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Abstract. Let k be a field, and let G be a linear algebraic group over k for which the
unipotent radical U of G is defined and split over k. Consider a finite, separable field extension
ℓ of k and suppose that the group Gℓ obtained by base-change has a Levi decomposition (over
ℓ). We continue here our study of the question previously investigated in (McNinch 2013):
does G have a Levi decomposition (over k)?

Using non-abelian cohomology we give some condition under which this question has an
affirmative answer. On the other hand, we provide an(other) example of a group G as above
which has no Levi decomposition over k.

1. Introduction

Let k be a field, and let G be a linear algebraic group over k. Thus G is a group scheme
which is smooth and affine over k.

If kalg denotes an algebraic closure of k, the unipotent radical of Gkalg is the maximal
connected, unipotent, normal subgroup. The unipotent radical of G is defined over k if G has
a k-subgroup U such that Ukalg is the unipotent radical of Gkalg .

Definition 1.1. We say that G satisfies condition (R) if the unipotent radical U of G is
defined and split over k. (See Definition 2.1 for the notion of split unipotent group). Write
π : G → G/U for the quotient morphism; we say that G/U is the reductive quotient of G.
Thus G/U is a (not necessarily connected) reductive algebraic group.

Remark 1.2. If k is perfect then (R) holds for any linear algebraic group G over k. Indeed, the
unipotent radical U is defined over k by Galois descent. Moreover, every (smooth) connected
unipotent group over a perfect field k is k-split; see Remark 2.2.
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Definition 1.3. Suppose that G satisfies condition (R). The group G has a Levi decomposition
(over k) if there is a closed k-subgroup scheme M of G such that the restriction of the quotient
mapping determines an isomorphism

π|M : M
∼−→ G/R.

The subgroup M is then a Levi factor of G.
If G satisfies condition (R) and if M is a Levi factor of G then Proposition 2.7 below shows

that G may be identified with the semidirect product U ⋊M as algebraic groups
Remark 1.4. When k has characteristic 0, G work of Mostow show that G always has a Levi
decomposition; see e.g. (McNinch 2010) §3.1. For any field k of characteristic p > 0, there are
linear algebraic groups G over k with no Levi factor; see e.g. (Conrad, Gabber, and Prasad
2015) A.6 for a construction.

We now fix a linear algebraic k-group G satisfying (R). Suppose that ℓ is a finite, separable
field extension of k, and suppose that Gℓ has a Levi decomposition. We pose the question:

(♦) If Gℓ has a a Levi decomposition (over ℓ), does G have a Levi decomposition (over k)?
This question about descent of Levi factors was already considered in the paper (McNinch

2013) whose main result gave the following partial answer:
Theorem 1.5. Assume that ℓ is a finite, Galois field extension of k with Galois group Γ =
Gal(ℓ/k), and assume that Gℓ has a Levi decomposition. If |Γ| is invertible in k then G has
a Levi decomposition.

In the present paper, we introduce the non-abelian cohomology set H1
coc(M,U) in Section 3,

and in Section 4 we prove the following result providing a different partial answer to (♦):
Theorem 1.6. If ℓ is a finite separable extension of k, suppose the following:

(a) Gℓ has a Levi decomposition,
(b) the group scheme Uℓ

Mℓ is trivial, and
(c) H1

coc(Mℓ, Uℓ) = 1.
Then G has a Levi decomposition.

We also prove Corollary 4.5 which gives a reformulation of Theorem 1.6 using a filtration of
U . After some preliminaries in Section 5 and Section 6, we prove the following related result
in Section 7:
Theorem 1.7. Suppose the following:

(a) Gℓ has a Levi decomposition,
(b) Inn(Uℓ)

Mℓ is trivial,
(c) the center Z of U is a vector group on which G acts linearly, and
(d) H1

coc(Mℓ, Inn(Uℓ)) = 1.
Then G has a Levi decomposition.

The reader should compare these results with (McNinch 2010) Theorem 5.2. This older
result shows that a certain condition involving the vanishing of second cohomology H2 un-
conditionally guarantees the existence of a Levi factor. These newer results – Theorem 1.6,
Corollary 4.5 and Theorem 1.7 – instead give conditions using vanishing of (some form of)
first cohomology to descend Levi factors over finite separable field extensions.

We note that some additional hypotheses are required to answer the question (♦). Indeeed,
Section 8 provides an example of an algebraic group G satisfying condition (R) for which Gℓ

has a Levi factor for some cyclic Galois extension ℓ of degree p over k, but G has no Levi
factor over k.
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Every example currently known to the author of a group G satisfying (R) for which (♦)
has a negative answer is not connected. This suggests the following natural problem for which
a solution would be desirable:

Problem 1.8. Let ℓ be a finite, separable field extension of k and G a connected linear algebraic
group over k satisfying (R). Either find a proof of the assertion Gℓ has a Levi factor implies
that G has a Levi factor or find an example of a group for which this condition fails.

1.1. Acknowledgments. I would like to thank Brian Conrad, Skip Garibaldi, and an anony-
mous referee for making a number of useful suggestions and observations on the manuscript.

2. Preliminaries

We fix an arbitrary field k. Throughout the paper, G will denote a linear algebraic group
over k. Thus G is a group scheme which is smooth, affine, and of finite type over k.

If V is a linear representation of G, then for i ≥ 0, H i(G,V ) denotes the ith (Hochschild)
cohomology group of V ; see e.g. (Jantzen 2003) I.4.

Automorphism group functors. By a k-group functor, we mean a functor from the cat-
egory of commutative k-algebras to the category of groups. Of course, any group scheme –
and in particular, any linear algebraic group – over k is a fortiori a k-group functor, but we
will consider a few group functors which are in general not representable (i.e. which fail to
be group schemes).

For a linear algebraic group G over k, we write Aut(G) for the k-group functor which
assigns to a commutative k-algebra Λ the group Aut(G)(Λ) = Aut(G(Λ)).

If Z denotes the (scheme-theoretic) center of G, there is a natural homomorphism of k-
group functors Inn : G/Z → Aut(G) whose image determines a normal k-sub-group functor
Inn(G) of Aut(G); see (Demazure and Grothendieck 2011) XXIV §1.1.

Now, the k-group functor Out(G) is defined for each Λ by the rule
Out(G)(Λ) = Aut(G)(Λ)/ Inn(G)(Λ)).

The quotient mappings Aut(G(Λ)) → Aut(G(Λ))/ Inn(G(Λ)) determine a homomorphism
of k-group functors
(2.1) Ψ : Aut(G) → Out(G).

Unipotent groups. Recall from (Borel 1991) §15.1 the following:

Definition 2.1. A connected, unipotent linear algebraic group U over k is said to be k-split
provided that there is a sequence

1 = U0 ⊂ U2 ⊂ · · · ⊂ Um−1 ⊂ Um = U

of closed, connected, normal k-subgroups of U such that Ui+1/Ui ' Ga/k for i = 0, · · · ,m−1,
where Ga = Ga/k is the additive group.

Remark 2.2. When k is not a perfect field, there are connected unipotent k-groups which are
not k-split; for an example, see e.g. (Serre 2002) III.§2.1 Exercise 3. On the other hand, if k
is perfect, every connected unipotent k-group is k-split. (Borel 1991) Cor. 15.5(ii).

Proposition 2.3. Let U be a k-split unipotent group. If V is a normal k-subgroup of U , then
U/V is again a k-split unipotent group.

Proof. The assertion follows from (Borel 1991) Theorem 15.4(i). □
A substantial reason for our focus on split unipotent groups is the following result of

Rosenlicht:
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Proposition 2.4. Suppose that U is a connected, k-split unipotent subgroup of G and write
π : G → G/U for the quotient morphism. Then there is a morphism of k-varieties

σ : G/U → G

which is a section to π – i.e. π ◦ σ is the identity. In particular, the mapping π : G(k) →
(G/U)(k) on k-points is surjective.

Proof. See (Springer 1998) Theorem 14.2.6. □

Extensions, group actions and semi-direct products. Let A and M be linear algebraic
k-groups.

Definition 2.5. An extension of M by A is a linear algebraic k-group E together with a
sequence

(2.2) 1 → A
i−→ E

π−→ M → 1.

where i and π are morphisms of algebraic groups over k, i determines an isomorphism of A
onto kerπ, and the homomorphism π is faithfully flat.

Definition 2.6. If A and M are linear algebraic groups, we say that A is an M -group provided
that there is a morphism of k-group functors M → Aut(A).

If A is a M -group via the homomorphism of k-group functors

α : M → Aut(A)

then we can form the semi-direct product A ⋊α M ; it is an extension of M by A. (We omit
the subscript α from ⋊α when it is clear from context).

If E is an extension (2.2), observe that the conjugation action of E determines a morphism
of group functors Inn : E → Aut(A).

We record the following two results; their proofs are straightforward and left to the reader:

Proposition 2.7. Let A and M be linear algebraic k-group and consider an extension (2.2)

1 → A → G
π−→ M → 1.

If s : M → G is a group homomorphism that is a section to π then the multiplication mapping
(x,m) 7→ xm induces an isomorphism

A⋊ϕ M
∼−→ G

of algebraic k-groups, where ϕ : M → Aut(A) is the composite Inn ◦s.

Proposition 2.8. Let A and M be linear algebraic k-group and consider an extension (2.2)

1 → A → G
π−→ M → 1.

There is a unique homomorphism of k-group functors ϕ : M → Out(A) such that for any for
any section s0 : M → G to π as in Proposition 2.4, for any commutative k-algebra Λ, and for
any m ∈ M(Λ), ϕ(m) is the class of the inner automorphism Inn(s0(m)) in Out(A) .

Remark 2.9. A unipotent k-group U is wound if every mapping A1 → U of k-schemes is
constant. A connected, wound unipotent group of positive dimension is not k-split. If M is a
connected and reductive k-group and if U is a wound unipotent k-group, then:

(∗) any homomorphism of k-group functors M → Aut(U) is trivial.
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Indeed, if M is a torus then (∗) follows from (Conrad, Gabber, and Prasad 2015) Corollary
B.44. Now (∗) follows in general since the connected reductive group M is generated by its
maximal k-tori – see (Springer 1998) Theorem 13.3.6.

Observation (∗) provides some partial justification for our focus on groups satisfying (R).

Linear actions. Let G and U be linear algebraic groups, suppose that U is connected and
unipotent, and suppose that U is a G-group.

Definition 2.10. If U is a vector group, the action of G on U is said to be linear if there is a
G-equivariant isomorphism of algebraic groups U ' Lie(U).

Definition 2.11. A filtration

1 = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Um−1 ⊂ Um = U

by G-invariant closed k-subgroups Ui with Ui normal in Ui+1 for each i is a linear filtration for
the action of G if Ui+1/Ui is a vector group on which G acts linearly for each i = 0, · · · ,m−1.

A linear filtration is a central linear filtration if Ui+1/Ui is central in U/Ui for each i ≥ 0.

The following result was proved already in (Stewart 2013) under the assumption that k is
algebraically closed.

Theorem 2.12. Assume that the unipotent radical U of G is defined and split over k.
(a) If G is connected, there is a linear filtration of U for the action of G.
(b) If U has a linear filtration for the action of U⋊G then it has a central linear filtration.

Proof. (a) is the main result of (McNinch 2014).
To see (b), suppose that the subgroups Ui form a linear filtration of U for the action of

U⋊G. We may clearly refine this filtration to arrange that Lie(Ui)/Lie(Ui+1) is an irreducible
representation of U ⋊ G for each i. 1. We claim that this refined filtration is central. We
proceed by induction on the length m of the linear filtration. If m = 1 then U is abelian and
the result is immediate.

Suppose now that m > 1 and that one knows that any linear filtration of U for the action
of U ⋊ G of length < m for which the factors of consecutive terms form irreducible U ⋊ G-
representations is central.

Now, the conjugation action of U on U1 is a linear action; thus, the fixed points for the
conjugation action of U on U1 form a G-invariant subgroup scheme which is smooth over k.
Since U1 ' Lie(U1) is an irreducible G-representation, it follows that U acts trivially on U1;
thus U1 is central in U . Now, it is clear that

(2.3) 1 ⊂ U2/U1 ⊂ · · · ⊂ Um/U1 = U/U1

forms a linear filtration of U/U1 for the action of G for which the factors of consecutive terms
form irreducible U ⋊G-representations. Thus by induction (2.3) is a central linear filtration;
this completes the proof. □

Remark 2.13. In the proof of Theorem 2.12, we constructed a central linear filtration by
arranging that the action of U ⋊ G on each quotient Ui+1/Ui is irreducible. This condition
is sufficient, but not necessary – in general, there are central linear filtrations for which
Lie(Ui+1)/Lie(Ui) is a reducible G-representation for some i.

1Since U is unipotent, an irreducible representation of U ⋊ G amounts to an irreducible representation of
G.
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Galois cohomology. Write Γ = Gal(ksep/k) for the absolute Galois group of k where ksep
is a separable closure of k.

Let G be a k-group functor satisfying the conditions spelled out in (Serre 2002) II.1.1.
Then Γ acts continuously on the group G(ksep) and we may consider the Galois cohomology
set H1(k,G) := H1(Γ, G(ksep)) (Serre 2002), §5.1.

Proposition 2.14. Let U be a connected, split unipotent algebraic group over k. Then the
Galois cohomology set satisfies H1(k, U) = 1.

Proof. The necessary tools are recalled in (McNinch 2004) Prop. 30. □

3. Non-abelian cohomology

Let A and M be linear algebraic k-groups and suppose that A is an M -group. Following
(Demarche 2015) §2.1, we introduce the cohomology set H1

coc(M,A) as follows. Let Z1
coc(M,A)

denote the set of regular maps f : M → A such that for each commutative k-algebra Λ and
each x, y ∈ M(Λ), the 1-cocycle condition

(3.1) f(xy) = f(x) · xf(y)

holds. Two cocycles f, f ′ ∈ Z1
coc(M,A) are cohomologous provided there is u ∈ U(k) such

that for each Λ and each x ∈ M(Λ) we have

f(x) = u−1 · f ′(x) · xu.

This defines an equivalence relation on Z1
coc(M,A) and we write H1

coc(M,A) for the quotient
set.

We view H1
coc(M,A) as a pointed set; the marked point 1 ∈ H1

coc(M,A) is the class of the
cocycle in Z1

coc(M,A) which takes the constant value 1. The pointed set H1
coc(M,A) is trivial

if H1
coc(M,A) = {1}; we often indicate this condition by the shorthand H1

coc(M,A) = 1.
One interpretation or application of this cohomology set arises from examination of a

semidirect product G = A ⋊M . Consider a linear algebraic group G with normal subgroup
A and a quotient mapping π : G → M = G/A. We suppose that there is a group homomor-
phism s0 : M → G which is a section to π. According to Proposition 2.7, s0 determines an
isomorphism G ' A⋊M .

Definition 3.1. Consider the set of all homomorphisms of k-groups M → G which are sections
to π; two such homomorphisms s, s′ will be considered equivalent if there is a ∈ A(k) such that
s = as′a−1. Then Sect(G

π−→ M) denotes the quotient of the set of all such homomorphisms
by this equivalence relation.

Proposition 3.2. Write µ : G×G → G for the multiplication mapping. For a given homo-
morphism s0 : M → G which is a section to π, the assignment

f 7→ µ ◦ (f, s0)

– where (f, s0) : M → M ×G is the mapping m 7→ (f(m), s0(m)) – determines a bijection

As0 : H1
coc(M,A) → Sect(G

π−→ M).

Proof. As already observed above, the choice of s0 determines an isomorphism of linear alge-
braic groups G ' A⋊M ; see Proposition 2.7. Now the result follows from (Demarche 2015)
Prop. 2.2.2. □
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Remark 3.3. H1
coc(M,A) is a pointed set – i.e. a set with a distinguished element. That

distinguished element is the class of the trivial mapping (x 7→ 1) : G → A. In the bijection of
Proposition 3.2 the section corresponding to the trivial class is s0.

Remark 3.4. When Z is a vector group with a linear action of M , H1
coc(M,Z) coincides with

the usual Hochschild cohomology group H1(M,Z) ' H1(M,Lie(Z)). In particular, in that
case H1

coc(M,Z) is a k-vector space.

Suppose now that A = U is a split unipotent M -group and that Z ⊂ U is a central
k-subgroup that is M -invariant. Then U/Z is a split unipotent M -group, and there is a
mapping

(3.2) ∆ : H1
coc(M,U/Z) → H2(M,Z)

where H2(M,Z) denotes the second Hochschild cohomology; it is defined as follows. First, use
Rosenlichts result Proposition 2.4 to choose a regular mapping s : U/Z → U which is a section
to the quotient homomorphism U → U/Z. Let α = [f ] ∈ H1

coc(M,A/Z with f ∈ Z1
coc(M,A/Z)

As in (Demazure and Gabriel 1970) II, Subsect. 3.2.3 – see also (McNinch 2010), §4.4 –
the rule (g, h) 7→ s(f(g))s(f(h))s(f(gh))−1 determines a Hochschild 2-cocycle whose class in
H2(G,Z) we denote ∆(α).

Proposition 3.5. Let U be a split unipotent M -group, and let Z be a central, closed and
smooth k-subgroup of U that is M -invariant. Write i : Z → U and π : U → U/Z for the
inclusion and quotient mappings, respectively.

(a) the sequence of pointed sets

H1(M,Z)
i∗−→ H1

coc(M,U)
π∗−→ H1

coc(M,U/Z)
∆−→ H2(M,Z)

is exact.
(b) If (U/Z)M = 1 then i∗ is injective.

Sketch. (a) The proof of the corresponding statement for cohomology of pro-finite groups
given in (Serre 2002) I. §5.7 may be applied here mutatis mutandum. The main required
adaptation is the definition (given above) of the mapping ∆ (which required the existence of
a regular section U/Z → U).

For (b), suppose that f1, f2 : M → Z are 1-cocycles and that i∗([f1]) = i∗([f2]). Thus f1, f2
are cohomologous in Z1

coc(M,U), so there is u ∈ U(k) such that

f1(x) = u−1 · f2(x) · xu

for every commutative k-algebra Λ and every x ∈ M(Λ). Passing to the quotient U/Z we see
that 1 = u−1xu so that the class of u lies in (U/Z)M (Λ). □

Remark 3.6. Assume that ℓ is a finite, Galois extension of k with Galois group Γ = Gal(ℓ/k).
Then Γ acts on the Galois cohomology H1(Mℓ, Aℓ) through its action on regular mappings
Mℓ → Aℓ.

If A is a vector group on which M acts linearly, then H1(Mℓ, Aℓ) may be identified with
H1(M,A)⊗k ℓ. In particular, in that case H1(M,A) may be identified with H1(Mℓ, Aℓ)

Γ.
This observation prompts several questions. Suppose U is a split unipotent M -group and

that U has a central linear filtration for the action of M .
(a) Under what conditions is it true that H1

coc(M,U) = H1
coc(Mℓ, Uℓ)

Γ?
(b) Under what conditions is it true that the condition H1

coc(M,U) = 1 is equivalent to
the condition H1

coc(Mℓ, Uℓ) = 1?
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4. Descent of Levi factors

We begin this section by giving the proof of Theorem 1.6 from the introduction.

Proof. Recall that G is a linear algebraic group satisfying condition (R), U is the unipotent
radical and M = G/U is the reductive quotient. Moreover, ℓ is a finite, separable field
extension of k. We must show that under assumptions (a), (b), and (c), the group G has a
Levi decomposition.

First, note that the assumptions are unaffected if we pass to a finite separable extension of
ℓ. Thus, we may and will suppose that ℓ is Galois over k; write Γ = Gal(ℓ/k) for the Galois
group.

According to (a), Gℓ has a Levi decomposition. Thus we may choose a homomorphism
s : Mℓ → Gℓ which is a section to π. According to (c), we have H1

coc(Mℓ, Uℓ) = 1. Together
with Proposition 3.2, this shows that the set Sect(Gℓ

π−→ Mℓ) contains a single element. In
particular, every homomorphism u : Mℓ → Gℓ which is a section to π differs from s by
conjugation with an element of U(ℓ).

There is a natural action of Γ on homomorphisms Mℓ → Gℓ which determines in turn an
action of Γ on Sect(Gℓ

π−→ Mℓ). For each γ ∈ Γ, we thus find an element uγ ∈ U(ℓ) such that
γs = u−1

γ · s · uγ .
We now contend that (♣): uγ is a 1-cocycle on Γ with values in U(ℓ). Well, for γ, τ ∈ Γ

we see that

(4.1) γτs = u−1
γτ · s · uγτ

while on the other hand

(4.2)

γτs = γ(u−1
τ · s · uτ )

= γu−1
τ · γs · γuτ

= γu−1
τ · u−1

γ · s · uγ · γuτ

Now, assumption (b) guarantees that UMℓ
ℓ is trivial, and it follows that the stabilizer in Uℓ

of the section s is trivial. Thus together (4.1) and (4.2) imply that

uγτ = uγ · γuτ .

This confirms (♣). Since U is a split unipotent k-group, H1(k, U) = 1; see Proposition 2.14.
Thus there is u ∈ U(ℓ) such that

(4.3) uγ = u−1 · γu

for each γ ∈ Γ; i.e. γu = uuγ .
Now set s0 = u · s · u−1 ∈ Sect(Gℓ

π−→ Mℓ). We claim that s0 is a k-homomorphism. It is
enough to argue that s is fixed by the Galois group Γ. For γ ∈ Γ we note that

γs0 =
γu · s · u−1

= γu · γs · γu−1

= u · uγ · u−1
γ · s · uγ · u−1

γ · u
= usu−1 = s0.

Thus s0 : M → G is a k-morphism which is a section to π; this shows that G has a Levi factor
as required. □
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In the remainder of this section, we are going to formulate a variant of Theorem 1.6 using
a filtration of U . We are going to assume that U has a central linear filtration

1 = Z0 ⊂ Z1 ⊂ · · ·Zm = U

for the action of G; see Definition 2.11. Note that such a filtration always exists in case G is
connected; see Theorem 2.12.

Proposition 4.1. For each n ≥ 0 the homomorphism of k-group functors

ϕ0 : M → Out(U)

of Proposition 2.8 determines an action of M on the quotient Zn+1/Zn.

Proof. Since Zn+1/Zn is abelian, Out(Zn+1/Zn) = Aut(Zn+1/Zn). For each natural number
n, ϕ0 determines by restriction and passage to the quotient a homomorphism of k-group
functors

ϕ0|Zn+1
: M → Out(Zn+1/Zn) = Aut(Zn+1/Zn),

i.e. an action of M on Zn+1/Zn. □

Lemma 4.2. Suppose that H1(M,Zi+1/Zi) = 0 for each i = 0, · · · ,m− 1. Then

H1
coc(M,U) = 1 and H1

coc(Mℓ, Uℓ) = 1.

Proof. First observe that for a linear representation V of G, H1(G,V ) = 0 if and only if
H1(Gℓ, Vℓ) = 0. Now the result follows from Proposition 3.5. □

Remark 4.3. Viewing a finite dimensional linear representation V of M as an algebraic group,
the scheme-theoretic fixed-point subgroup V M coincides with the vector group given by the M -
fixed points on the linear representation V . In particular, if V is an irreducible representation
of M , the group scheme V M is equal to {0}.

Lemma 4.4. Suppose that (Zi+1/Zi)
M = {1} for each i = 0, · · · ,m− 1. Then UM = {1} is

the trivial group scheme.

Proof. We proceed by induction on m, the length of the central linear filtration of U . If
m = 0, U = 1 and the result is immediate.

Now suppose that m > 0 and that the result is known for connected and split unipotent
M -groups having a central linear filtration of length < m. Thus by induction we know
(U/Z1)

M = {1}. Thus UM is contained in the kernel of the quotient mapping U → U/Z1, i.e.
UM is contained in Z1. Since (Z1)

M is the trivial group scheme, the proof is complete. □

We now obtain a corollary to Theorem 1.6, as follows:

Corollary 4.5. Assume that U has a central linear filtration for the action of G and a suppose
the following:

(a) Gℓ has a Levi decomposition (over ℓ),
(bb) the group scheme (Zi+1/Zi)

M is trivial for i = 0, · · · ,m− 1, and
(cc) H1(M,Zi+1/Zi) = 0 for i = 0, · · · ,m− 1.

Then G has a Levi decomposition.

Proof. Note that according to Lemma 4.4, condition (bb) implies hypothesis (b) of Theo-
rem 1.6. Similarly, according to Lemma 4.2 (cc) implies hypothesis (c) of Theorem 1.6. Thus
the result follows from Theorem 1.6. □
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5. Automorphisms of extensions

Let A and M be linear algebraic groups over k, and let E and E be extensions of M by A
as in Definition 2.5.

Definition 5.1. A morphism of extensions ϕ : E → E′ is a morphism of algebraic groups for
which the diagram

1 A E M 1

1 A E′ M 1

i π

i′ π

is commutative.

Remark 5.2. If ϕ : E → E is a morphism of extensions, then ϕ is necessarily an isomorphism
of algebraic groups E

∼−→ E′.

Write Autext(E) for the group of automorphisms of E. Let Z be the (schematic) center of
A. Since Z is characteristic in A, E acts on Z by conjugation. Since A acts trivially on Z,
the action of E on Z factors through M ' E/A.

Write Z1
coc(M,Z) for the Hochschild 1-cocycles as in Section 3. Since Z is commutative,

Z1
coc(M,Z) is a group. The following result is a consequence of (Florence and Arteche 2020),

Prop. 2.3.

Proposition 5.3. There is a canonical isomorphism of groups Z1
coc(M,Z)

∼−→ Autext(E).

Now suppose that ℓ is a finite, separable field extension of k.

Theorem 5.4. Assume that the center Z of A is a vector group and that the action of M
on Z is linear. If the extensions Eℓ and E′

ℓ of Mℓ by Aℓ are isomorphic, then E and E′ are
isomorphic extensions of M by A.

Proof. Write ksep for a separable closure of k containing ℓ and write E for the set of isomor-
phism classes of extensions of M by A over k which after scalar extension to ksep become
isomorphic to the extension Eksep of Mksep by Aksep .

As in (Serre 2002), III.§1, one knows that there is a bijection

(5.1) E
∼−→ H1(k,Autext(E)) := H1(Gal(ksep/k),Autext(Eksep)).

Thus, the Theorem will follow if we argue that the Galois cohomology set H1(k,Autext(E))
is trivial – i.e. contains a unique element.

By assumption, Z is a vector group with linear action of M , so that Z1(M,Z) is a k-vector
space (possibly of infinite dimension). Now Proposition 5.3 shows that Autext(E) = Z1(M,Z)
is a k-vector space, and it follows from "additive Hilbert 90" that

H1(k,Aut(E)) ' H1(k, Z1(A,Z))

is trivial; see for example (McNinch 2013) (4.1.2). □

6. Automorphisms and cohomology

Let A and M be a linear algebraic k-groups, and suppose that A is a M -group via the
mapping

ϕ : M → Aut(A).

Let Z denote the center of A as a group scheme. Then Inn(A) ' A/Z is also an M -group via
ϕ; for h ∈ Inn(A)(Λ) and g ∈ M(Λ), we have gh = ϕ(g)hϕ(g)−1.
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Denote by ϕ0 = Ψ ◦ ϕ the homomorphism of group functors

M
ϕ−→ Aut(A)

Ψ−→ Out(A)

where Ψ : Aut(A) → Out(A) is the natural map of (2.1).
Consider those homomorphisms of k-group functors θ : M → Aut(A) satisfying

(∗) Ψ ◦ θ1 = ϕ0.

We say that two such homomorphisms θ1 and θ2 are equivalent if they are conjugate by
Inn(A)(k); i.e. if there is h ∈ Inn(A)(k) for which

θ1(g) = h−1θ2(g)h

for each commutative k-algebra Λ and each g ∈ M(Λ). We write Lift(ϕ0) for the quotient of
the set of all homomorphisms M → Aut(A) satisfying (∗) by the equivalence relation just
described.

Proposition 6.1. Write µ : Aut(A) × Aut(A) → Aut(A) for the group operation. For
f ∈ Z1

coc(M,A), define Φf : M → Aut(A) by the rule

Φf = µ ◦ (f, ϕ) : M → Aut(A)×Aut(A) → Aut(A).

Then the assignment f 7→ Φf determines a bijection

Φ : H1
coc(G, Inn(A)) → Lift(ϕ0)

Proof. For any 1-cocycle f ∈ Z1
coc(G,M), one checks that the mapping Φf : G → Aut(A) is

homomorphism of k-group functors contained in Lift(fϕ).
We now claim for f1, f2 ∈ Z1

coc(M,A) that f1 and f2 are cohomologous if and only if Φf1

and Φf2 are equivalent.
(⇒): By assumption there is h ∈ Inn(U)(k) such that for each commutative k-algebra Λ

and each g ∈ M(Λ) that
f1(g) = h−1f2(g)

gh.

Now observe that

Φf1(g) = f1(g)ϕ(g) = h−1f2(g)
gh · ϕ(g)

= h−1f2(g)ϕ(g)hϕ(g)
−1ϕ(g) = h−1f2(g)ϕ(g)h

= h−1Φf2(g)h

so that indeed Φf1 and Φf2 are equivalent.
(⇐): By assumption there is h ∈ Inn(A)(k) for which

Φf1 = h−1Φf2h.

Then for each commutative k-algebra Λ and each g ∈ M(Λ) we have

f1(g) = Φf1(g) · ϕ(g)−1 = h−1Φf2(g)h · ϕ(g)−1

= h−1Φf2(g)ϕ(g)
−1 gh = h−1f2(g)

gh

so that f1 and f2 are cohomologous.
It now follows that f 7→ Φf determines a well-defined injective mapping

Φ : H1
coc(M, Inn(A)) → Lift(ϕ0).
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To see that Φ is surjective, suppose θ : M → Aut(A) represents a class in Lift(ϕ0). For each
commutative k-algebra Λ and each g ∈ M(Λ), we have θ(g)ϕ(g)−1 ∈ Inn(A)(Λ). Thus we
have a morphism of k-functors f : M → Inn(A) given by the rule

f(g) = θ(g)ϕ(g)−1.

By the Yoneda Lemma, the assignment f is a morphism of varieties, and a calculation confirms
that f is a 1-cocycle for the action of M on Inn(A) determined by ϕ. Then [θ] = [Φf ] = Φ([f ])
which proves that Φ is surjective. □

7. Descent of Levi factors, part 2

In this section, we are going to prove Theorem 1.7. We first prove the following:

Lemma 7.1. Let M,A be linear algebraic groups, and suppose that A is an M -group via the
homomorphism ϕ : M → Aut(A) of k-group functors. Let x ∈ A(k) and consider the mapping
ϕ1 : M → Aut(A) given for each commutative k-algebra Λ and each g ∈ M(Λ) by the rule
ϕ1(g) = Inn(x)ϕ(g) Inn(x)−1. Then there is a k-isomorphism of extensions of M by A:

A⋊ϕ M ' A⋊ϕ1 M.

Proof. Write G = A⋊ϕM for the semidirect product constructed using the action defined by
ϕ. Now, the mapping ϕ : M → Aut(A) may be identified with the composite

M
m 7→(1,m)−−−−−−→ G = A⋊ϕ M

Inn−−→ Aut(A)

and ϕ1 : M → Aut(A) identifies with the composite

M
m 7→(x,1)(1,m)(x,1)−1

−−−−−−−−−−−−−→ A⋊ϕ M
Inn−−→ Aut(A).

Write s1 : M → G = A⋊ϕ M for the section given by the rule

s1(m) = (x, 1)(1,m)(x, 1)−1

It now follows from Proposition 2.7 that the product mapping

((a,m) 7→ a · s1(m)) : A×M → G

determines an isomorphism A⋊ϕ1 M
∼−→ G = A⋊ϕ M of extensions, as required. □

We now prove Theorem 1.7 from Section 1:

Proof. By assumption (a), Gℓ has a Levi factor Mℓ; this choice determines a homomorphism

ϕ : Mℓ → Aut(Uℓ)

such that ϕ0,ℓ = Ψ◦ϕ where ϕ0 : M → Out(U) is the mapping determined by Proposition 2.8
and Ψ : Aut(U) → Out(U) is the natural mapping of (2.1).

There is a natural action of the Galois group Γ on Aut(Uℓ) and on Out(Uℓ) for which Ψ is
equivariant. For any γ ∈ Γ it follows that

Ψ ◦ γϕ = ϕ0

i.e. in the notation of Proposition 6.1, γϕ determines a class in Lift(ϕ0,ℓ).
According to Proposition 6.1 there is a bijection H1

coc(Mℓ, Inn(Uℓ))
∼−→ Lift(ϕ0). Since

H1
coc(Mℓ, Inn(Uℓ)) = 1 it follows that classes of the automorphisms γϕ in Lift(ϕ0) all coincide;

i.e. all γϕ are equivalent.
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By the definition of the equivalence relation defining Lift(ϕ0), we find for each γ ∈ Γ an
element hγ ∈ Inn(U)(ℓ) such that

γϕ = h−1
γ · ϕ · hγ .

If γ, τ ∈ Γ we see that

(7.1) γτϕ = h−1
γτ · ϕ · hγτ ,

while on the other hand

(7.2)

γ( τϕ) = γ(h−1
τ · ϕ · hτ )

= γh−1
τ · γϕ · γhτ

= γh−1
τ · h−1

γ ϕ · hγ · γhτ .

By assumption (b) we know that the stabilizer in Inn(U) of the automorphism ϕ is trivial.
Thus taken together (7.1) and (7.2) imply that

hγτ = hγ
γhτ ;

i.e. hγ is a 1-cocycle on Γ with values in Inn(U)(ℓ). Since U is connected and split unipotent,
so is Inn(U); see Proposition 2.3. Thus H1

coc(Mℓ, Inn(Uℓ)) = 1 by Proposition 2.14.
It follows that the cocycle hγ is trivial. Thus there is h ∈ Inn(U)(ℓ) such that for each

γ ∈ Γ we have

hγ = h−1 · γh

We now claim that the mapping ϕ1 : Mℓ → Aut(Uℓ) defined by

ϕ1 = h · ϕ · h−1

is Γ-stable. For γ ∈ Γ we have

γϕ1 =
γ(h · ϕ · h−1) = γh · γϕ · γh−1 = hhγ · h−1

γ ϕhγ · h−1
γ h−1 = ϕ1.

Thus ϕ1 is Γ-stable and hence defines a morphism ϕ1 : M → Aut(U) of k-group functors
which we may use to define a semidirect product G1 = U ⋊ϕ1 M over k.

Now, the center Z of U is a connected and split unipotent group; thus H1(ℓ, Z) = 1.
It follows that the mapping U(ℓ) → Inn(U)(ℓ) is surjective, so we may choose an element
u ∈ U(ℓ) for which Inn(u) = h ∈ Inn(U)(ℓ).

Thus we have

ϕ1 = Inn(u) · ϕ · Inn(u)−1.

It now follows from Lemma 7.1 that there is an isomorphism of extensions

Gℓ = Uℓ ⋊ϕ Mℓ ' G1,ℓ = Uℓ ⋊ϕ1 Mℓ

of Mℓ by Uℓ.
According to Theorem 5.4, assumption (c) implies that the extension Gℓ has a unique

k-form. Since G and G1 are both k-forms of this extension, it follows that G ' G1 are
k-isomorphic extensions and in particular are k-isomorphic algebraic groups; since G1 has a
Levi factor over k, we conclude that G has a Levi factor over k as well. □
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8. An example

In (McNinch 2013) §5 we gave an example of an extension

1 → W → E → Z/pZ → 1

with E commutative and W a connected, commutative unipotent group of exponent p2. The
group E was constructed by twisting, and it provided a negative answer to the question (♦)
from Section 1. Namely, for a suitable finite galios extension ℓ of k the group Eℓ has a Levi
factor, but E had no Levi factor.

We conclude the present paper with another example of a linear algebraic group over k
which provides a negative answer to the question (♦).

The example below gives a non-commutative extension of a finite abelian p-group by a
connected, non-commutative unipotent group; in this case, the construction of the extension
is perhaps slightly more straightforward.

Suppose that the characteristic of k is p > 2. Consider the additive polynomial Xp −X ∈
k[X] defining the Artin-Schreier mapping P: for any commutative k-algebra Λ, this mapping
P : Λ → Λ is given by the rule x 7→ xp − x.

Recall that if s ∈ k is not in the image of P : k → k then the polynomial F (X) =
Xp − X − s ∈ k[X] is irreducible. If α is a root of F (X) in an extension field of k then
ℓ = k(α) is a Galois extension of k with Gal(ℓ/k) ' Z/pZ.

Let V be a vector space of dimension 2 over k with a basis e, f , and write β : V × V → k
for the unique non-degenerate symplectic form satisfying β(e, f) = 1 = −β(f, e). Viewing
P ◦ β as a factor system, we define a unipotent group H as an extension of V by Ga; see
(Serre 1988) VII.1.4. Explicitly, for a commutative k-algebra Λ we have

H(Λ) = Λ× V ⊗k Λ

with operation

(t, v) · (s, w) = (t+ s+ P(β(v, w)), v + w) = (t+ s+ β(v, w)p − β(v, w), v + w)

for v, w ∈ V ⊗ Λ and s, t ∈ Λ.
Thus H is the non-abelian central extension

(8.1) 0 → Ga
i−−−−→

t 7→(0,t)
H −−−−−→

(v,t) 7→v
V → 0.

Write Z for the center of H; then Z ' Ga is the image of the mapping i of (8.1).
Fix t ∈ k and let V0,t = 〈te, f〉 ⊂ V , so that V0,t ' (Z/pZ)2. Let µt be the central extension

of V0,t by Z ' Ga defined by β (not by P ◦ β)). Thus there is an exact sequence

0 → Ga → µt → V0,t = (Z/pZ)2 → 0

and the group operation is given by

(a, v) · (b, w) = (a+ b+ β(v, w), v + w)

for v, w ∈ V0,t ⊗ Λ = V0,t and a, b ∈ Λ.
Write E for the fiber product E = H ×Ga µt; thus E is an extension of V0,t ' (Z/pZ)2 by

H. By the definition of the fiber product, there is a commuting diagram

0 Ga µt (Z/pZ)2 0

0 H H ×Ga µt (Z/pZ)2 0π
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Proposition 8.1. If Xp −X + t has no root in k, then the group E = H ×Ga µt has no Levi
factor over k. If α is a root Xp −X + t and ℓ = k(α) then Eℓ has a Levi factor.

Sketch. We may represent elements of E(k) as tuples (a, v, w) where v ∈ V0,t, w ∈ V and
a ∈ k. We have

(a, v, w) · (a′, v′, w′) = (a+ a′ + β(v, v′) + Pβ(w,w)′, v + v′, w + w′)

Now, any elements ẽ, f̃ of E(k) mapping to te, f ∈ V0,t via π must have the form ẽ = (a, te, v)

for some v ∈ V and a ∈ k and f̃ = (b, f, w) for some w ∈ V and b ∈ k.
We see that

ẽ · f̃ = (a, te, v) · (b, f, w) = (a+ b+ t+ Pβ(v, w), te+ f, v + w)

while
f̃ · ẽ = (b, f, w) · (a, te, v) = (a+ b+−t− Pβ(v, w), te+ f, v + w)

Since the characteristic of k is not 2, ẽ · f̃ = f̃ · ẽ if and only if

0 = Pβ(v, w) + t = β(v, w)p − β(v, w) + t.

If Xp−X + t has no root in k, it follows that the group 〈ẽ, f̃〉 is non-abelian for any choice
of ẽ, f̃ . This shows that E has no Levi factor.

On the other hand, Eℓ always has a Levi factor since we may take ẽ = (0, te, αe) and
f̃ = (0, f, f); then 〈ẽ, f̃〉 ' (Z/pZ)2 so that 〈ẽ, f̃〉 provides a Levi factor. □

Remark 8.2. The group E of Proposition 8.1 fails to satisfy hypotheses (b) and (c) of Theo-
rem 1.6. Indeed, let M = E/H ' (Z/pZ)2 be the reductive quotient of E. Then:

• Mℓ acts trivially on Hℓ. Thus, HMℓ
ℓ = Hℓ 6= {1}, so that condition (b) fails to hold.

• The cohomology group H1
coc(Z/pZ,Ga) is non-trivial. Using a Künneth formula, we

see that H1
coc(M,Ga) 6= 1. Now use Proposition 3.5 to conclude that H1

coc(M,H) 6= 1
and H1

coc(Mℓ,Hℓ) 6= 1. Thus condition (c) fails to hold.
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