LEVI DECOMPOSITIONS OF LINEAR ALGEBRAIC GROUPS AND NON-ABELIAN COHOMOLOGY

GEORGE J. MCNINCH

To the memory of Gary Seitz (1943-2023)

CONTENTS

Abstract. Let *k* be a field, and let *G* be a linear algebraic group over *k* for which the unipotent radical *U* of *G* is defined and split over *k*. Consider a finite, separable field extension *ℓ* of *k* and suppose that the group *G^ℓ* obtained by base-change has a *Levi decomposition* (over *ℓ*). We continue here our study of the question previously investigated in ([McNinch 2013\)](#page-15-0): does *G* have a *Levi decomposition* (over *k*)?

Using non-abelian cohomology we give some condition under which this question has an affirmative answer. On the other hand, we provide an(other) example of a group *G* as above which has no Levi decomposition over *k*.

1. INTRODUCTION

Let *k* be a field, and let *G* be a linear algebraic group over *k*. Thus *G* is a group scheme which is smooth and affine over *k*.

If k_{alg} denotes an algebraic closure of *k*, the *unipotent radical* of $G_{k_{\text{alg}}}$ is the maximal connected, unipotent, normal subgroup. The unipotent radical of *G* is defined over *k* if *G* has a *k*-subgroup *U* such that $U_{k_{\text{alg}}}$ is the unipotent radical of $G_{k_{\text{alg}}}$.

Definition 1.1*.* We say that *G satisfies condition (R)* if the unipotent radical *U* of *G* is *defined and split* over *k*. (See Definition [2.1](#page-2-1) for the notion of split unipotent group). Write π : $G \rightarrow G/U$ for the quotient morphism; we say that G/U is the *reductive quotient* of *G*. Thus G/U is a (not necessarily connected) reductive algebraic group.

Remark 1.2*.* If *k* is perfect then **(R)** holds for any linear algebraic group *G* over *k*. Indeed, the unipotent radical *U* is defined over *k* by Galois descent. Moreover, every (smooth) connected unipotent group over a perfect field *k* is *k*-split; see Remark [2.2](#page-2-2).

Date: 2024-11-08 17:00:56 EST (george@valhalla).

Definition 1.3*.* Suppose that *G* satisfies condition **(R)**. The group *G* has a *Levi decomposition* (over k) if there is a closed k -subgroup scheme M of G such that the restriction of the quotient mapping determines an isomorphism

$$
\pi_{|M}: M \xrightarrow{\sim} G/R.
$$

The subgroup *M* is then a *Levi factor* of *G*.

If *G* satisfies condition **(R)** and if *M* is a Levi factor of *G* then Proposition [2.7](#page-3-0) below shows that *G* may be identified with the semidirect product $U \rtimes M$ as algebraic groups

Remark 1.4*.* When *k* has characteristic 0, *G* work of Mostow show that *G* always has a Levi decomposition; see e.g. ([McNinch 2010\)](#page-15-1) §3.1. For any field k of characteristic $p > 0$, there are linear algebraic groups *G* over *k* with no Levi factor; see e.g. ([Conrad, Gabber, and Prasad](#page-14-1) [2015\)](#page-14-1) A.6 for a construction.

We now fix a linear algebraic *k*-group *G* satisfying **(R)**. Suppose that *ℓ* is a finite, separable field extension of k , and suppose that G_{ℓ} has a Levi decomposition. We pose the question:

 (\diamondsuit) If G_{ℓ} has a a Levi decomposition (over ℓ), does *G* have a Levi decomposition (over *k*)?

This question about descent of Levi factors was already considered in the paper ([McNinch](#page-15-0) [2013\)](#page-15-0) whose main result gave the following partial answer:

Theorem 1.5. Assume that ℓ is a finite, Galois field extension of k with Galois group $\Gamma =$ Gal(*ℓ/k*)*, and assume that G^ℓ has a Levi decomposition. If |*Γ*| is invertible in k then G has a Levi decomposition.*

In the present paper, we introduce the non-abelian cohomology set $H^1_{\text{coc}}(M, U)$ in Section [3,](#page-5-0) and in Section [4](#page-7-0) we prove the following result providing a different partial answer to (\diamondsuit) :

Theorem 1.6. If ℓ is a finite separable extension of k , suppose the following:

- *(a) G^ℓ has a Levi decomposition,*
- *(b) the group scheme* $U_{\ell}^{M_{\ell}}$ *is trivial, and*
- $(C) H_{\text{coc}}^1(M_\ell, U_\ell) = 1.$

Then G has a Levi decomposition.

We also prove Corollary [4.5](#page-8-0) which gives a reformulation of Theorem [1.6](#page-1-0) using a filtration of *U*. After some preliminaries in Section [5](#page-9-0) and Section [6,](#page-9-1) we prove the following related result in Section [7](#page-11-0):

Theorem 1.7. *Suppose the following:*

- *(a) G^ℓ has a Levi decomposition,*
- *(b)* Inn $(U_{\ell})^{M_{\ell}}$ *is trivial,*
- *(c) the center Z of U is a vector group on which G acts linearly, and*
- (d) $H_{\text{coc}}^1(M_\ell, \text{Inn}(U_\ell)) = 1.$

Then G has a Levi decomposition.

The reader should compare these results with ([McNinch 2010\)](#page-15-1) Theorem 5.2. This older result shows that a certain condition involving the vanishing of second cohomology *H*² unconditionally guarantees the existence of a Levi factor. These newer results – Theorem [1.6,](#page-1-0) Corollary [4.5](#page-8-0) and Theorem [1.7](#page-1-1) – instead give conditions using vanishing of (some form of) first cohomology to descend Levi factors over finite separable field extensions.

We note that *some* additional hypotheses are required to answer the question (\diamondsuit) . Indeed, Section [8](#page-13-0) provides an example of an algebraic group *G* satisfying condition **(R)** for which *G^ℓ* has a Levi factor for some cyclic Galois extension *ℓ* of degree *p* over *k*, but *G* has no Levi factor over *k*.

Every example currently known to the author of a group *G* satisfying **(R)** for which (\diamondsuit) has a negative answer is *not connected*. This suggests the following natural problem for which a solution would be desirable:

Problem 1.8. Let *ℓ* be a finite, separable field extension of *k* and *G* a connected linear algebraic group over *k* satisfying (R) . Either find a proof of the assertion G_{ℓ} has a Levi factor implies that *G* has a Levi factor or find an example of a group for which this condition fails.

1.1. **Acknowledgments.** I would like to thank Brian Conrad, Skip Garibaldi, and an anonymous referee for making a number of useful suggestions and observations on the manuscript.

2. Preliminaries

We fix an arbitrary field *k*. Throughout the paper, *G* will denote a linear algebraic group over *k*. Thus *G* is a group scheme which is smooth, affine, and of finite type over *k*.

If *V* is a linear representation of *G*, then for $i \geq 0$, $H^{i}(G, V)$ denotes the *i*th *(Hochschild) cohomology* group of V ; see e.g. ([Jantzen 2003](#page-15-2)) I.4.

Automorphism group functors. By a *k*-group functor, we mean a functor from the category of commutative *k*-algebras to the category of groups. Of course, any group scheme – and in particular, any linear algebraic group – over *k* is *a fortiori* a *k*-group functor, but we will consider a few group functors which are in general not representable (i.e. which fail to be group schemes).

For a linear algebraic group *G* over *k*, we write $Aut(G)$ for the *k*-group functor which assigns to a commutative *k*-algebra Λ the group $Aut(G)(\Lambda) = Aut(G(\Lambda)).$

If *Z* denotes the (scheme-theoretic) center of *G*, there is a natural homomorphism of *k*group functors Inn : $G/Z \to Aut(G)$ whose image determines a normal k-sub-group functor $\text{Inn}(G)$ of $\text{Aut}(G)$; see [\(Demazure and Grothendieck 2011](#page-14-2)) XXIV §1.1.

Now, the *k*-group functor $Out(G)$ is defined for each Λ by the rule

$$
Out(G)(\Lambda) = Aut(G)(\Lambda) / Inn(G)(\Lambda)).
$$

The quotient mappings $Aut(G(\Lambda)) \to Aut(G(\Lambda))/\text{Inn}(G(\Lambda))$ determine a homomorphism of *k*-group functors

$$
(2.1) \t\t\t\Psi: \operatorname{Aut}(G) \to \operatorname{Out}(G).
$$

Unipotent groups. Recall from [\(Borel 1991](#page-14-3)) §15.1 the following:

Definition 2.1*.* A connected, unipotent linear algebraic group *U* over *k* is said to be *k-split* provided that there is a sequence

$$
1 = U_0 \subset U_2 \subset \cdots \subset U_{m-1} \subset U_m = U
$$

of closed, connected, normal *k*-subgroups of *U* such that $U_{i+1}/U_i \simeq G_{a/k}$ for $i = 0, \dots, m-1$, where $\mathbf{G}_a = \mathbf{G}_{a/k}$ is the additive group.

Remark 2.2*.* When *k* is not a perfect field, there are connected unipotent *k*-groups which are not *k*-split; for an example, see e.g. [\(Serre 2002](#page-15-3)) III.§2.1 Exercise 3. On the other hand, if *k* is perfect, every connected unipotent *k*-group is *k*-split. ([Borel 1991\)](#page-14-3) Cor. 15.5(ii).

Proposition 2.3. *Let U be a k-split unipotent group. If V is a normal k-subgroup of U, then U/V is again a k-split unipotent group.*

Proof. The assertion follows from ([Borel 1991](#page-14-3)) Theorem 15.4(i). \Box

A substantial reason for our focus on split unipotent groups is the following result of Rosenlicht:

Proposition 2.4. *Suppose that U is a connected, k-split unipotent subgroup of G and write* π : $G \rightarrow G/U$ *for the quotient morphism. Then there is a morphism of k-varieties*

$$
\sigma: G/U \to G
$$

which is a section to π – *i.e.* $\pi \circ \sigma$ *is the identity. In particular, the mapping* $\pi : G(k) \rightarrow$ (*G/U*)(*k*) *on k-points is surjective.*

Proof. See [\(Springer 1998\)](#page-15-4) Theorem 14.2.6. \square

Extensions, group actions and semi-direct products. Let *A* and *M* be linear algebraic *k*-groups.

Definition 2.5*.* An *extension* of *M* by *A* is a linear algebraic *k*-group *E* together with a sequence

(2.2)
$$
1 \to A \xrightarrow{i} E \xrightarrow{\pi} M \to 1.
$$

where *i* and π are morphisms of algebraic groups over *k*, *i* determines an isomorphism of *A* onto ker π , and the homomorphism π is faithfully flat.

Definition 2.6*.* If *A* and *M* are linear algebraic groups, we say that *A* is *an M-group* provided that there is a morphism of *k*-group functors $M \to \text{Aut}(A)$.

If *A* is a *M*-group via the homomorphism of *k*-group functors

$$
\alpha: M \to \mathrm{Aut}(A)
$$

then we can form the semi-direct product $A \rtimes_{\alpha} M$; it is an extension of M by A. (We omit the subscript α from \rtimes_{α} when it is clear from context).

If *E* is an extension ([2.2\)](#page-3-1), observe that the conjugation action of *E* determines a morphism of group functors $\text{Inn}: E \to \text{Aut}(A)$.

We record the following two results; their proofs are straightforward and left to the reader:

Proposition 2.7. *Let A and M be linear algebraic k-group and consider an extension* ([2.2](#page-3-1))

$$
1 \to A \to G \xrightarrow{\pi} M \to 1.
$$

If $s : M \to G$ *is a group homomorphism that is a section to* π *then the multiplication mapping* $(x, m) \mapsto xm$ *induces an isomorphism*

$$
A \rtimes_{\phi} M \xrightarrow{\sim} G
$$

of algebraic k-groups, where $\phi : M \to \text{Aut}(A)$ *is the composite* Inn \circ *s.*

Proposition 2.8. *Let A and M be linear algebraic k-group and consider an extension* ([2.2](#page-3-1))

$$
1 \to A \to G \xrightarrow{\pi} M \to 1.
$$

There is a unique homomorphism of k *-group functors* $\phi : M \to \text{Out}(A)$ *such that for any for* α *ny section* $s_0 : M \to G$ *to* π *as in Proposition* [2.4](#page-2-3), for any commutative *k*-algebra Λ , and for $any \, m \in M(\Lambda), \, \phi(m)$ *is the class of the inner automorphism* $\text{Inn}(s_0(m))$ *in* $\text{Out}(A)$.

Remark 2.9. A unipotent *k*-group *U* is *wound* if every mapping $A^1 \rightarrow U$ of *k*-schemes is constant. A connected, wound unipotent group of positive dimension is not *k*-split. If *M* is a connected and reductive *k*-group and if *U* is a wound unipotent *k*-group, then:

(*) any homomorphism of *k*-group functors $M \to \text{Aut}(U)$ is trivial.

Indeed, if *M* is a torus then (*∗*) follows from ([Conrad, Gabber, and Prasad 2015\)](#page-14-1) Corollary B.44. Now (*∗*) follows in general since the connected reductive group *M* is generated by its maximal *k*-tori – see ([Springer 1998](#page-15-4)) Theorem 13.3.6.

Observation (*∗*) provides some partial justification for our focus on groups satisfying **(R)**.

Linear actions. Let *G* and *U* be linear algebraic groups, suppose that *U* is connected and unipotent, and suppose that *U* is a *G*-group.

Definition 2.10*.* If *U* is a vector group, the action of *G* on *U* is said to be *linear* if there is a *G*-equivariant isomorphism of algebraic groups $U \simeq \text{Lie}(U)$.

Definition 2.11*.* A filtration

$$
1 = U_0 \subset U_1 \subset U_2 \subset \cdots \subset U_{m-1} \subset U_m = U
$$

by *G*-invariant closed *k*-subgroups U_i with U_i normal in U_{i+1} for each *i* is a *linear filtration* for the action of *G* if U_{i+1}/U_i is a vector group on which *G* acts linearly for each $i = 0, \dots, m-1$.

A linear filtration is a *central linear filtration* if U_{i+1}/U_i is central in U/U_i for each $i \geq 0$.

The following result was proved already in [\(Stewart 2013\)](#page-15-5) under the assumption that *k* is algebraically closed.

Theorem 2.12. *Assume that the unipotent radical U of G is defined and split over k.*

- *(a) If G is connected, there is a linear filtration of U for the action of G.*
- *(b)* If U has a linear filtration for the action of $U \rtimes G$ then it has a central linear filtration.

Proof. (a) is the main result of [\(McNinch 2014\)](#page-15-6).

To see (b), suppose that the subgroups U_i form a linear filtration of U for the action of $U \rtimes G$. We may clearly refine this filtration to arrange that $\text{Lie}(U_i)/\text{Lie}(U_{i+1})$ is an irreducible representation of $U \rtimes G$ for each *i*.^{[1](#page-4-0)}. We claim that this refined filtration is central. We proceed by induction on the length *m* of the linear filtration. If *m* = 1 then *U* is abelian and the result is immediate.

Suppose now that $m > 1$ and that one knows that any linear filtration of U for the action of $U \rtimes G$ of length $\lt m$ for which the factors of consecutive terms form irreducible $U \rtimes G$ representations is central.

Now, the conjugation action of *U* on *U*¹ is a *linear* action; thus, the fixed points for the conjugation action of U on U_1 form a G -invariant subgroup scheme which is smooth over k . Since $U_1 \simeq \text{Lie}(U_1)$ is an irreducible *G*-representation, it follows that *U* acts trivially on U_1 ; thus U_1 is central in U . Now, it is clear that

$$
(2.3) \t 1 \subset U_2/U_1 \subset \cdots \subset U_m/U_1 = U/U_1
$$

forms a linear filtration of U/U_1 for the action of *G* for which the factors of consecutive terms form irreducible $U \rtimes G$ -representations. Thus by induction ([2.3\)](#page-4-1) is a central linear filtration; this completes the proof. \Box

Remark 2.13*.* In the proof of Theorem [2.12](#page-4-2), we constructed a central linear filtration by arranging that the action of $U \rtimes G$ on each quotient U_{i+1}/U_i is irreducible. This condition is sufficient, but not necessary – in general, there are central linear filtrations for which $Lie(U_{i+1})/Lie(U_i)$ is a reducible *G*-representation for some *i*.

¹Since *U* is unipotent, an irreducible representation of $U \rtimes G$ amounts to an irreducible representation of *G*.

Galois cohomology. Write $\Gamma = \text{Gal}(k_{\text{sep}}/k)$ for the absolute Galois group of k where k_{sep} is a separable closure of *k*.

Let *G* be a *k*-group functor satisfying the conditions spelled out in ([Serre 2002\)](#page-15-3) II.1.1. Then Γ acts continuously on the group $G(k_{\text{sep}})$ and we may consider the Galois cohomology set $H^1(k, G) := H^1(\Gamma, G(k_{\rm sep}))$ [\(Serre 2002\)](#page-15-3), §5.1.

Proposition 2.14. *Let U be a connected, split unipotent algebraic group over k. Then the Galois cohomology set satisfies* $H^1(k, U) = 1$.

Proof. The necessary tools are recalled in ([McNinch 2004](#page-15-7)) Prop. 30. \Box

3. Non-abelian cohomology

Let *A* and *M* be linear algebraic *k*-groups and suppose that *A* is an *M*-group. Following [\(Demarche 2015](#page-14-4)) §2.1, we introduce the cohomology set $H^1_{\text{coc}}(M, A)$ as follows. Let $Z^1_{\text{coc}}(M, A)$ denote the set of regular maps $f : M \to A$ such that for each commutative *k*-algebra Λ and each $x, y \in M(\Lambda)$, the 1-cocycle condition

$$
(3.1) \t\t f(xy) = f(x) \cdot {}^x f(y)
$$

holds. Two cocycles $f, f' \in Z^1_{\text{coc}}(M, A)$ are *cohomologous* provided there is $u \in U(k)$ such that for each Λ and each $x \in M(\Lambda)$ we have

$$
f(x) = u^{-1} \cdot f'(x) \cdot {^x u}.
$$

This defines an equivalence relation on $Z^1_{\text{coc}}(M, A)$ and we write $H^1_{\text{coc}}(M, A)$ for the quotient set.

We view $H^1_{\text{coc}}(M, A)$ as a *pointed set*; the marked point $1 \in H^1_{\text{coc}}(M, A)$ is the class of the cocycle in $Z^1_{\text{coc}}(M, A)$ which takes the constant value 1. The pointed set $H^1_{\text{coc}}(M, A)$ is trivial if $H^1_{\text{coc}}(M, A) = \{1\}$; we often indicate this condition by the shorthand $H^1_{\text{coc}}(M, A) = 1$.

One interpretation or application of this cohomology set arises from examination of a semidirect product $G = A \rtimes M$. Consider a linear algebraic group *G* with normal subgroup *A* and a quotient mapping $\pi: G \to M = G/A$. We suppose that there is a group homomorphism $s_0 : M \to G$ which is a section to π . According to Proposition [2.7,](#page-3-0) s_0 determines an isomorphism $G \simeq A \rtimes M$.

Definition 3.1. Consider the set of all homomorphisms of k -groups $M \to G$ which are sections to π ; two such homomorphisms *s*, *s'* will be considered *equivalent* if there is $a \in A(k)$ such that $s = as'a^{-1}$. Then Sect($G \stackrel{\pi}{\rightarrow} M$) denotes the quotient of the set of all such homomorphisms by this equivalence relation.

Proposition 3.2. *Write* μ : $G \times G \rightarrow G$ *for the multiplication mapping. For a given homomorphism* $s_0: M \to G$ *which is a section to* π *, the assignment*

 $f \mapsto \mu \circ (f, s_0)$

 $-$ where (f, s_0) : $M \to M \times G$ is the mapping $m \mapsto (f(m), s_0(m))$ – determines a bijection

$$
A_{s_0}: H^1_{\text{coc}}(M, A) \to \text{Sect}(G \xrightarrow{\pi} M).
$$

Proof. As already observed above, the choice of s_0 determines an isomorphism of linear algebraic groups $G \simeq A \rtimes M$; see Proposition [2.7.](#page-3-0) Now the result follows from ([Demarche 2015\)](#page-14-4) Prop. 2.2.2. \Box

Remark 3.3*.* $H_{\text{coc}}^1(M, A)$ is a pointed set – i.e. a set with a distinguished element. That distinguished element is the class of the trivial mapping $(x \mapsto 1) : G \to A$. In the bijection of Proposition [3.2](#page-5-1) the section corresponding to the trivial class is s_0 .

Remark 3.4. When *Z* is a vector group with a linear action of *M*, $H_{\text{coc}}^1(M, Z)$ coincides with the usual Hochschild cohomology group $H^1(M, Z) \simeq H^1(M, \text{Lie}(Z))$. In particular, in that case $H^1_{\text{coc}}(M, Z)$ is a *k*-vector space.

Suppose now that $A = U$ is a split unipotent M-group and that $Z \subset U$ is a central *k*-subgroup that is *M*-invariant. Then *U/Z* is a split unipotent *M*-group, and there is a mapping

(3.2)
$$
\Delta: H^1_{\text{coc}}(M, U/Z) \to H^2(M, Z)
$$

where $H^2(M, Z)$ denotes the second Hochschild cohomology; it is defined as follows. First, use Rosenlichts result Proposition [2.4](#page-2-3) to choose a regular mapping $s: U/Z \to U$ which is a section to the quotient homomorphism $U \to U/Z$. Let $\alpha = [f] \in H^1_{\text{coc}}(M, A/Z \text{ with } f \in Z^1_{\text{coc}}(M, A/Z)$

As in [\(Demazure and Gabriel 1970](#page-14-5)) II, Subsect. 3.2.3 – see also ([McNinch 2010](#page-15-1)), §4.4 – the rule $(q, h) \mapsto s(f(q))s(f(h))s(f(qh))^{-1}$ determines a Hochschild 2-cocycle whose class in $H^2(G, Z)$ we denote $\Delta(\alpha)$.

Proposition 3.5. *Let U be a split unipotent M-group, and let Z be a central, closed and smooth k*-subgroup of U that is M-invariant. Write $i: Z \rightarrow U$ and $\pi: U \rightarrow U/Z$ for the *inclusion and quotient mappings, respectively.*

(a) the sequence of pointed sets

$$
H^1(M, Z) \xrightarrow{i_*} H^1_{\text{coc}}(M, U) \xrightarrow{\pi_*} H^1_{\text{coc}}(M, U/Z) \xrightarrow{\Delta} H^2(M, Z)
$$

is exact. (b) If $(U/Z)^M = 1$ *then i_{*} is injective.*

Sketch. (a) The proof of the corresponding statement for cohomology of pro-finite groups given in ([Serre 2002\)](#page-15-3) I. §5.7 may be applied here *mutatis mutandum*. The main required adaptation is the definition (given above) of the mapping Δ (which required the existence of a regular section $U/Z \rightarrow U$).

For (b), suppose that $f_1, f_2 : M \to Z$ are 1-cocycles and that $i_*([f_1]) = i_*([f_2])$. Thus f_1, f_2 are cohomologous in $Z_{\text{coc}}^1(M, U)$, so there is $u \in U(k)$ such that

$$
f_1(x) = u^{-1} \cdot f_2(x) \cdot xu
$$

for every commutative *k*-algebra Λ and every $x \in M(\Lambda)$. Passing to the quotient U/Z we see that $1 = u^{-1}xu$ so that the class of *u* lies in $(U/Z)^M(\Lambda)$. □

Remark 3.6. Assume that ℓ is a finite, Galois extension of k with Galois group $\Gamma = \text{Gal}(\ell/k)$. Then Γ acts on the Galois cohomology $H^1(M_\ell, A_\ell)$ through its action on regular mappings $M_{\ell} \to A_{\ell}$.

If *A* is a vector group on which *M* acts linearly, then $H^1(M_\ell, A_\ell)$ may be identified with $H^1(M, A) \otimes_k \ell$. In particular, in that case $H^1(M, A)$ may be identified with $H^1(M_\ell, A_\ell)^\Gamma$.

This observation prompts several questions. Suppose *U* is a split unipotent *M*-group and that *U* has a central linear filtration for the action of *M*.

- (a) Under what conditions is it true that $H_{\text{coc}}^1(M, U) = H_{\text{coc}}^1(M_\ell, U_\ell)^{\Gamma}$?
- (b) Under what conditions is it true that the condition $H_{\text{coc}}^1(M, U) = 1$ is equivalent to the condition $H_{\text{coc}}^1(M_\ell, U_\ell) = 1$?

8 GEORGE J. MCNINCH

4. Descent of Levi factors

We begin this section by giving the proof of Theorem [1.6](#page-1-0) from the introduction.

Proof. Recall that *G* is a linear algebraic group satisfying condition **(R)**, *U* is the unipotent radical and $M = G/U$ is the reductive quotient. Moreover, ℓ is a finite, separable field extension of k. We must show that under assumptions (a) , (b) , and (c) , the group G has a Levi decomposition.

First, note that the assumptions are unaffected if we pass to a finite separable extension of *l*. Thus, we may and will suppose that *l* is Galois over *k*; write $\Gamma = \text{Gal}(\ell/k)$ for the Galois group.

According to (a), G_{ℓ} has a Levi decomposition. Thus we may choose a homomorphism $s: M_{\ell} \to G_{\ell}$ which is a section to π . According to (c), we have $H_{\text{coc}}^1(M_{\ell}, U_{\ell}) = 1$. Together with Proposition [3.2,](#page-5-1) this shows that the set $\operatorname{Sect}(G_\ell \stackrel{\pi}{\to} M_\ell)$ contains a single element. In particular, every homomorphism $u : M_{\ell} \to G_{\ell}$ which is a section to π differs from *s* by conjugation with an element of $U(\ell)$.

There is a natural action of Γ on homomorphisms $M_{\ell} \to G_{\ell}$ which determines in turn an action of Γ on $\operatorname{Sect}(G_\ell \stackrel{\pi}{\to} M_\ell)$. For each $\gamma \in \Gamma$, we thus find an element $u_\gamma \in U(\ell)$ such that $\gamma_s = u_\gamma^{-1} \cdot s \cdot u_\gamma.$

We now contend that (\clubsuit) : u_γ is a 1-cocycle on Γ with values in $U(\ell)$. Well, for $\gamma, \tau \in \Gamma$ we see that

(4.1) *γτ s* = *u −*1 *γτ · s · uγτ*

while on the other hand

(4.2)
\n
$$
\begin{aligned}\n\gamma^{\tau} s &= \gamma (u_{\tau}^{-1} \cdot s \cdot u_{\tau}) \\
&= \gamma u_{\tau}^{-1} \cdot \gamma s \cdot \gamma u_{\tau} \\
&= \gamma u_{\tau}^{-1} \cdot u_{\gamma}^{-1} \cdot s \cdot u_{\gamma} \cdot \gamma u_{\tau}\n\end{aligned}
$$

Now, assumption (b) guarantees that $U_{\ell}^{M_{\ell}}$ is trivial, and it follows that the stabilizer in U_{ℓ} of the section s is trivial. Thus together (4.1) (4.1) and (4.2) (4.2) imply that

$$
u_{\gamma\tau} = u_{\gamma} \cdot \gamma u_{\tau}.
$$

This confirms (\clubsuit). Since *U* is a split unipotent *k*-group, $H^1(k, U) = 1$; see Proposition [2.14.](#page-5-2) Thus there is $u \in U(\ell)$ such that

$$
(4.3) \t\t\t u_{\gamma} = u^{-1} \cdot \gamma u
$$

for each $\gamma \in \Gamma$; i.e. $\gamma u = u u_{\gamma}$.

Now set $s_0 = u \cdot s \cdot u^{-1} \in \text{Sect}(G_\ell \stackrel{\pi}{\to} M_\ell)$. We claim that s_0 is a *k*-homomorphism. It is enough to argue that *s* is fixed by the Galois group Γ. For $\gamma \in \Gamma$ we note that

$$
\gamma_{s_0} = \gamma_u \cdot s \cdot u^{-1}
$$

= $\gamma_u \cdot \gamma_s \cdot \gamma_u^{-1}$
= $u \cdot u_\gamma \cdot u_\gamma^{-1} \cdot s \cdot u_\gamma \cdot u_\gamma^{-1} \cdot u$
= $usu^{-1} = s_0$.

Thus $s_0 : M \to G$ is a *k*-morphism which is a section to π ; this shows that *G* has a Levi factor as required. \Box

In the remainder of this section, we are going to formulate a variant of Theorem [1.6](#page-1-0) using a filtration of *U*. We are going to *assume that U has a central linear filtration*

$$
1 = Z_0 \subset Z_1 \subset \cdots Z_m = U
$$

for the action of *G*; see Definition [2.11.](#page-4-3) Note that such a filtration always exists in case *G* is connected; see Theorem [2.12](#page-4-2).

Proposition 4.1. *For each* $n \geq 0$ *the homomorphism of k-group functors*

 $\phi_0: M \to \mathrm{Out}(U)$

of Proposition [2.8](#page-3-2) *determines an action of M on the quotient* Z_{n+1}/Z_n *.*

Proof. Since Z_{n+1}/Z_n is abelian, $Out(Z_{n+1}/Z_n) = Aut(Z_{n+1}/Z_n)$. For each natural number *n*, *ϕ*⁰ determines by restriction and passage to the quotient a homomorphism of *k*-group functors

$$
\phi_{0|Z_{n+1}}: M \to \mathrm{Out}(Z_{n+1}/Z_n) = \mathrm{Aut}(Z_{n+1}/Z_n),
$$

i.e. an action of *M* on Z_{n+1}/Z_n .

Lemma 4.2. *Suppose that* $H^1(M, Z_{i+1}/Z_i) = 0$ *for each* $i = 0, \dots, m-1$ *. Then*

$$
H_{\text{coc}}^1(M, U) = 1 \quad and \quad H_{\text{coc}}^1(M_\ell, U_\ell) = 1.
$$

Proof. First observe that for a linear representation *V* of *G*, $H^1(G, V) = 0$ if and only if $H^1(G_\ell, V_\ell) = 0$. Now the result follows from Proposition [3.5](#page-6-0).

Remark 4.3*.* Viewing a finite dimensional linear representation *V* of *M* as an algebraic group, the scheme-theoretic fixed-point subgroup V^M coincides with the vector group given by the M fixed points on the linear representation V . In particular, if V is an irreducible representation of *M*, the group scheme V^M is equal to $\{0\}$.

Lemma 4.4. Suppose that $(Z_{i+1}/Z_i)^M = \{1\}$ for each $i = 0, \dots, m-1$. Then $U^M = \{1\}$ is *the trivial group scheme.*

Proof. We proceed by induction on *m*, the length of the central linear filtration of *U*. If $m = 0, U = 1$ and the result is immediate.

Now suppose that $m > 0$ and that the result is known for connected and split unipotent *M*-groups having a central linear filtration of length $\lt m$. Thus by induction we know $(U/Z_1)^M = \{1\}$. Thus U^M is contained in the kernel of the quotient mapping $U \to U/Z_1$, i.e. U^M is contained in Z_1 . Since $(Z_1)^M$ is the trivial group scheme, the proof is complete. □

We now obtain a corollary to Theorem [1.6](#page-1-0), as follows:

Corollary 4.5. *Assume that U has a central linear filtration for the action of G and a suppose the following:*

(a) G_{ℓ} *has a Levi decomposition (over* ℓ),

(bb) the group scheme $(Z_{i+1}/Z_i)^M$ *is trivial for* $i = 0, \dots, m-1$ *, and*

 (cc) $H^1(M, Z_{i+1}/Z_i) = 0$ *for* $i = 0, \dots, m-1$.

Then G has a Levi decomposition.

Proof. Note that according to Lemma [4.4](#page-8-1), condition (bb) implies hypothesis (b) of Theorem [1.6.](#page-1-0) Similarly, according to Lemma [4.2](#page-8-2) (cc) implies hypothesis (c) of Theorem [1.6](#page-1-0). Thus the result follows from Theorem [1.6.](#page-1-0) \Box

10 GEORGE J. MCNINCH

5. Automorphisms of extensions

Let *A* and *M* be linear algebraic groups over *k*, and let *E* and *E* be extensions of *M* by *A* as in Definition [2.5.](#page-3-1)

Definition 5.1. A *morphism of extensions* $\phi : E \to E'$ is a morphism of algebraic groups for which the diagram

is commutative.

Remark 5.2. If $\phi : E \to E$ is a morphism of extensions, then ϕ is necessarily an isomorphism of algebraic groups $E \stackrel{\sim}{\rightarrow} E'$.

Write $\text{Autext}(E)$ for the group of automorphisms of E. Let Z be the (schematic) center of *A*. Since *Z* is characteristic in *A*, *E* acts on *Z* by conjugation. Since *A* acts trivially on *Z*, the action of *E* on *Z* factors through $M \simeq E/A$.

Write $Z^1_{\text{coc}}(M, Z)$ for the Hochschild 1-cocycles as in Section [3.](#page-5-0) Since Z is commutative, $Z^1_{\text{coc}}(M, Z)$ is a group. The following result is a consequence of [\(Florence and Arteche 2020\)](#page-14-6), Prop. 2.3.

Proposition 5.3. *There is a canonical isomorphism of groups* $Z^1_{\text{coc}}(M, Z) \xrightarrow{\sim} \text{Autext}(E)$ *.*

Now suppose that *ℓ* is a finite, separable field extension of *k*.

Theorem 5.4. *Assume that the center Z of A is a vector group and that the action of M* on Z is linear. If the extensions E_{ℓ} and E'_{ℓ} of M_{ℓ} by A_{ℓ} are isomorphic, then E and E' are *isomorphic extensions of M by A.*

Proof. Write k_{sep} for a separable closure of k containing ℓ and write $\mathscr E$ for the set of isomorphism classes of extensions of *M* by *A* over *k* which after scalar extension to k_{sep} become isomorphic to the extension $E_{k_{\text{sep}}}$ of $M_{k_{\text{sep}}}$ by $A_{k_{\text{sep}}}$.

As in [\(Serre 2002\)](#page-15-3), III.§1, one knows that there is a bijection

(5.1)
$$
\mathscr{E} \xrightarrow{\sim} H^1(k, \text{Autext}(E)) := H^1(\text{Gal}(k_{\text{sep}}/k), \text{Autext}(E_{k_{\text{sep}}})).
$$

Thus, the Theorem will follow if we argue that the Galois cohomology set $H^1(k, \text{Autext}(E))$ is trivial – i.e. contains a unique element.

By assumption, *Z* is a vector group with linear action of *M*, so that $Z^1(M, Z)$ is a *k*-vector space (possibly of infinite dimension). Now Proposition [5.3](#page-9-2) shows that $\text{Autext}(E) = Z^1(M, Z)$ is a *k*-vector space, and it follows from "additive Hilbert 90" that

$$
H1(k, Aut(E)) \simeq H1(k, Z1(A, Z))
$$

is trivial; see for example ([McNinch 2013\)](#page-15-0) $(4.1.2)$. □

6. Automorphisms and cohomology

Let *A* and *M* be a linear algebraic *k*-groups, and suppose that *A* is a *M*-group via the mapping

$$
\phi: M \to \text{Aut}(A).
$$

Let *Z* denote the center of *A* as a group scheme. Then $\text{Inn}(A) \simeq A/Z$ is also an *M*-group via ϕ ; for $h \in \text{Inn}(A)(\Lambda)$ and $g \in M(\Lambda)$, we have ${}^gh = \phi(g)h\phi(g)^{-1}$.

Denote by $\phi_0 = \Psi \circ \phi$ the homomorphism of group functors

$$
M \xrightarrow{\phi} \text{Aut}(A) \xrightarrow{\Psi} \text{Out}(A)
$$

where $\Psi : \text{Aut}(A) \to \text{Out}(A)$ is the natural map of [\(2.1](#page-2-4)).

Consider those homomorphisms of *k*-group functors $\theta : M \to \text{Aut}(A)$ satisfying

$$
(*)\quad \Psi\circ\theta_1=\phi_0.
$$

We say that two such homomorphisms θ_1 and θ_2 are equivalent if they are conjugate by Inn(A)(k); i.e. if there is $h \in \text{Inn}(A)(k)$ for which

$$
\theta_1(g) = h^{-1}\theta_2(g)h
$$

for each commutative *k*-algebra Λ and each $g \in M(\Lambda)$. We write Lift (ϕ_0) for the quotient of the set of all homomorphisms $M \to Aut(A)$ satisfying (*) by the equivalence relation just described.

Proposition 6.1. *Write* μ : $Aut(A) \times Aut(A) \rightarrow Aut(A)$ *for the group operation. For* $f \in Z^1_{\text{coc}}(M, A)$ *, define* $\Phi_f : M \to \text{Aut}(A)$ *by the rule*

$$
\Phi_f = \mu \circ (f, \phi) : M \to \text{Aut}(A) \times \text{Aut}(A) \to \text{Aut}(A).
$$

Then the assignment $f \mapsto \Phi_f$ *determines a bijection*

$$
\Phi: H^1_{\text{coc}}(G, \text{Inn}(A)) \to \text{Lift}(\phi_0)
$$

Proof. For any 1-cocycle $f \in Z^1_{\text{coc}}(G, M)$, one checks that the mapping $\Phi_f : G \to \text{Aut}(A)$ is homomorphism of *k*-group functors contained in Lift $(f\phi)$.

We now claim for $f_1, f_2 \in Z^1_{\text{coc}}(M, A)$ that f_1 and f_2 are cohomologous if and only if Φ_{f_1} and Φ_{f_2} are equivalent.

 (\Rightarrow) : By assumption there is $h \in \text{Inn}(U)(k)$ such that for each commutative *k*-algebra Λ and each $g \in M(\Lambda)$ that

$$
f_1(g) = h^{-1} f_2(g)^g h.
$$

Now observe that

$$
\Phi_{f_1}(g) = f_1(g)\phi(g) = h^{-1}f_2(g)^gh \cdot \phi(g)
$$

= $h^{-1}f_2(g)\phi(g)h\phi(g)^{-1}\phi(g) = h^{-1}f_2(g)\phi(g)h$
= $h^{-1}\Phi_{f_2}(g)h$

so that indeed Φ_{f_1} and Φ_{f_2} are equivalent.

(←): By assumption there is $h \in \text{Inn}(A)(k)$ for which

$$
\Phi_{f_1} = h^{-1} \Phi_{f_2} h.
$$

Then for each commutative *k*-algebra Λ and each $q \in M(\Lambda)$ we have

$$
f_1(g) = \Phi_{f_1}(g) \cdot \phi(g)^{-1} = h^{-1} \Phi_{f_2}(g) h \cdot \phi(g)^{-1}
$$

= $h^{-1} \Phi_{f_2}(g) \phi(g)^{-1} h = h^{-1} f_2(g) h$

so that f_1 and f_2 are cohomologous.

It now follows that $f \mapsto \Phi_f$ determines a well-defined injective mapping

$$
\Phi: H^1_{\text{coc}}(M, \text{Inn}(A)) \to \text{Lift}(\phi_0).
$$

To see that Φ is surjective, suppose $\theta : M \to \text{Aut}(A)$ represents a class in Lift(ϕ_0). For each commutative *k*-algebra Λ and each $g \in M(\Lambda)$, we have $\theta(g)\phi(g)^{-1} \in \text{Inn}(A)(\Lambda)$. Thus we have a morphism of *k*-functors $f : M \to \text{Inn}(A)$ given by the rule

$$
f(g) = \theta(g)\phi(g)^{-1}.
$$

By the Yoneda Lemma, the assignment *f* is a morphism of varieties, and a calculation confirms that *f* is a 1-cocycle for the action of *M* on Inn(*A*) determined by ϕ . Then $[\theta] = [\Phi_f] = \Phi([f])$ which proves that Φ is surjective. \Box

7. Descent of Levi factors, part 2

In this section, we are going to prove Theorem [1.7.](#page-1-1) We first prove the following:

Lemma 7.1. *Let M, A be linear algebraic groups, and suppose that A is an M-group via the homomorphism* $\phi : M \to \text{Aut}(A)$ *of k-group functors. Let* $x \in A(k)$ *and consider the mapping* $\phi_1 : M \to \text{Aut}(A)$ *given for each commutative k*-algebra Λ and each $g \in M(\Lambda)$ by the rule $\phi_1(g) = \text{Inn}(x)\phi(g)\text{Inn}(x)^{-1}$. Then there is a *k*-isomorphism of extensions of M by A:

$$
A \rtimes_{\phi} M \simeq A \rtimes_{\phi_1} M.
$$

Proof. Write $G = A \rtimes_{\phi} M$ for the semidirect product constructed using the action defined by ϕ . Now, the mapping $\phi : M \to \text{Aut}(A)$ may be identified with the composite

$$
M \xrightarrow{m \mapsto (1,m)} G = A \rtimes_{\phi} M \xrightarrow{\text{Inn}} \text{Aut}(A)
$$

and $\phi_1 : M \to \text{Aut}(A)$ identifies with the composite

$$
M \xrightarrow{m \mapsto (x,1)(1,m)(x,1)^{-1}} A \rtimes_{\phi} M \xrightarrow{\text{Inn}} \text{Aut}(A).
$$

Write $s_1 : M \to G = A \rtimes_{\phi} M$ for the section given by the rule

$$
s_1(m) = (x, 1)(1, m)(x, 1)^{-1}
$$

It now follows from Proposition [2.7](#page-3-0) that the product mapping

$$
((a,m)\mapsto a\cdot s_1(m)):A\times M\to G
$$

determines an isomorphism $A \rtimes_{\phi_1} M \xrightarrow{\sim} G = A \rtimes_{\phi} M$ of extensions, as required. □

We now prove Theorem [1.7](#page-1-1) from Section [1](#page-0-0):

Proof. By assumption (a), G_{ℓ} has a Levi factor M_{ℓ} ; this choice determines a homomorphism

$$
\phi: M_{\ell} \to \mathrm{Aut}(U_{\ell})
$$

such that $\phi_{0,\ell} = \Psi \circ \phi$ where $\phi_0 : M \to \text{Out}(U)$ is the mapping determined by Proposition [2.8](#page-3-2) and $\Psi: \text{Aut}(U) \to \text{Out}(U)$ is the natural mapping of [\(2.1](#page-2-4)).

There is a natural action of the Galois group Γ on $\text{Aut}(U_{\ell})$ and on $\text{Out}(U_{\ell})$ for which Ψ is equivariant. For any $\gamma \in \Gamma$ it follows that

$$
\Psi \circ \,^{\gamma} \phi = \phi_0
$$

i.e. in the notation of Proposition [6.1](#page-10-0), $\gamma \phi$ determines a class in Lift($\phi_{0,\ell}$).

According to Proposition [6.1](#page-10-0) there is a bijection $H_{\text{coc}}^1(M_\ell, \text{Inn}(U_\ell)) \stackrel{\sim}{\to} \text{Lift}(\phi_0)$. Since $H_{\text{coc}}^1(M_\ell, \text{Inn}(U_\ell)) = 1$ it follows that classes of the automorphisms $\gamma \phi$ in Lift(ϕ_0) all coincide; i.e. all $\gamma \phi$ are equivalent.

By the definition of the equivalence relation defining Lift(ϕ ₀), we find for each $\gamma \in \Gamma$ and element $h_{\gamma} \in \text{Inn}(U)(\ell)$ such that

$$
\gamma \phi = h_{\gamma}^{-1} \cdot \phi \cdot h_{\gamma}.
$$

If $\gamma, \tau \in \Gamma$ we see that

(7.1)
$$
\gamma \tau \phi = h_{\gamma \tau}^{-1} \cdot \phi \cdot h_{\gamma \tau},
$$

while on the other hand

(7.2)
\n
$$
\begin{aligned}\n\gamma(\tau \phi) &= \gamma (h_{\tau}^{-1} \cdot \phi \cdot h_{\tau}) \\
&= \gamma h_{\tau}^{-1} \cdot \gamma \phi \cdot \gamma h_{\tau} \\
&= \gamma h_{\tau}^{-1} \cdot h_{\gamma}^{-1} \phi \cdot h_{\gamma} \cdot \gamma h_{\tau}.\n\end{aligned}
$$

By assumption (b) we know that the stabilizer in $\text{Inn}(U)$ of the automorphism ϕ is trivial. Thus taken together ([7.1\)](#page-12-0) and ([7.2\)](#page-12-1) imply that

$$
h_{\gamma\tau} = h_{\gamma}^{\ \gamma} h_{\tau};
$$

i.e. h_{γ} is a 1-cocycle on Γ with values in $\text{Inn}(U)(\ell)$. Since U is connected and split unipotent, so is $\text{Inn}(U)$; see Proposition [2.3.](#page-2-5) Thus $H^1_{\text{coc}}(M_\ell, \text{Inn}(U_\ell)) = 1$ by Proposition [2.14](#page-5-2).

It follows that the cocycle h_γ is trivial. Thus there is $h \in \text{Inn}(U)(\ell)$ such that for each $\gamma \in \Gamma$ we have

$$
h_{\gamma} = h^{-1} \cdot \gamma_h
$$

We now claim that the mapping $\phi_1 : M_\ell \to \text{Aut}(U_\ell)$ defined by

$$
\phi_1 = h \cdot \phi \cdot h^{-1}
$$

is Γ-stable. For $\gamma \in \Gamma$ we have

$$
\gamma_{\phi_1} = \gamma(h \cdot \phi \cdot h^{-1}) = \gamma h \cdot \gamma_{\phi} \cdot \gamma_{h^{-1}} = h h_{\gamma} \cdot h_{\gamma}^{-1} \phi h_{\gamma} \cdot h_{\gamma}^{-1} h^{-1} = \phi_1.
$$

Thus ϕ_1 is Γ-stable and hence defines a morphism $\phi_1 : M \to \text{Aut}(U)$ of *k*-group functors which we may use to define a semidirect product $G_1 = U \rtimes_{\phi_1} M$ over k.

Now, the center *Z* of *U* is a connected and split unipotent group; thus $H^1(\ell, Z) = 1$. It follows that the mapping $U(\ell) \to \text{Inn}(U)(\ell)$ is surjective, so we may choose an element $u \in U(\ell)$ for which $\text{Inn}(u) = h \in \text{Inn}(U)(\ell)$.

Thus we have

$$
\phi_1 = \text{Inn}(u) \cdot \phi \cdot \text{Inn}(u)^{-1}.
$$

It now follows from Lemma [7.1](#page-11-1) that there is an isomorphism of extensions

$$
G_{\ell} = U_{\ell} \rtimes_{\phi} M_{\ell} \simeq G_{1,\ell} = U_{\ell} \rtimes_{\phi_1} M_{\ell}
$$

of M_{ℓ} by U_{ℓ} .

According to Theorem [5.4](#page-9-3), assumption (c) implies that the extension G_{ℓ} has a unique *k*-form. Since *G* and G_1 are both *k*-forms of this extension, it follows that $G \simeq G_1$ are *k*-isomorphic extensions and in particular are *k*-isomorphic algebraic groups; since *G*¹ has a Levi factor over k , we conclude that G has a Levi factor over k as well. \Box

8. An example

In ([McNinch 2013](#page-15-0)) §5 we gave an example of an extension

$$
1 \to W \to E \to \mathbf{Z}/p\mathbf{Z} \to 1
$$

with E commutative and W a connected, commutative unipotent group of exponent p^2 . The group *E* was constructed by *twisting*, and it provided a negative answer to the question (\diamondsuit) from Section [1.](#page-0-0) Namely, for a suitable finite galios extension *ℓ* of *k* the group *E^ℓ* has a Levi factor, but *E* had no Levi factor.

We conclude the present paper with another example of a linear algebraic group over *k* which provides a negative answer to the question (\Diamond) .

The example below gives a non-commutative extension of a finite abelian *p*-group by a connected, non-commutative unipotent group; in this case, the construction of the extension is perhaps slightly more straightforward.

Suppose that the characteristic of *k* is $p > 2$. Consider the additive polynomial $X^p - X \in$ $k[X]$ defining the *Artin-Schreier* mapping \mathscr{P} : for any commutative *k*-algebra Λ, this mapping $\mathscr{P}: \Lambda \to \Lambda$ is given by the rule $x \mapsto x^p - x$.

Recall that if $s \in k$ is not in the image of $\mathscr{P}: k \to k$ then the polynomial $F(X) =$ $X^p - X - s \in k[X]$ is irreducible. If α is a root of $F(X)$ in an extension field of *k* then $\ell = k(\alpha)$ is a Galois extension of *k* with $Gal(\ell/k) \simeq \mathbf{Z}/p\mathbf{Z}$.

Let *V* be a vector space of dimension 2 over *k* with a basis e, f , and write $\beta: V \times V \to k$ for the unique non-degenerate symplectic form satisfying $\beta(e, f) = 1 = -\beta(f, e)$. Viewing $\mathscr{P} \circ \beta$ as a *factor system*, we define a unipotent group *H* as an extension of *V* by \mathbf{G}_a ; see [\(Serre 1988](#page-15-8)) VII.1.4. Explicitly, for a commutative *k*-algebra Λ we have

$$
H(\Lambda) = \Lambda \times V \otimes_k \Lambda
$$

with operation

$$
(t,v)\cdot (s,w)=(t+s+\mathscr{P}(\beta(v,w)),v+w)=(t+s+\beta(v,w)^p-\beta(v,w),v+w)
$$

for $v, w \in V \otimes \Lambda$ and $s, t \in \Lambda$.

Thus *H* is the non-abelian central extension

(8.1)
$$
0 \to \mathbf{G}_a \xrightarrow[t \to (0,t)]{} H \xrightarrow[(v,t) \to v]{} V \to 0.
$$

Write *Z* for the center of *H*; then $Z \simeq \mathbf{G}_a$ is the image of the mapping *i* of ([8.1\)](#page-13-1).

Fix $t \in k$ and let $V_{0,t} = \langle te, f \rangle \subset V$, so that $V_{0,t} \simeq (\mathbf{Z}/pZ)^2$. Let μ_t be the central extension of $V_{0,t}$ by $Z \simeq \mathbf{G}_a$ defined by β (*not* by $\mathscr{P} \circ \beta$)). Thus there is an exact sequence

$$
0 \to \mathbf{G}_a \to \mu_t \to V_{0,t} = (\mathbf{Z}/p\mathbf{Z})^2 \to 0
$$

and the group operation is given by

$$
(a, v) \cdot (b, w) = (a + b + \beta(v, w), v + w)
$$

for $v, w \in V_{0,t} \otimes \Lambda = V_{0,t}$ and $a, b \in \Lambda$.

Write *E* for the fiber product $E = H \times_{\mathbf{G}_a} \mu_t$; thus *E* is an extension of $V_{0,t} \simeq (\mathbf{Z}/p\mathbf{Z})^2$ by *H*. By the definition of the fiber product, there is a commuting diagram

$$
0 \longrightarrow \mathbf{G}_a \longrightarrow \mu_t \longrightarrow (\mathbf{Z}/p\mathbf{Z})^2 \longrightarrow 0
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel
$$

$$
0 \longrightarrow H \longrightarrow H \times_{\mathbf{G}_a} \mu_t \stackrel{\pi}{\longrightarrow} (\mathbf{Z}/p\mathbf{Z})^2 \longrightarrow 0
$$

Proposition 8.1. *If* $X^p - X + t$ *has no root in k, then the group* $E = H \times_{\mathbf{G}_a} \mu_t$ *has no Levi factor over k.* If α *is a root* $X^p - X + t$ *and* $\ell = k(\alpha)$ *then* E_ℓ *has a Levi factor.*

Sketch. We may represent elements of $E(k)$ as tuples (a, v, w) where $v \in V_{0,t}$, $w \in V$ and $a \in k$. We have

$$
(a, v, w) \cdot (a', v', w') = (a + a' + \beta(v, v') + \mathscr{P}\beta(w, w)', v + v', w + w')
$$

Now, any elements \tilde{e}, \tilde{f} of $E(k)$ mapping to $te, f \in V_{0,t}$ via π must have the form $\tilde{e} = (a, te, v)$ for some $v \in V$ and $a \in k$ and $\tilde{f} = (b, f, w)$ for some $w \in V$ and $b \in k$.

We see that

$$
\widetilde{e} \cdot \widetilde{f} = (a, te, v) \cdot (b, f, w) = (a + b + t + \mathscr{P}\beta(v, w), te + f, v + w)
$$

while

$$
\widetilde{f} \cdot \widetilde{e} = (b, f, w) \cdot (a, te, v) = (a + b + -t - \mathscr{P}\beta(v, w), te + f, v + w)
$$

Since the characteristic of *k* is not 2, $\tilde{e} \cdot f = f \cdot \tilde{e}$ if and only if

$$
0 = \mathscr{P}\beta(v, w) + t = \beta(v, w)^p - \beta(v, w) + t.
$$

If $X^p - X + t$ has no root in *k*, it follows that the group $\langle \tilde{e}, \tilde{f} \rangle$ is non-abelian for any choice of \tilde{e} , \tilde{f} . This shows that *E* has no Levi factor.

On the other hand, E_{ℓ} always has a Levi factor since we may take $\tilde{e} = (0, t, \epsilon, \alpha e)$ and $= (0, f, f)$: then $\langle \tilde{e}, \tilde{f} \rangle \simeq (\mathbf{Z}/n\mathbf{Z})^2$ so that $\langle \tilde{e}, \tilde{f} \rangle$ provides a Levi factor. $\widetilde{f} = (0, f, f);$ then $\langle \widetilde{e}, \widetilde{f} \rangle \simeq (\mathbf{Z}/p\mathbf{Z})^2$ so that $\langle \widetilde{e}, \widetilde{f} \rangle$ provides a Levi factor. □

Remark 8.2*.* The group *E* of Proposition [8.1](#page-13-2) fails to satisfy hypotheses (b) and (c) of Theo-rem [1.6.](#page-1-0) Indeed, let $M = E/H \simeq (\mathbf{Z}/p\mathbf{Z})^2$ be the reductive quotient of *E*. Then:

- M_{ℓ} acts trivially on H_{ℓ} . Thus, $H_{\ell}^{M_{\ell}} = H_{\ell} \neq \{1\}$, so that condition (b) fails to hold.
- The cohomology group $H^1_{\text{coc}}(\mathbf{Z}/p\mathbf{Z}, \mathbf{G}_a)$ is non-trivial. Using a Künneth formula, we see that $H^1_{\text{coc}}(M, \mathbf{G}_a) \neq 1$. Now use Proposition [3.5](#page-6-0) to conclude that $H^1_{\text{coc}}(M, H) \neq 1$ and $H_{\text{coc}}^1(M_\ell, H_\ell) \neq 1$. Thus condition (c) fails to hold.

BIBLIOGRAPHY

- Borel, Armand. 1991. *Linear Algebraic Groups*. 2nd ed. Vol. 126. Graduate Texts in Mathematics. Springer-Verlag, New York. <https://doi.org/10.1007/978-1-4612-0941-6>.
- Conrad, Brian, Ofer Gabber, and Gopal Prasad. 2015. *Pseudo-Reductive Groups*. 2nd ed. Vol. 26. New Mathematical Monographs. Cambridge University Press, Cambridge. <https://doi.org/10.1017/CBO9781316092439>.
- Demarche, C. 2015. Cohomologie de Hochschild Non Abélienne et Extensions de Faisceaux En Groupes. In *Autour Des Schémas En Groupes. Vol II*, 25592. Panor. Synthèses. Paris: Soc. Math. France.
- Demazure, M., and A. Grothendieck. 2011. *Schémas En Groupes (SGA 3). Tome III. Structure Des Schémas En Groupes Réductifs*. Edited by P. Gille and P. Polo. Documents Mathématiques (Paris), 8. Société Mathématique de France, Paris.
- Demazure, Michel, and Pierre Gabriel. 1970. *Groupes Algébriques. Tome I: Géométrie Algébrique, Généralités, Groupes Commutatifs*. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam.
- Florence, Mathieu, and Giancarlo Lucchini Arteche. 2020. On Extensions of Algebraic Groups. *Lenseignement Mathématique* 65 (3): 44155. [https://doi.org/10.4171/lem/](https://doi.org/10.4171/lem/65-3/4-5) [65-3/4-5](https://doi.org/10.4171/lem/65-3/4-5).
- Jantzen, Jens Carsten. 2003. *Representations of Algebraic Groups*. 2nd ed. Vol. 107. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI.
- McNinch, George. 2004. Nilpotent Orbits over Ground Fields of Good Characteristic. *Mathematische Annalen* 329 (1): 4985. <https://doi.org/10.1007/s00208-004-0510-9>.
- . 2010. Levi Decompositions of a Linear Algebraic Group. *Transformation Groups* 15 (4): 93764. <https://doi.org/10.1007/s00031-010-9111-8>.
- . 2013. On the Descent of Levi Factors. *Archiv Der Mathematik* 100 (1): 724. [https:](https://doi.org/10.1007/s00013-012-0467-y) [//doi.org/10.1007/s00013-012-0467-y](https://doi.org/10.1007/s00013-012-0467-y).
- . 2014. Linearity for Actions on Vector Groups. *Journal of Algebra* 397: 66688. [https:](https://doi.org/10.1016/j.jalgebra.2013.08.030) [//doi.org/10.1016/j.jalgebra.2013.08.030](https://doi.org/10.1016/j.jalgebra.2013.08.030).
- Serre, Jean-Pierre. 1988. *Algebraic Groups and Class Fields*. Vol. 117. Graduate Texts in Mathematics. Springer-Verlag, New York. <https://doi.org/10.1007/978-1-4612-1035-1>.
- . 2002. *Galois Cohomology*. English. Springer Monographs in Mathematics. Springer-Verlag, Berlin.
- Springer, T. A. 1998. *Linear Algebraic Groups*. 2nd ed. Modern Birkhäuser Classics. Birkhäuser, Boston, MA.
- Stewart, David I. 2013. On Unipotent Algebraic G-groups and 1-Cohomology. *Transactions of the American Mathematical Society* 365 (12): 634365. [https://doi.org/10.1090/](https://doi.org/10.1090/S0002-9947-2013-05853-9) [S0002-9947-2013-05853-9](https://doi.org/10.1090/S0002-9947-2013-05853-9).

DEPARTMENT OF MATH, TUFTS UNIVERSITY, MEDFORD MA, USA *Email address*: george.mcninch@tufts.edu