ERRATA FOR "ABELIAN UNIPOTENT SUBGROUPS OF REDUCTIVE GROUPS"

GEORGE MCNINCH

Errors in the paper (McNinch 2002):

- (i) As in §4.4, consider a parabolic subgroup P of G determined by a cocharacter $\tau: \mathbf{G}_m \to G$. In §4.4, the quantity n(P) is defined as the least $n \geq 0$ with $\mathfrak{g}(2n) = 0$ for the grading of \mathfrak{g} induced by the cocharacter τ . Write $c(\mathfrak{u})$ for the nilpotence class of \mathfrak{u} , and c(U) for that of U. Now (McNinch 2002, Prop. 4.4) erroneously asserts that $c(\mathfrak{u})$, c(U) and n(P) coincide; in fact the given proof shows precisely that $n(P) 1 = c(\mathfrak{u}) = c(U)$.
- (ii) The preceding error in (McNinch 2002, Prop. 4.4) led to a flawed statement of the main result of the paper, (McNinch 2002, Theorem 1.1). See Section 1 below for a corrected formulation of Prop. 4.4 and Theorem 1.1
- (iii) More generally, throughout the paper, n(P) should always denote the integer of part (a) of Proposition 1. Thus under the standing hypotheses on the reductive group G n(P) is given by c(U)+1 or equivalently by the formula at the bottom of p. 278. As just noted, this applies especially to the formulation of Theorem 1.1. Other occurrences of n(P) are:
 - statement of Theorem 5.4 (p. 282)
 - statement of Theorem 6.2 (p. 284)
 - §8, the second sentence on p. 292 and statement of the Corollary.
- (iv) The results in $\S 9.7$ have the stated hypothesis that "p is a good prime for the group G". Throughout this section, this condition should be replaced by the hypothesis "p is a very good prime for G" ². In particular, the Lemma and Proposition found here in $\S 9.7$ are not valid for all good primes. See Section 2 below for an example and further discussion.

1. Theorem 1.1 and Proposition 4.4

Proposition 1 (Reformulation of Prop. 4.4 of (McNinch 2002)). With P as in §4.4:

- (a) $n(P) 1 = c(V) = c(\mathfrak{v})$ where $\mathfrak{v} = \text{Lie}(V)$.
- (b) I if $m \ge 1$ is minimal such that $p^m \ge n(P)$, then a Richardson element in V has order $\le p^m$ and a Richardson element in $\mathfrak v$ has p-nilpotence degree $\le m$.

Sketch. The proof of Proposition 4.4 given in (McNinch 2002) shows that $C^j(\mathfrak{v})=\bigoplus_{i\geq 2j}\mathfrak{g}(2i+2)$ for each j. Since $c(\mathfrak{v})$ is the minimal $j\geq 1$ with $C^j(\mathfrak{v})=0$, we see that $c(\mathfrak{v})=n(P)-1$. The argument for V is the same. Since n(P) exceeds the nilpotence class of V and \mathfrak{v} , (b) follows from (a) by applying (McNinch 2002, Lemma 2).

Theorem 2 (Reformulation of Theorem 1.1 of (McNinch 2002)). Assume that p is a good prime for the connected reductive group G, and that P is a distinguished parabolic subgroup of G with unipotent radical U. Write c(U) for the nilpotence class of U, write n(P) = c(U) + 1, and let the integer m > 0 be minimal with the property that $p^m \ge n(P)$.

- (a) The p-nilpotence degree of a Richardson element of Lie(U) is m; equivalently, the p-exponent of the Lie algebra Lie(U) is m;
- (b) The order of a Richardson element of U is p^m ; equivalently, the exponent of U is p^m .

Date: November 2016.

¹This error was noted in the footnote found in (McNinch 2003, pf of Lemma 11; p. 44)

²In fact, the results of $\S 9.7$ hold when G is a *standard reductive group* as in e.g. (McNinch and Testerman 2016, $\S 4$).

Sketch. The Theorem is a consequence of (McNinch 2002, Theorems 5.4 and 6.2), which are formulated provided n(P) as defined in (a) of Proposition 1.

2. Results in 9.7

In good characteristic, the tangent mapping to the isogeny $\pi:G_{\rm sc}\to G$ induces a bijection between the respective nilpotent varieties (and even the p-nilpotent varieties) in good characteristic; see (McNinch 2003, $\S 6$ and $\S 7$). But the proof of Lemma 9.7 requires more than the statement " $d\pi$ induces a bijection"; one needs to know for each abelian subalgebra $\mathfrak{a}\subset\mathfrak{g}$ generated by nilpotent elements,

(\clubsuit) $d\pi^{-1}(\mathfrak{a})$ contains an abelian subalgebra \mathfrak{a}' generated by nilpotent elements

This would follow for example if one knew that $d\pi$ induces an isomorphism

$$(\heartsuit)$$
 $\mathfrak{c}_{\mathrm{Lie}(G_{\mathrm{sc}})}(X) \xrightarrow{\sim} \mathfrak{c}_{\mathrm{Lie}(G)}(d\pi X)$

for all nilpotent $X \in \text{Lie}(G_{\text{sc}})$.

But as is easily verified, (\clubsuit) and (\heartsuit) both fail in characteristic 2 when $G_{\rm sc}={\rm SL}_2$ and $G={\rm PGL}_2$. And it is easy to see that the conclusion of Lemma 9.7 is incorrect for G. Of course, p=2 is "good" but not "very good" for this G. On the other hand, (\heartsuit) is valid in very good characteristic, since in that case $d\pi$ is an isomorphism of Lie algebras.

Here is a corrected proof of Lemma 9.7; the given argument (under the assumption that p is very good for G) then confirms Proposition 9.7.

Lemma 3. Suppose that p is very good for G, and that B is a Borel subgroup of G with unipotent radical U. Let $\mathfrak{a} \subset \mathfrak{g}$ be an Abelian subalgebra generated by nilpotent elements. Then there is $g \in G$ such that $Ad(g)\mathfrak{a} \subset \mathrm{Lie}(U)$.

Sketch. As note above, when p is very good for \mathfrak{g} , the mapping $d\pi$ determines an isomorphism between $\mathrm{Lie}(G_{\mathrm{sc}})$ and $\mathrm{Lie}(G)^3$. Now if \mathfrak{a} is an abelian subalgebra of $\mathrm{Lie}(G)$ generated by nilpotent elements, $\mathfrak{a}_{\mathrm{sc}} = d\pi^{-1}(\mathfrak{a})$ is again abelian and generated by nilpotent elements. Moreover, $\mathfrak{a}_{\mathrm{sc}}$ is conjugate to a subalgebra of $\mathrm{Lie}(U_{\mathrm{sc}})$ if and only if \mathfrak{a} is conjugate to a subalgebra of $\mathrm{Lie}(U)$, where U_{sc} is the unipotent radical of the Borel subgroup $B_{\mathrm{sc}} = \pi^{-1}(B)$ of G_{sc}

Thus we may suppose G to be the product of a torus and simply connected quasisimple groups. Now the remainder of the proof proceeds as in the original manuscript.

REFERENCES

McNinch, George (2002). "Abelian unipotent subgroups of reductive groups". In: *J. Pure Appl. Algebra* 167.2-3, pp. 269–300.

(2003). "Sub-principal homomorphisms in positive characteristic". In: *Math. Z.* 244.2, pp. 433–455.
McNinch, George and Donna M. Testerman (2016). "Central subalgebras of the centralizer of a nilpotent element". In: *Proc. Amer. Math. Soc.* 144.6, pp. 2383–2397.

DEPARTMENT OF MATHEMATICS, TUFTS UNIVERSITY, 503 BOSTON AVENUE, MEDFORD, MA 02155, USA *E-mail address*: george.mcninch@tufts.edu, gmcninch@zoho.com

³More generally, $d\pi$ is an isomorphism when G is a standard reductive group as in (McNinch and Testerman 2016, §4).