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ABSTRACT. Let A be a Henselian discrete valuation ring with fractions K and with perfect residue field
k of characteristic p > 0. Let G be a connected and reductive algebraic group over K, and let P be a
parahoric group scheme over A with generic fiber P/K = G. The special fiber P/k is a linear algebraic
group over k.

If G splits over an unramified extension of K, we proved in some previous work that the special fiber
P/k has a Levi factor, and that any two Levi factors of P/k are geometrically conjugate. In the present
paper, we extend a portion of this result. Following a suggestion of Gopal Prasad, we prove that if G splits
over a tamely ramified extension of K, then the geometric special fiber P/kalg

has a Levi factor, where kalg is
an algebraic closure of k.
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1. INTRODUCTION

1.1. Background. LetG be a connected, linear algebraic group over a field k; thus G is a smooth group
scheme over k of finite type. If ` ⊃ k is a field extension, we write G/` for the linear algebraic group
over ` obtained by extension of scalars. Throughout this paper, we are going to impose the following
assumption on G:

(R) there is a unipotent subgroup R ⊂ G such that R/kalg
is the unipotent radical of G/kalg

.

We say that R is the unipotent radical of G. When k is perfect, condition (R) always holds, but it can
fail for imperfect k; see e.g. [CGP 10, Example 1.1.3].

Write π : G → G/R for the quotient mapping. By a Levi factor of G we mean a closed subgroup M
such that the mapping π|M : M→ G/R determined by restricting π to M is an isomorphism; thus M
is a complement in G to the unipotent radical. If the characteristic of k is 0, any linear group has a Levi
factor; see [Mc 10, §3.1]. However, for any field k of characteristic > 0, there are linear algebraic groups
over k having no Levi factor; see e.g. the example in loc. cit., §3.2. If (R) holds and M is a Levi factor
of G, then G is isomorphic to the semidirect product of M and R – i.e. G has a Levi decomposition.
When (R) fails to hold, it can happen that G has a subgroup M for which G/kalg

is isomorphic to the
semidirect product of M/kalg

and RuG/kalg
, so that G/kalg

has a Levi decomposition (over kalg) while G
has no Levi decomposition (over k); for an important example, see [CGP 10, Theorem 3.4.6].
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In [Mc 10], we investigated the existence and conjugacy of Levi factors; one of the goals of our
previous work was to investigate Levi factors for the special fiber of a so-called parahoric group
scheme. To explain this statement, we must first establish some notation and fix assumptions.

Fix a Henselian discrete valuation ring (for short: DVR) A with fractions K and residues k; recall
that if A is complete, it is Henselian.

We always suppose the residue field k of A to be perfect.

Fix an algebraic closure kalg of the residue field k.
Now let G be a connected and reductive algebraic group over the field K. Bruhat and Tits have

associated to G certain smooth affine A -group schemes P with generic fiber P/K = G known as
parahoric group schemes. We are interested in the linear algebraic k-group P/k obtained as the special
fiber of P . In general the algebraic group P/k is not reductive, and we will be concerned here with
Levi decompositions of P/k. As we already pointed out, the question of existence of a Levi factor of
P/k is only interesting when the characteristic of k is p > 0, which we suppose from now on.

One of the main results of our earlier work [Mc 10] is the following:

Theorem A ([Mc 10]). Let P be a parahoric group scheme over A with generic fiber G = G/K.

(a) If G is split over K and if S is a maximal split torus of P/k, then P/k has a unique Levi factor containing
S. In particular, any two Levi factors of P/k are P(k)-conjugate.

(b) If G/L is split for an unramified extension K ⊂ L, then P/k has a Levi factor, and any two Levi factors of
P/k are geometrically conjugate.

If G does not split over any unramified extension and ifP is a parahoric group scheme with generic
fiber G, then in general two Levi factors of P/k need not be geometrically conjugate; see the explicit
example in §7.2 of [Mc 10]. However, the question of the existence of a Levi factor of P/k does not
seem to be settled in general.

Recall that the parahoric group schemes are described by points in the Bruhat-Tits building I of
G; see [BrTi 84, §5].

There is a smooth A -group scheme P̂ for which P̂(A ) is precisely the subgroup of those elements
in G(K) stabilizing x for the action of G(K) on I ; see [BrTi 84, 4.6.28]. If G splits over an unramified
extension, this A -group scheme P = P̂ has connected fibers. For general G, the special fiber of
P̂ need not be connected; for an example, see [Ti 77, §3.12]. We write P ⊂ P̂ for the smooth A -
subgroup scheme having generic fiber G and having connected special fiber; see Proposition 2.1.
Thus the subgroup P(A ) ⊂ G(K) is the “connected stabilizer” of x as in [BrTi 84, 4.6.28].

1.2. The main result. To a finite extension field L of K, one associates two integers e and f . If B is
the integral closure of A in L and ` the residue field of the discrete valuation ring B, then f = [` : k]
and e = e(B/A ) is the ramification index of the extension. Since k is perfect, [L : K] = e · f . The
extension L of K is said to be tamely ramified provided that the residual characteristic p does not divide
the ramification index e.

Suppose that G is a reductive group over K. Using a method suggested by G. Prasad, we are going
to prove in this paper the following result:

Theorem B. Let P be a parahoric group scheme over A with generic fiber P/K = G. If G/L is split for some
tamely ramified extension K ⊂ L, then the geometric special fiber P/kalg

has a Levi factor.

1.3. Descent of Levi factors. Note that Theorem B does not guarantee that the linear algebraic group
P/k has a Levi factor over k. For a connected linear algebraic group G over k for which (R) holds, it
does not seem to be known whether the group G/ksep can have a Levi factor when G fails to have a
Levi factor. The author has considered this question in a recent manuscript [Mc 13] and has obtained
the following partial results.

Let G be a linear algebraic group over the field k and suppose that the unipotent radical R is defined
and split over k.
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Theorem C ([Mc 13, Theorem A]). Let Γ be a finite group acting by automorphisms on G, and suppose that
the order of Γ is invertible in k. If G has a Levi decomposition, there is a Levi factor M ⊂ G invariant under
the action of Γ. In particular, MΓ is a Levi factor of GΓ.

Theorem D ([Mc 13, Theorem B]). Let L/k be a Galois extension, suppose that [L : k] is relatively prime to
p, and that G/L has a Levi decomposition. Then G has a Levi decomposition.

Theorem E ([Mc 13, Theorem C]). Suppose that there is a G-equivariant isomorphism of linear algebraic
groups R ' Lie(R) – i.e. the unipotent radical R is a vector group and the action of G/R on R is linear. If
G/ksep has a Levi decomposition then G has a Levi decomposition.

Finally, in [Mc 13, §4] one finds an example of a disconnected abelian group G (over a perfect field
k) for which G/ksep has a Levi decomposition but G has no Levi decomposition.

1.4. Overview of the proof of Theorem B. The proof of the main result – Theorem B – will be given
in §5. For this proof, we may identify kalg with the residue field of a strict Henselization Aun of A ; in
view of étale descent (Theorem 5.3), in the proof of Theorem B we may and will replace K by the field
of fractions Kun of Aun and hence suppose that k = kalg.

After these reductions, one knows G to split over a tamely and totally ramified extension L of K.
We use a Theorem of Rousseau – Theorem 5.2 – to find a suitable parahoric group schemeQ over the
integral closure B of A in L and a natural action of the galois group Γ = Gal(L/K) on RB/AQ by
A -automorphisms; here RB/A (?) denotes the functor of “restriction of scalars” from B-schemes to
A -schemes.

Since G/L is split, it follows from Theorem A thatQ/k has a Levi factor. Since B is a totally ramified
extension of A , we argue in Proposition 4.2 that RB/AQ has a Levi decomposition. Since the order
of Γ is relatively prime to p, Theorem C implies that also (RB/AQ)Γ

/k has a Levi decomposition.
Finally, we use Theorem 4.1 to show that the A -group schemes P and (RB/AQ)Γ)0 are isomor-

phic. In particular, P/k is isomorphic to ((RB/AQ)Γ
/k)

0 and thus has a Levi decomposition.

1.5. Terminology. By a linear algebraic group G over a field k we mean a smooth, affine group
scheme of finite type over k. When we speak of a closed subgroup of an algebraic group G, we
mean a closed subgroup scheme over k; thus the subgroup is required to be “defined over k” in the
language of [Sp 98] or [Bo 91]. Similar remarks apply to homomorphisms between linear algebraic
groups. We occasionally use the terminology “k-subgroup” or “k-homomorphism” for emphasis.

2. AFFINE SCHEMES AND GROUP SCHEMES

Let A be a noetherian commutative ring. In this section, we formulate some generalities about
affine schemes over A; any such X is determined by its affine algebra A[X].

First, we consider an affine group scheme G in case A is an integral domain. One says that G is
connected if G/k(x) is connected for each x ∈ Spec(A), where k(x) denotes the residue field of x; thus
k(x) is the field of fractions of A/px where the prime ideal px ⊂ A “is” the point x.

Proposition 2.1 ([BrTi 84, 1.2.12]). If A is an integral domain and if G is a smooth affine group scheme over
A, there is an affine, open subgroup scheme G0 which is smooth over A and connected.

We now recall the functor of “restriction of scalars”:

Proposition 2.2 ([CGP 10, Prop. A.5.2]). Let f : A → B be a finite, flat homomorphism between com-
mutative noetherian rings A and B. Let X be a smooth, affine B-scheme of finite type. Then the functor on
A-algebras Λ 7→ X(Λ⊗A B) is represented by a smooth, affine scheme RB/A(X) of finite type over A. If X is
a group scheme over B, then RB/A(X) is a group scheme over A.

We also require the scheme of fixed points under the action of a finite group:

Proposition 2.3 ([Ed 92, 3.4]). Let X be a smooth affine scheme of finite type over A and suppose that the finite
group Σ acts on X by automorphisms over A. Then the functor on A-algebras Λ 7→ X(Λ)Σ is represented by
an affine scheme XΣ of finite type over A. If |Σ| is invertible in A, then XΣ is smooth over A.
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A proof of the following result was written down in [Mc 13, (3.4.2)].

Proposition 2.4. Let K ⊂ L be a finite galois extension of fields with galois group Γ = Gal(L/K). Let G be
a linear algebraic group over K. There is a natural action of Γ on RL/K(G/L) by K-automorphisms, and the
natural mapping

φ : G → RL/K(G/L)
Γ

is an isomorphism of algebraic groups over K.

For the remainder of this section, we are going to suppose that A is a discrete valuation ring with
field of fractions F and residue field f. We now record some results which are essentially found in J-K.
Yu’s manuscript [Yu 03].

Proposition 2.5. Let X and Y be smooth and affine schemes of finite type over A, let f : X → Y be a morphism
of A-schemes such that

(i) f/F : X/F → Y/F is an isomorphism, and
(ii) f/f : X/f → Y/f is a dominant morphism.

Then f is an isomorphism of A-schemes.

Proof. Write A[X] and A[Y] for the affine algebras of X and Y, and write φ : A[Y] → A[X] for the
comorphism φ = f ∗ of f . Since X and Y are smooth over A , A[X] and A[Y] are free A -modules.
Moreover, f is an isomorphism if and only if φ is an isomorphism. Finally, (i) shows that φ⊗ 1F is an
isomorphism, and (ii) shows that φ⊗ 1f is injective. Thus the present Proposition follows from the
Proposition which follows. �

Proposition 2.6 ([Yu 03, Lemma 7.6 and its proof.]). Let M and N be free A-modules, and let φ : M→ N
be an A-module homomorphism. Suppose that

(i) φ⊗ 1F is an isomorphism, and
(ii) φ⊗ 1f is injective.

Then φ is an isomorphism.

Proof. This fact is proved in [Yu 03]; see the proof of Lemma 7.6. Since the argument is short, for the
reader’s convenience we give Yu’s proof. Since M and N are free, evidentally M embeds in M⊗A F
and N embeds in N⊗A F. Since φ⊗ 1F is injective by (i), it follows that φ is injective. Now identify M
with a submodule of N. We must argue that N/M = 0. Since φ⊗ 1F is onto by (i), N/M is a torsion
A-module. Since N is free, one knows that Tor1

A(N, f) = 0. The long exact sequence of Tor shows that

0→ Tor1
A(N/M, f) ∂−→ M⊗A f

φ⊗1f−−−→ N ⊗A f

is exact. Since φ⊗ 1f is injective by (ii), conclude that Tor1
A(N/M, f) = 0. Since A is a discrete valua-

tion ring, Tor1
A(N/M, f) identifies with the π-torsion submodule of N/M, where π is a uniformizing

element for A. It follows that N/M = 0 and hence that φ is surjective; this completes the proof. �

3. LOCAL FIELDS AND TAMELY RAMIFIED EXTENSIONS

Let A be a Henselian discrete valuation ring (DVR) with maximal ideal m = πA A . Recall that A
is Henselian provided that the conclusion of Hensel’s Lemma holds for A ; for example, the DVR A
is Henselian if it is complete in its m-adic topology. We write K for the field of fractions of A and k
for the residue field of A .

We assume throughout §3, §4 and §5 that the residue field k of A is perfect.
We refer to a generator π = πA for the unique maximal ideal of A as a uniformizer, or as a prime

element. One sometimes refers to K as a “local field”.
Fix a separable closure Ksep of K, and let L ⊂ Ksep be a finite separable extension of K of degree n.

Write B for the integral closure of A in L; it is a Henselian DVR with fractions L. Since k is perfect,
the residue field ` of B is a separable extension of k, and n = [L : K] = e f where f = [` : k] and
e = e(L/K) is the ramification index of the extension L/K. The extension L/K is said to be unramified
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if e = e(L/K) = 1, totally ramified if e = [L : K], and tamely ramified if the integer e is invertible in the
residue field k = A /πA .

Proposition 3.1. If L is a totally ramified extension of K of degree n, then L = K(π1) and B = A [π1] where
π1 ∈ B is a prime element. The minimal polynomial f (T) ∈ A [T] of π1 over K is an Eisenstein polynomial,
and B ' A [T]/〈 f 〉. In particular, there is an isomorphism

B ⊗A k ' k[T]/〈Tn〉.
under which π1 ⊗ 1 ∈ B ⊗A k corresponds to the class of T.

Proof. The assertions follow from [Se 79, §I.6, Prop. 18]. �

Proposition 3.2. Let L/K be a tamely and totally ramified galois extension of degree n, and write Γ =
Gal(L/K) for the galois group.
(a) The group Γ is cyclic, say Γ = 〈σ〉, and if m denotes the unique maximal ideal of B, there is a primitive

n-th root of unity ζ ∈ K× such that σ acts on mi/mi+1 by multiplication with ζ i for i ≥ 1.
(b) The action of Γ on B induces an action of Γ on B ⊗A k by k-algebra automorphisms. The space of Γ-

invariants (B ⊗A k)Γ = (k[T]/〈Tn〉)Γ is 1-dimensional over k and is equal to the coefficient field k.

Proof. Assertion (a) follows [Se 79, §IV.2 Cor. 1]. Using (a) and Proposition 3.1 together with the
complete reducibility of kΓ-representations, (b) follows since a generator σ of Γ acts non-trivially on
mi/mi+1 for 1 ≤ i ≤ n− 1. �

4. RESTRICTION OF SCALARS OF GROUP SCHEMES

We preserve the notations A , K and k of the preceding section. Moreover, we suppose now that K
is a strictly Henselian local field. Thus K coincides with its maximal unramified extension Kun, and in
particular the residue field k = kalg of A = Aun is algebraically closed.

Let K ⊂ L be a finite, galois extension of K, write Γ for the galois group Gal(L/K), and write B for
the integral closure B of A in L. Then B is also strictly Henselian, and the extension L/K is totally
ramified.

We suppose that L is tamely ramified over K; thus by Proposition 3.2(a), the group Γ = Gal(L/K) is
cyclic of order relatively prime to p.

Let P , respectively Q, be smooth group schemes of finite type over A , respectively B. Write
G = P/K for the generic fiber of P , and suppose that Q/L ' G/L.

We suppose P is connected; see the discussion preceding Proposition 2.1. Recall that this means
that the linear algebraic groups G = P/K and P/k are connected.

Theorem 4.1. With the above notations, assume that
(A1) P(A ) ⊂ Q(B) (viewed as subgroups of G(L)), and
(A2) For each γ ∈ Γ, we have γ(Q(B)) = Q(B).

Then the action of Γ on RL/KG by automorphisms over K prolongs to an action of Γ on RB/AQ by automor-
phisms over A , and there is a unique morphism of A -schemes ψ : P → ((RB/AQ)Γ)0 such that ψ/K is the
isomorphism of Proposition 2.4. If in addition

(A3) the index of ψ(P(A )) in ((RB/AQ)Γ)0(A ) is finite

then ψ is an isomorphism of group schemes ψ : P ∼−→ ((RB/AQ)Γ)0.

Proof. First recall that – in the terminology of [BrTi 84, §I.7] – a scheme X over A is étoffe if whenever
Y is an A -scheme and φ : X/K → Y/K is a morphism over K such that φ(X (A )) ⊂ Y (A ), there
is a (necessarily unique) morphism ψ : X → Y with φ = ψ/K. Since A is strictly Henselian, [BrTi
84, I.7.3] shows that any smooth scheme X over A is étoffe.

By Proposition 2.2, the A -scheme RB/AQ is smooth and hence étoffe. Thanks to (A2), the action
of Γ on RL/KG/L indeed induces an action of Γ on RB/AQ. In particular, we may speak of the A -
group scheme (RB/AQ)Γ. Since Γ has order invertible in A , Proposition 2.3 shows that (RB/AQ)Γ

is smooth over A .
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If φ : G → RL/KG/L is the isomorphism of Proposition 2.4, condition (A1) implies that φ(P(A )) is
contained inQ(B)Γ = (RB/AQ)Γ(A ); since P is étoffe, it follows that there is a unique morphism of
A -group schemes ψ : P → (RB/AQ)Γ for which ψ/K = φ. Since P is connected, in fact ψ determines
a morphism ψ : P → ((RB/AQ)Γ)0.

Since A is Henselian and since P and ((RB/AQ)Γ)0 are smooth group schemes over A , the nat-
ural mappings

P(A )→ P(k) and ((RB/AQ)Γ)0(A )→ ((RB/AQ)Γ)0(k)

are surjective [Li 02, Cor. 2.13]. Thus (A3) implies that the index of ψ(P(k)) in ((RB/AQ)Γ)0(k) is
finite.

Since P/K and (RB/AQ)Γ
/K ' (RL/KQ/K)

Γ are isomorphic by Proposition 2.4, and since P and
(RB/AQ)Γ are smooth over A , the algebraic k-groups P/k and (RB/AQ)Γ

/k have the same dimen-
sion. Since the image of ψ on k-points has finite index, and since k is algebraically closed, ψ/k deter-
mines a dominant mapping P/k → ((RB/AQ)Γ

/k)
o

It now follows from Proposition 2.5 that ψ is an isomorphism ψ : P ∼−→ ((RB/AQ)Γ)0 as required.
�

Proposition 4.2. Suppose that K ⊂ L is a totally ramified extension, let B be the integral closure of A in L
and let k be the residue field (of A and of B). If Q is a smooth affine group scheme over B and if Q/k has a
Levi factor, then (RB/AQ)/k has a Levi factor.

Proof. Write B = B ⊗A k; then by Proposition 3.1, B ' k[T]/〈Tn〉 where n = [L : K]. Evidently
(RB/AQ)/k identifies naturally with RB/k(Q/B).

Write i : k→ B and j : B→ k for the unique k-algebra maps. Then i and j induce morphisms

j : RB/kQ/B → Q/k and i : Q/k → RB/kQ/B

which by some abuse of notation we’ll also denote by i and j. Write U for the kernel of j and M for
the image of i. It follows from [CGP 10, Prop. A.5.11](2) that U is connected and unipotent. Since j ◦ i
is the identity mapping, RB/kQ/B is the semidirect product of U and M.

Since M ' Q/k and since Q/k has a Levi factor by hypothesis, the result now follows. �

5. REDUCTIVE GROUPS OVER A LOCAL FIELD

We keep the assumptions and notations of 3; in particular, K is the field of fractions of a Henselian
DVR A with residue field k. Let G be a connected and reductive group over K.

Proposition 5.1. If G/L is split over a tamely ramified extension L ⊃ K, then G/Lun is split for a tamely
ramified, finite, galois extension Lun ⊃ Kun, where Kun is the maximal unramified extension of K in the fixed
separable closure Ksep.

Proof. According to a theorem of Lang [Se 97, II.3.3], Kun is a C1 field. It then follows from an impor-
tant result of Steinberg (in case K is perfect) and Borel-Springer [BS 68] that G/Kun is quasi-split; i.e.
G/Kun has a Borel subgroup defined over Kun.

Since G/Kun is quaisplit, it follows from [BrTi 84, 4.1.2] that G/Kun has a minimal splitting field Lun ⊃
Kun which is precisely the field of invariants for the kernel of the representation of Gal(Ksep/Kun) on
X∗(T) where the torus T is the centralizer of a maximal Kun-split torus of G. The minimality of Lun
implies that Lun is contained in the compositum L1 = L · Kun, since L1 is evidentally a splitting field
for G. Since L1 is a tamely ramfied extension of Kun, it follows that Lun is tamely ramified over Kun as
well. �

For a field extension L of K, let IL be the affine building of G/L defined by Bruhat and Tits; see e.g.
[BrTi 84, §5]. Write I = IK. If L is galois over K, there is a natural action of Γ on IL. The following
theorem was proved by Rousseau [Ro 77, §5], with a simplified proof given later by Prasad [Pr 01]:
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Theorem 5.2 (Rousseau’s Theorem). Let K ⊂ L be a finite, galois, tamely ramified extension with galois
group Γ = Gal(L/K). The natural map j : I → (IL)

Γ is bijective.

For a separable extension L ⊃ K, recall that we write B of the integral closure of A in L, and recall
from the introduction 1.1 that a point y ∈ IL determines a parahoric B-group schemeQwith generic
fiber G/L.

Theorem 5.3 (Étale descent). Let K ⊂ L be an unramified galois extension. For x ∈ I , write y = j(x) ∈
IL. Let P be the parahoric A -group scheme determined by x, and let Q be the parahoric B-group scheme
determined by y. Then the identification of generic fibers P/L

∼−→ G/L
∼←− Q/L prolongs to an isomorphism

α : P/B
∼−→ Q

of group schemes over B. If ` denotes the residue field of B, we have in particular an isomorphism

α/` : P/`
∼−→ Q/`.

Sketch. When L = Lun is strictly Henselian, G is quasisplit and [BrTi 84, §4] provides a definition of
the parahoric group scheme attached to y. It follows from [BrTi 84, 4.6.30] that the action of Γ on
L[G/L] = K[G]⊗K L leaves invariant the subalgebra B[Q], the coordinate algebra of Q. Thus [BrTi
84, 5.1.8] shows that Q arises by base-change A → B from a canonical smooth A -group scheme P ,
and P is by definition the parahoric group scheme attached to x.

In general – i.e. when L is not necessarily strictly Henselian – the assertion follows since the the
preceding construction is canonical; see [BrTi 84, §5]. �

We are now ready to prove:

Theorem 5.4. Let P be a parahoric group scheme over A with generic fiber G = G/K. If G/Λ is split for some
tamely ramified extension K ⊂ Λ, then the geometric special fiber P/kalg

has a Levi factor.

This is Theorem B from the introduction.

Proof. Since G splits over a tamely ramified extension of K, it follows from Proposition 5.1 that G
splits over a finite, galois, tamely ramified extension Lun ⊃ Kun where Kun is the maximal unramfied
extension of K.

Since the result only describes the geometric special fiber, in view of 5.3, we may and will replace K
by Kun. Thus, we suppose that A = Aun is strictly Henselian, that k is algebraically closed, and that
G splits over a tamely ramfied galois extension L of K. As usual, we write B for the integral closure
of A in L and Γ = Gal(L/K) for the galois group. Since the extension K ⊂ L is tamely ramified, the
order of Γ is relatively prime to the characteristic p of the residue field k.

Now, the parahoric group scheme P is determined by a point x in the building I of G; more
precisely, P is the group scheme for which P(A ) is the “connected stabilizer” of x – cf. [BrTi 84, 4.6.28
and 5.2.6] and the discussion in §1.1. With notation as in Rousseau’s Theorem 5.2, let y = j(x) ∈
(IL)

Γ. Thus y determines a parahoric group scheme Q over B with generic fiber Q/L = G/L for
which Q(B) is the connected stabilizer of y.

Since P has connected fibers, since P(A ) stabilizes y, and since Q(B) is the connected stabilizer
of y, we have P(A ) ⊂ Q(B) as subgroups of G(L); thus condition (A1) of Theorem 4.1 holds. Since
x is Γ-stable, evidentally the connected stabilizer Q(B) ⊂ G(L) is Γ-stable, so that condition (A2) of
Theorem 4.1 holds as well.

Thus according to Theorem 4.1 there is a unique homomorphism of A -group schemes

ψ : P → ((RB/AQ)Γ)0

such that ψ/K : G → (RL/KG/L)
Γ is the isomorphism of Proposition 2.4.

We have evident containments:

P(A ) ⊂ Q(B) ∩ G(K) ⊂ StabG(K)(x) ⊂ StabG(L)(y).
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Moreover, (RB/AQ)Γ(A ) = Q(B) ∩ G(K). Since P(A ) has finite index in StabG(K)(x) by [BrTi
84, 4.6.28] it follows that the image of P(A ) has finite index in RB/A (Q)Γ, so that condition (A3) of
Theorem 4.1 holds. Accoring to that Theorem, ψ determines an isomorphism

(]) ψ : P ∼−→ ((RB/BQ)Γ)0

of A -group schemes.
The group G/L is split and Q is a parahoric group scheme over B with generic fiber G/L. Thus by

Theorem A of the introduction, the special fiber Q/k has a Levi factor. Now Proposition 4.2 shows
that the special fiber (RB/AQ)/k has a Levi factor. Since Γ has order relatively prime to p, Theorem
C shows that ((RB/AQ)/k)

Γ = (RB/AQ)Γ
/k has a Levi factor. Finally, (]) shows that ψ/k is an

isomorphism of group schemes P/k → ((RB/AQ)Γ)0
/k, so indeed P/k has a Levi factor and the proof

is complete. �
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