adjoint involution of β.
Consider the natural map π : Autk[ε](M)→ GL(M) of linear algebraic groups over k.

(7.2.3). π|H defines a separable surjection π|H : H → Sp(M) = Sp(M, β) ⊂ GL(M) onto the symplectic
group of β.

Proof. It is clear that the image of π lies in Sp(M). The Lie algebra of H is

Lie(H) = h = {X ∈ Endk[ε](M) | tr(X) = 0, X + σ(X) = 0}.

where tr(X) ∈ k[ε] is the trace. Given Y ∈ sp(M, β), let Y = i(Y) ∈ Endk[ε](M) where we have written
i : Endk(M) → Endk[ε](M) for the mapping determined by the k-linear splitting of the surjection
k[ε]→ k. Then Y ∈ h so that dπ|h is surjective. Since Sp(M) is connected, π|H is indeed surjective. �

Write
Sym(Endk(M)) = Sym(Endk(M), σ) = {X ∈ Endk(M) | X = σ(X)}

for the space of symmetric endomorphisms of M, and

Sym0(Endk(M)) = {X ∈ Sym(Endk(M)) | tr(X) = 0}.

for those of trace 0. Conjugation makes Sym0(Endk(M)) ⊂ Sym(Endk(M)) into Sp(M)-modules.

(7.2.4). (a) The kernel of π|H is the unipotent radical R of H.
(b) There is an Sp(M)-equivariant isomorphism Sym0(Endk(M))

∼−→ R; in particular, R is a vector group
and is linearizable for the action of Sp(M).

Proof. Let R = ker π|H . Then (7.2.3) shows that R is smooth and that H/R ' Sp(M) is reductive, (a)
will follow once we know that R is connected and unipotent; thus it is enough to prove (b).

Since R is smooth and k is algebraically closed, it is enough to give an isomorphism on k-points. A
k-point y of ker π|H has the form y = 1 + εX for X ∈ Endk(M). Then y ∈ H(k) implies

1 = yσ(y) = (1 + εX)σ(1 + εX) = (1 + εX)(1− εσ(X)) = 1 + ε(X− σ(X)).
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so that X = σ(X). Since 1 = det(y) = 1 + ε tr(X) we deduce that X ∈ Sym0(Endk(M)). Thus
X 7→ 1 + εX is the required isomorphism. �

(7.2.5). Write W = Sym(Endk(M)) and W0 = Sym0(Endk(M)). Then
(a) Hi(Sp(M), W) = 0 for i ≥ 1.
(b) Hi(Sp(M), W0) = 0 for i ≥ 2.

(c) H1(Sp(M), W0) =

{
0 if n 6≡ 0 (mod p),
k if n ≡ 0 (mod p).

Proof. The Sp(M)-module W identifies with
∧2 M, which has a filtration by standard modules; cf.

[Mc 98, Lemma 4.8.2] and recall the terminology from §2.4. Thus (a) follows from (2.4.1).
Moreover, when p does not divide n, the result just cited shows that W is completely reducible,

and that W0 is a simple standard module (in fact, W0 = V(v2) = H0(v2) where v2 is a certain
fundamental dominant weight). Assertions (b) and (c) follow in this case from another application of
(2.4.1).

Finally, suppose that p divides n. Then the identity endomorphism of M is symmetric and has
trace 2n = 0 in k, so that W0 has a trivial submodule. The result of loc. cit. shows that W0 is a Weyl
module (again, W0 = V(v2)) which has composition length 2, and there is a short exact sequence
0→ W0 → W → k → 0 of Sp(M)-modules. The resulting long exact sequence together with (a) now
gives (b) and (c) in this case. �

Proposition. (a) H = P/k has a Levi factor.
(b) If n 6≡ 0 (mod p), and if L, L′ are Levi factors of H, then L = gL′g−1 for some g ∈ H(k).
(c) If n ≡ 0 (mod p), there are Levi factors L, L′ of H = P/k which are not conjugate by an element of H(k).

Proof. In view of (7.2.4) and (7.2.5), assertion (a) follows from Theorem 5.2, assertion (b) follows from
Theorem 5.1, and assertion (c) follows from (4.5.2). �
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