LEVI FACTORS OF THE SPECIAL FIBER OF A PARAHORIC GROUP SCHEME AND TAME RAMIFICATION

GEORGE J. MCNINCH

ABSTRACT. Let \mathscr{A} be a Henselian discrete valuation ring with fractions K and with *perfect* residue field k of characteristic p>0. Let G be a connected and reductive algebraic group over K, and let \mathcal{P} be a parahoric group scheme over \mathscr{A} with generic fiber $\mathcal{P}_{/K}=G$. The special fiber $\mathcal{P}_{/k}$ is a linear algebraic group over K.

If G splits over an unramified extension of K, we proved in some previous work that the special fiber $\mathcal{P}_{/k}$ has a Levi factor, and that any two Levi factors of $\mathcal{P}_{/k}$ are geometrically conjugate. In the present paper, we extend a portion of this result. Following a suggestion of Gopal Prasad, we prove that if G splits over a *tamely ramified* extension of K, then the *geometric* special fiber $\mathcal{P}_{/k_{\text{alg}}}$ has a Levi factor, where k_{alg} is an algebraic closure of K.

CONTENTS

1.	Introduction	1
2.	Affine schemes and group schemes	3
3.	Local fields and tamely ramified extensions	4
4.	Restriction of scalars of group schemes	5
5.	Reductive groups over a local field	6
6.	Acknowledgments	8
Ref	References	

1. Introduction

- 1.1. **Background.** Let G be a connected, linear algebraic group over a field k; thus G is a smooth group scheme over k of finite type. If $\ell \supset k$ is a field extension, we write $G_{/\ell}$ for the linear algebraic group over ℓ obtained by extension of scalars. Throughout this paper, we are going to impose the following assumption on G:
- **(R)** there is a unipotent subgroup $R \subset G$ such that $R_{/k_{\text{alg}}}$ is the unipotent radical of $G_{/k_{\text{alg}}}$. We say that R is the unipotent radical of G. When k is perfect, condition **(R)** always holds, but it can fail for imperfect k; see e.g. [CGP 10, Example 1.1.3].

Write $\pi:G\to G/R$ for the quotient mapping. By a *Levi factor* of G we mean a closed subgroup M such that the mapping $\pi_{|M}:M\to G/R$ determined by restricting π to M is an isomorphism; thus M is a complement in G to the unipotent radical. If the characteristic of k is 0, any linear group has a Levi factor; see [Mc 10, §3.1]. However, for any field k of characteristic >0, there are linear algebraic groups over k having no Levi factor; see e.g. the example in *loc. cit.*, §3.2. If **(R)** holds and M is a Levi factor of G, then G is isomorphic to the semidirect product of M and R – i.e. G has a Levi decomposition. When **(R)** fails to hold, it can happen that G has a subgroup M for which $G_{/k_{\text{alg}}}$ is isomorphic to the semidirect product of $M_{/k_{\text{alg}}}$ and $R_uG_{/k_{\text{alg}}}$, so that $G_{/k_{\text{alg}}}$ has a Levi decomposition (over k_{alg}) while G has no Levi decomposition (over k); for an important example, see [CGP 10, Theorem 3.4.6].

Date: January 7, 2013.

Research of McNinch supported in part by the US NSA award H98230-08-1-0110.

In [Mc 10], we investigated the existence and conjugacy of Levi factors; one of the goals of our previous work was to investigate Levi factors for the special fiber of a so-called parahoric group scheme. To explain this statement, we must first establish some notation and fix assumptions.

Fix a Henselian discrete valuation ring (for short: DVR) \mathscr{A} with fractions K and residues k; recall that if \mathscr{A} is complete, it is Henselian.

We always suppose the residue field k of \mathscr{A} to be *perfect*.

Fix an algebraic closure k_{alg} of the residue field k.

Now let G be a connected and reductive algebraic group over the field K. Bruhat and Tits have associated to G certain smooth affine \mathscr{A} -group schemes \mathcal{P} with generic fiber $\mathcal{P}_{/K} = G$ known as *parahoric* group schemes. We are interested in the linear algebraic k-group $\mathcal{P}_{/k}$ obtained as the *special* fiber of \mathcal{P} . In general the algebraic group $\mathcal{P}_{/k}$ is not reductive, and we will be concerned here with Levi decompositions of $\mathcal{P}_{/k}$. As we already pointed out, the question of existence of a Levi factor of $\mathcal{P}_{/k}$ is only interesting when the characteristic of k is p > 0, which we suppose from now on.

One of the main results of our earlier work [Mc 10] is the following:

Theorem A ([Mc 10]). Let \mathcal{P} be a parahoric group scheme over \mathscr{A} with generic fiber $G = G_{/K}$.

- (a) If G is split over K and if S is a maximal split torus of $\mathcal{P}_{/k}$, then $\mathcal{P}_{/k}$ has a unique Levi factor containing S. In particular, any two Levi factors of $\mathcal{P}_{/k}$ are $\mathcal{P}(k)$ -conjugate.
- (b) If $G_{/L}$ is split for an unramified extension $K \subset L$, then $\mathcal{P}_{/k}$ has a Levi factor, and any two Levi factors of $\mathcal{P}_{/k}$ are geometrically conjugate.

If G does not split over any unramified extension and if \mathcal{P} is a parahoric group scheme with generic fiber G, then in general two Levi factors of $\mathcal{P}_{/k}$ need not be geometrically conjugate; see the explicit example in §7.2 of [Mc 10]. However, the question of the *existence* of a Levi factor of $\mathcal{P}_{/k}$ does not seem to be settled in general.

Recall that the parahoric group schemes are described by points in the Bruhat-Tits building \mathscr{I} of G; see [BrTi 84, §5].

There is a smooth \mathscr{A} -group scheme $\widehat{\mathcal{P}}$ for which $\widehat{\mathcal{P}}(\mathscr{A})$ is precisely the subgroup of those elements in G(K) stabilizing x for the action of G(K) on \mathscr{I} ; see [BrTi 84, 4.6.28]. If G splits over an unramified extension, this \mathscr{A} -group scheme $\mathcal{P}=\widehat{\mathcal{P}}$ has connected fibers. For general G, the special fiber of $\widehat{\mathcal{P}}$ need not be connected; for an example, see [Ti 77, §3.12]. We write $\mathcal{P}\subset\widehat{\mathcal{P}}$ for the smooth \mathscr{A} -subgroup scheme having generic fiber G and having connected special fiber; see Proposition 2.1. Thus the subgroup $\mathcal{P}(\mathscr{A})\subset G(K)$ is the "connected stabilizer" of X as in [BrTi 84, 4.6.28].

1.2. **The main result.** To a finite extension field L of K, one associates two integers e and f. If \mathscr{B} is the integral closure of \mathscr{A} in L and ℓ the residue field of the discrete valuation ring \mathscr{B} , then $f = [\ell : k]$ and $e = e(\mathscr{B}/\mathscr{A})$ is the ramification index of the extension. Since k is perfect, $[L : K] = e \cdot f$. The extension L of K is said to be *tamely ramified* provided that the residual characteristic p does not divide the ramification index e.

Suppose that *G* is a reductive group over *K*. Using a method suggested by *G*. Prasad, we are going to prove in this paper the following result:

Theorem B. Let \mathcal{P} be a parahoric group scheme over \mathscr{A} with generic fiber $\mathcal{P}_{/K} = G$. If $G_{/L}$ is split for some tamely ramified extension $K \subset L$, then the geometric special fiber $\mathcal{P}_{/k_{alo}}$ has a Levi factor.

1.3. **Descent of Levi factors.** Note that Theorem B does not guarantee that the linear algebraic group $\mathcal{P}_{/k}$ has a Levi factor over k. For a connected linear algebraic group G over K for which K holds, it does not seem to be known whether the group $G_{/k_{\text{sep}}}$ can have a Levi factor when K fails to have a Levi factor. The author has considered this question in a recent manuscript [Mc 13] and has obtained the following partial results.

Let *G* be a linear algebraic group over the field *k* and suppose that the unipotent radical *R* is defined and split over *k*.

LEVI FACTORS 3

Theorem C ([Mc 13, Theorem A]). Let Γ be a finite group acting by automorphisms on G, and suppose that the order of Γ is invertible in k. If G has a Levi decomposition, there is a Levi factor $M \subset G$ invariant under the action of Γ . In particular, M^{Γ} is a Levi factor of G^{Γ} .

Theorem D ([Mc 13, Theorem B]). Let L/k be a Galois extension, suppose that [L:k] is relatively prime to p, and that $G_{/L}$ has a Levi decomposition. Then G has a Levi decomposition.

Theorem E ([Mc 13, Theorem C]). Suppose that there is a G-equivariant isomorphism of linear algebraic groups $R \simeq \text{Lie}(R)$ – i.e. the unipotent radical R is a vector group and the action of G/R on R is linear. If G/k_{sep} has a Levi decomposition then G has a Levi decomposition.

Finally, in [Mc 13, §4] one finds an example of a disconnected abelian group G (over a perfect field k) for which $G_{/k_{\text{sep}}}$ has a Levi decomposition but G has no Levi decomposition.

1.4. **Overview of the proof of Theorem B.** The proof of the main result – Theorem B – will be given in §5. For this proof, we may identify k_{alg} with the residue field of a strict Henselization \mathcal{A}_{un} of \mathcal{A} ; in view of *étale descent* (Theorem 5.3), in the proof of Theorem B we may and will replace K by the field of fractions K_{un} of \mathcal{A}_{un} and hence suppose that $k = k_{\text{alg}}$.

After these reductions, one knows G to split over a tamely and totally ramified extension L of K. We use a Theorem of Rousseau – Theorem 5.2 – to find a suitable parahoric group scheme $\mathcal Q$ over the integral closure $\mathcal B$ of $\mathscr A$ in L and a natural action of the galois group $\Gamma = \operatorname{Gal}(L/K)$ on $R_{\mathscr B/\mathscr A}\mathcal Q$ by $\mathscr A$ -automorphisms; here $R_{\mathscr B/\mathscr A}(?)$ denotes the functor of "restriction of scalars" from $\mathscr B$ -schemes to $\mathscr A$ -schemes.

Since $G_{/L}$ is split, it follows from Theorem A that $\mathcal{Q}_{/k}$ has a Levi factor. Since \mathscr{B} is a totally ramified extension of \mathscr{A} , we argue in Proposition 4.2 that $R_{\mathscr{B}/\mathscr{A}}\mathcal{Q}$ has a Levi decomposition. Since the order of Γ is relatively prime to p, Theorem C implies that also $(R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})_{/k}^{\Gamma}$ has a Levi decomposition.

Finally, we use Theorem 4.1 to show that the \mathscr{A} -group schemes \mathcal{P} and $(R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})^0$ are isomorphic. In particular, $\mathcal{P}_{/k}$ is isomorphic to $((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma}_{/k})^0$ and thus has a Levi decomposition.

1.5. **Terminology.** By a linear algebraic group G over a field k we mean a smooth, affine group scheme of finite type over k. When we speak of a closed subgroup of an algebraic group G, we mean a closed subgroup scheme over k; thus the subgroup is required to be "defined over k" in the language of [Sp 98] or [Bo 91]. Similar remarks apply to homomorphisms between linear algebraic groups. We occasionally use the terminology "k-subgroup" or "k-homomorphism" for emphasis.

2. AFFINE SCHEMES AND GROUP SCHEMES

Let A be a noetherian commutative ring. In this section, we formulate some generalities about affine schemes over A; any such X is determined by its affine algebra A[X].

First, we consider an affine group scheme \mathcal{G} in case A is an integral domain. One says that \mathcal{G} is *connected* if $\mathcal{G}_{/k(x)}$ is connected for each $x \in \operatorname{Spec}(A)$, where k(x) denotes the residue field of x; thus k(x) is the field of fractions of A/\mathfrak{p}_x where the prime ideal $\mathfrak{p}_x \subset A$ "is" the point x.

Proposition 2.1 ([BrTi 84, 1.2.12]). If A is an integral domain and if G is a smooth affine group scheme over A, there is an affine, open subgroup scheme G^0 which is smooth over A and connected.

We now recall the functor of "restriction of scalars":

Proposition 2.2 ([CGP 10, Prop. A.5.2]). Let $f: A \to B$ be a finite, flat homomorphism between commutative noetherian rings A and B. Let X be a smooth, affine B-scheme of finite type. Then the functor on A-algebras $\Lambda \mapsto X(\Lambda \otimes_A B)$ is represented by a smooth, affine scheme $R_{B/A}(X)$ of finite type over A. If X is a group scheme over B, then $R_{B/A}(X)$ is a group scheme over A.

We also require the scheme of fixed points under the action of a finite group:

Proposition 2.3 ([Ed 92, 3.4]). Let X be a smooth affine scheme of finite type over A and suppose that the finite group Σ acts on X by automorphisms over A. Then the functor on A-algebras $\Lambda \mapsto X(\Lambda)^{\Sigma}$ is represented by an affine scheme X^{Σ} of finite type over A. If $|\Sigma|$ is invertible in A, then X^{Σ} is smooth over A.

A proof of the following result was written down in [Mc 13, (3.4.2)].

Proposition 2.4. Let $K \subset L$ be a finite galois extension of fields with galois group $\Gamma = \operatorname{Gal}(L/K)$. Let G be a linear algebraic group over K. There is a natural action of Γ on $R_{L/K}(G_{/L})$ by K-automorphisms, and the natural mapping

$$\phi: G \to R_{L/K}(G_{/L})^{\Gamma}$$

is an isomorphism of algebraic groups over K.

For the remainder of this section, we are going to suppose that A is a discrete valuation ring with field of fractions F and residue field \mathfrak{f} . We now record some results which are essentially found in J-K. Yu's manuscript [Yu 03].

Proposition 2.5. Let X and Y be smooth and affine schemes of finite type over A, let $f: X \to Y$ be a morphism of A-schemes such that

- (i) $f_{/F}: X_{/F} \rightarrow Y_{/F}$ is an isomorphism, and
- (ii) $f_{/f}: X_{/f} \to Y_{/f}$ is a dominant morphism.

Then f is an isomorphism of A-schemes.

Proof. Write A[X] and A[Y] for the affine algebras of X and Y, and write $\phi:A[Y]\to A[X]$ for the comorphism $\phi=f^*$ of f. Since X and Y are smooth over \mathscr{A} , A[X] and A[Y] are free \mathscr{A} -modules. Moreover, f is an isomorphism if and only if ϕ is an isomorphism. Finally, (i) shows that $\phi\otimes 1_F$ is an isomorphism, and (ii) shows that $\phi\otimes 1_f$ is injective. Thus the present Proposition follows from the Proposition which follows.

Proposition 2.6 ([Yu 03, Lemma 7.6 and its proof.]). *Let M and N be free A-modules, and let* $\phi : M \to N$ *be an A-module homomorphism. Suppose that*

- (i) $\phi \otimes 1_F$ is an isomorphism, and
- (ii) $\phi \otimes 1_{\mathsf{f}}$ is injective.

Then ϕ *is an isomorphism.*

Proof. This fact is proved in [Yu 03]; see the proof of Lemma 7.6. Since the argument is short, for the reader's convenience we give Yu's proof. Since M and N are free, evidentally M embeds in $M \otimes_A F$ and N embeds in $N \otimes_A F$. Since $\phi \otimes 1_F$ is injective by (i), it follows that ϕ is injective. Now identify M with a submodule of N. We must argue that N/M = 0. Since $\phi \otimes 1_F$ is onto by (i), N/M is a torsion A-module. Since N is free, one knows that $\text{Tor}_A^1(N, \mathfrak{f}) = 0$. The long exact sequence of Tor shows that

$$0 \to \operatorname{Tor}\nolimits_A^1(N/M, \mathfrak{f}) \xrightarrow{\partial} M \otimes_A \mathfrak{f} \xrightarrow{\phi \otimes 1_{\mathfrak{f}}} N \otimes_A \mathfrak{f}$$

is exact. Since $\phi \otimes 1_{\mathfrak{f}}$ is injective by (ii), conclude that $\operatorname{Tor}_A^1(N/M,\mathfrak{f})=0$. Since A is a discrete valuation ring, $\operatorname{Tor}_A^1(N/M,\mathfrak{f})$ identifies with the π -torsion submodule of N/M, where π is a uniformizing element for A. It follows that N/M=0 and hence that ϕ is surjective; this completes the proof. \square

3. LOCAL FIELDS AND TAMELY RAMIFIED EXTENSIONS

Let \mathscr{A} be a Henselian discrete valuation ring (DVR) with maximal ideal $\mathfrak{m} = \pi_{\mathscr{A}}\mathscr{A}$. Recall that \mathscr{A} is Henselian provided that the conclusion of Hensel's Lemma holds for \mathscr{A} ; for example, the DVR \mathscr{A} is Henselian if it is complete in its \mathfrak{m} -adic topology. We write K for the field of fractions of \mathscr{A} and k for the residue field of \mathscr{A} .

We assume throughout $\S 3$, $\S 4$ and $\S 5$ that the residue field k of $\mathscr A$ is perfect.

We refer to a generator $\pi = \pi_{\mathscr{A}}$ for the unique maximal ideal of \mathscr{A} as a *uniformizer*, or as a *prime element*. One sometimes refers to K as a "local field".

Fix a separable closure K_{sep} of K, and let $L \subset K_{\text{sep}}$ be a finite separable extension of K of degree n. Write \mathscr{B} for the integral closure of \mathscr{A} in L; it is a Henselian DVR with fractions L. Since k is perfect, the residue field ℓ of \mathscr{B} is a separable extension of k, and n = [L : K] = ef where $f = [\ell : k]$ and e = e(L/K) is the *ramification index* of the extension L/K. The extension L/K is said to be *unramified*

LEVI FACTORS 5

if e = e(L/K) = 1, totally ramified if e = [L : K], and tamely ramified if the integer e is invertible in the residue field $k = \mathcal{A}/\pi\mathcal{A}$.

Proposition 3.1. If L is a totally ramified extension of K of degree n, then $L = K(\pi_1)$ and $\mathscr{B} = \mathscr{A}[\pi_1]$ where $\pi_1 \in \mathscr{B}$ is a prime element. The minimal polynomial $f(T) \in \mathscr{A}[T]$ of π_1 over K is an Eisenstein polynomial, and $\mathscr{B} \simeq \mathscr{A}[T]/\langle f \rangle$. In particular, there is an isomorphism

$$\mathscr{B} \otimes_{\mathscr{A}} k \simeq k[T]/\langle T^n \rangle.$$

under which $\pi_1 \otimes 1 \in \mathcal{B} \otimes_{\mathscr{A}} k$ corresponds to the class of T.

Proof. The assertions follow from [Se 79, §I.6, Prop. 18].

Proposition 3.2. Let L/K be a tamely and totally ramified galois extension of degree n, and write $\Gamma = \operatorname{Gal}(L/K)$ for the galois group.

- (a) The group Γ is cyclic, say $\Gamma = \langle \sigma \rangle$, and if \mathfrak{m} denotes the unique maximal ideal of \mathscr{B} , there is a primitive n-th root of unity $\zeta \in K^{\times}$ such that σ acts on $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ by multiplication with ζ^i for $i \geq 1$.
- (b) The action of Γ on \mathscr{B} induces an action of Γ on $\mathscr{B} \otimes_{\mathscr{A}} k$ by k-algebra automorphisms. The space of Γ -invariants $(\mathscr{B} \otimes_{\mathscr{A}} k)^{\Gamma} = (k[T]/\langle T^n \rangle)^{\Gamma}$ is 1-dimensional over k and is equal to the coefficient field k.

Proof. Assertion (a) follows [Se 79, §IV.2 Cor. 1]. Using (a) and Proposition 3.1 together with the complete reducibility of $k\Gamma$ -representations, (b) follows since a generator σ of Γ acts non-trivially on $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ for $1 \le i \le n-1$.

4. RESTRICTION OF SCALARS OF GROUP SCHEMES

We preserve the notations \mathcal{A} , K and k of the preceding section. Moreover, we suppose now that K is a *strictly Henselian* local field. Thus K coincides with its maximal unramified extension K_{un} , and in particular the residue field $k = k_{\text{alg}}$ of $\mathcal{A} = \mathcal{A}_{\text{un}}$ is algebraically closed.

Let $K \subset L$ be a finite, galois extension of K, write Γ for the galois group Gal(L/K), and write \mathscr{B} for the integral closure \mathscr{B} of \mathscr{A} in L. Then \mathscr{B} is also strictly Henselian, and the extension L/K is totally ramified.

We suppose that L is tamely ramified over K; thus by Proposition 3.2(a), the group $\Gamma = Gal(L/K)$ is cyclic of order relatively prime to p.

Let \mathcal{P} , respectively \mathcal{Q} , be smooth group schemes of finite type over \mathscr{A} , respectively \mathscr{B} . Write $G = \mathcal{P}_{/K}$ for the generic fiber of \mathcal{P} , and suppose that $\mathcal{Q}_{/L} \simeq G_{/L}$.

We suppose \mathcal{P} is connected; see the discussion preceding Proposition 2.1. Recall that this means that the linear algebraic groups $G = \mathcal{P}_{/K}$ and $\mathcal{P}_{/k}$ are connected.

Theorem 4.1. With the above notations, assume that

- (A1) $\mathcal{P}(\mathscr{A}) \subset \mathcal{Q}(\mathscr{B})$ (viewed as subgroups of G(L)), and
- (A2) For each $\gamma \in \Gamma$, we have $\gamma(\mathcal{Q}(\mathcal{B})) = \mathcal{Q}(\mathcal{B})$.

Then the action of Γ on $R_{L/K}G$ by automorphisms over K prolongs to an action of Γ on $R_{\mathscr{B}/\mathscr{A}}\mathcal{Q}$ by automorphisms over \mathscr{A} , and there is a unique morphism of \mathscr{A} -schemes $\psi:\mathcal{P}\to ((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^\Gamma)^0$ such that $\psi_{/K}$ is the isomorphism of Proposition 2.4. If in addition

(A3) the index of $\psi(\mathcal{P}(\mathscr{A}))$ in $((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})^{0}(\mathscr{A})$ is finite then ψ is an isomorphism of group schemes $\psi: \mathcal{P} \xrightarrow{\sim} ((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})^{0}$.

Proof. First recall that – in the terminology of [BrTi 84, §I.7] – a scheme $\mathscr X$ over $\mathscr A$ is *étoffe* if whenever $\mathscr Y$ is an $\mathscr A$ -scheme and $\phi:\mathscr X_{/K}\to\mathscr Y_{/K}$ is a morphism over K such that $\phi(\mathscr X(\mathscr A))\subset\mathscr Y(\mathscr A)$, there is a (necessarily unique) morphism $\psi:\mathscr X\to\mathscr Y$ with $\phi=\psi_{/K}$. Since $\mathscr A$ is strictly Henselian, [BrTi 84, I.7.3] shows that any smooth scheme $\mathscr X$ over $\mathscr A$ is étoffe.

By Proposition 2.2, the \mathscr{A} -scheme $R_{\mathscr{B}/\mathscr{A}}\mathcal{Q}$ is smooth and hence étoffe. Thanks to (A2), the action of Γ on $R_{L/K}G_{/L}$ indeed induces an action of Γ on $R_{\mathscr{B}/\mathscr{A}}\mathcal{Q}$. In particular, we may speak of the \mathscr{A} -group scheme $(R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma}$. Since Γ has order invertible in \mathscr{A} , Proposition 2.3 shows that $(R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma}$ is smooth over \mathscr{A} .

If $\phi: G \to R_{L/K}G_{/L}$ is the isomorphism of Proposition 2.4, condition (A1) implies that $\phi(\mathcal{P}(\mathscr{A}))$ is contained in $\mathcal{Q}(\mathscr{B})^{\Gamma} = (R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma}(\mathscr{A})$; since \mathcal{P} is étoffe, it follows that there is a unique morphism of \mathscr{A} -group schemes $\psi: \mathcal{P} \to (R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma}$ for which $\psi_{/K} = \phi$. Since \mathcal{P} is connected, in fact ψ determines a morphism $\psi: \mathcal{P} \to ((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})^{0}$.

Since \mathscr{A} is Henselian and since \mathscr{P} and $((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})^0$ are smooth group schemes over \mathscr{A} , the natural mappings

$$\mathcal{P}(\mathscr{A}) \to \mathcal{P}(k)$$
 and $((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})^{0}(\mathscr{A}) \to ((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})^{0}(k)$

are surjective [Li 02, Cor. 2.13]. Thus (A3) implies that the index of $\psi(\mathcal{P}(k))$ in $((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})^{0}(k)$ is finite.

Since $\mathcal{P}_{/K}$ and $(R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})_{/K}^{\Gamma} \simeq (R_{L/K}\mathcal{Q}_{/K})^{\Gamma}$ are isomorphic by Proposition 2.4, and since \mathcal{P} and $(R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma}$ are smooth over \mathscr{A} , the algebraic k-groups $\mathcal{P}_{/k}$ and $(R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})_{/k}^{\Gamma}$ have the same dimension. Since the image of ψ on k-points has finite index, and since k is algebraically closed, $\psi_{/k}$ determines a dominant mapping $\mathcal{P}_{/k} \to ((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})_{/k}^{\Gamma})^{o}$

It now follows from Proposition 2.5 that ψ is an isomorphism $\psi: \mathcal{P} \xrightarrow{\sim} ((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})^0$ as required.

Proposition 4.2. Suppose that $K \subset L$ is a totally ramified extension, let \mathscr{B} be the integral closure of \mathscr{A} in L and let k be the residue field (of \mathscr{A} and of \mathscr{B}). If Q is a smooth affine group scheme over \mathscr{B} and if $Q_{/k}$ has a Levi factor, then $(R_{\mathscr{B}/\mathscr{A}}Q)_{/k}$ has a Levi factor.

Proof. Write $B = \mathscr{B} \otimes_{\mathscr{A}} k$; then by Proposition 3.1, $B \simeq k[T]/\langle T^n \rangle$ where n = [L:K]. Evidently $(R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})_{/k}$ identifies naturally with $R_{B/k}(\mathcal{Q}_{/B})$.

Write $i: k \to B$ and $j: B \to k$ for the *unique* k-algebra maps. Then i and j induce morphisms

$$j: R_{B/k}\mathcal{Q}_{/B} \to \mathcal{Q}_{/k}$$
 and $i: \mathcal{Q}_{/k} \to R_{B/k}\mathcal{Q}_{/B}$

which by some abuse of notation we'll also denote by i and j. Write U for the kernel of j and M for the image of i. It follows from [CGP 10, Prop. A.5.11](2) that U is connected and unipotent. Since $j \circ i$ is the identity mapping, $R_{B/k}Q_{/B}$ is the semidirect product of U and M.

Since $M \simeq \mathcal{Q}_{/k}$ and since $\mathcal{Q}_{/k}$ has a Levi factor by hypothesis, the result now follows.

5. REDUCTIVE GROUPS OVER A LOCAL FIELD

We keep the assumptions and notations of 3; in particular, K is the field of fractions of a Henselian DVR $\mathscr A$ with residue field k. Let G be a connected and reductive group over K.

Proposition 5.1. If $G_{/L}$ is split over a tamely ramified extension $L \supset K$, then $G_{/L_{un}}$ is split for a tamely ramified, finite, galois extension $L_{un} \supset K_{un}$, where K_{un} is the maximal unramified extension of K in the fixed separable closure K_{sep} .

Proof. According to a theorem of Lang [Se 97, II.3.3], K_{un} is a C_1 field. It then follows from an important result of Steinberg (in case K is perfect) and Borel-Springer [BS 68] that $G_{/K_{un}}$ is *quasi-split*; i.e. $G_{/K_{un}}$ has a Borel subgroup defined over K_{un} .

Since $G_{/K_{un}}$ is quaisplit, it follows from [BrTi 84, 4.1.2] that $G_{/K_{un}}$ has a minimal splitting field $L_{un} \supset K_{un}$ which is precisely the field of invariants for the kernel of the representation of $Gal(K_{sep}/K_{un})$ on $X^*(T)$ where the torus T is the centralizer of a maximal K_{un} -split torus of G. The minimality of L_{un} implies that L_{un} is contained in the compositum $L_1 = L \cdot K_{un}$, since L_1 is evidentally a splitting field for G. Since L_1 is a tamely ramfied extension of K_{un} , it follows that L_{un} is tamely ramified over K_{un} as well.

For a field extension L of K, let \mathscr{I}_L be the affine building of $G_{/L}$ defined by Bruhat and Tits; see e.g. [BrTi 84, $\S 5$]. Write $\mathscr{I} = \mathscr{I}_K$. If L is galois over K, there is a natural action of Γ on \mathscr{I}_L . The following theorem was proved by Rousseau [Ro 77, $\S 5$], with a simplified proof given later by Prasad [Pr 01]:

LEVI FACTORS 7

Theorem 5.2 (Rousseau's Theorem). Let $K \subset L$ be a finite, galois, tamely ramified extension with galois group $\Gamma = \operatorname{Gal}(L/K)$. The natural map $j : \mathscr{I} \to (\mathscr{I}_L)^{\Gamma}$ is bijective.

For a separable extension $L \supset K$, recall that we write \mathscr{B} of the integral closure of \mathscr{A} in L, and recall from the introduction 1.1 that a point $y \in \mathscr{I}_L$ determines a parahoric \mathscr{B} -group scheme \mathscr{Q} with generic fiber $G_{/L}$.

Theorem 5.3 (Étale descent). Let $K \subset L$ be an unramified galois extension. For $x \in \mathcal{I}$, write $y = j(x) \in \mathcal{I}_L$. Let \mathcal{P} be the parahoric \mathcal{A} -group scheme determined by x, and let \mathcal{Q} be the parahoric \mathcal{B} -group scheme determined by y. Then the identification of generic fibers $\mathcal{P}_{/L} \xrightarrow{\sim} G_{/L} \xleftarrow{\sim} \mathcal{Q}_{/L}$ prolongs to an isomorphism

$$\alpha: \mathcal{P}_{/\mathscr{B}} \xrightarrow{\sim} \mathcal{Q}$$

of group schemes over \mathscr{B} . If ℓ denotes the residue field of \mathscr{B} , we have in particular an isomorphism

$$\alpha_{\ell}: \mathcal{P}_{\ell} \xrightarrow{\sim} \mathcal{Q}_{\ell}.$$

Sketch. When $L = L_{\rm un}$ is strictly Henselian, G is quasisplit and [BrTi 84, §4] provides a definition of the parahoric group scheme attached to y. It follows from [BrTi 84, 4.6.30] that the action of Γ on $L[G_{/L}] = K[G] \otimes_K L$ leaves invariant the subalgebra $\mathscr{B}[\mathcal{Q}]$, the coordinate algebra of \mathcal{Q} . Thus [BrTi 84, 5.1.8] shows that \mathcal{Q} arises by base-change $\mathscr{A} \to \mathscr{B}$ from a canonical smooth \mathscr{A} -group scheme \mathcal{P} , and \mathcal{P} is by definition the parahoric group scheme attached to x.

In general – i.e. when L is not necessarily strictly Henselian – the assertion follows since the the preceding construction is canonical; see [BrTi 84, $\S 5$].

We are now ready to prove:

Theorem 5.4. Let \mathcal{P} be a parahoric group scheme over \mathscr{A} with generic fiber $G = G_{/K}$. If $G_{/\Lambda}$ is split for some tamely ramified extension $K \subset \Lambda$, then the geometric special fiber $\mathcal{P}_{/k_{\text{alg}}}$ has a Levi factor.

This is Theorem B from the introduction.

Proof. Since *G* splits over a tamely ramified extension of *K*, it follows from Proposition 5.1 that *G* splits over a finite, galois, tamely ramified extension $L_{\rm un} \supset K_{\rm un}$ where $K_{\rm un}$ is the maximal unramfied extension of *K*.

Since the result only describes the geometric special fiber, in view of 5.3, we may and will replace K by $K_{\rm un}$. Thus, we suppose that $\mathscr{A} = \mathscr{A}_{\rm un}$ is strictly Henselian, that k is algebraically closed, and that G splits over a tamely ramfied galois extension L of K. As usual, we write \mathscr{B} for the integral closure of \mathscr{A} in L and $\Gamma = \operatorname{Gal}(L/K)$ for the galois group. Since the extension $K \subset L$ is tamely ramified, the order of Γ is relatively prime to the characteristic p of the residue field k.

Now, the parahoric group scheme \mathcal{P} is determined by a point x in the building \mathscr{I} of G; more precisely, \mathcal{P} is the group scheme for which $\mathcal{P}(\mathscr{A})$ is the "connected stabilizer" of x – cf. [BrTi 84, 4.6.28 and 5.2.6] and the discussion in §1.1. With notation as in Rousseau's Theorem 5.2, let $y = j(x) \in (\mathscr{I}_L)^{\Gamma}$. Thus y determines a parahoric group scheme \mathcal{Q} over \mathscr{B} with generic fiber $\mathcal{Q}_{/L} = G_{/L}$ for which $\mathcal{Q}(\mathscr{B})$ is the connected stabilizer of y.

Since \mathcal{P} has connected fibers, since $\mathcal{P}(\mathscr{A})$ stabilizes y, and since $\mathcal{Q}(\mathscr{B})$ is the connected stabilizer of y, we have $\mathcal{P}(\mathscr{A}) \subset \mathcal{Q}(\mathscr{B})$ as subgroups of G(L); thus condition (A1) of Theorem 4.1 holds. Since x is Γ -stable, evidentally the connected stabilizer $\mathcal{Q}(\mathscr{B}) \subset G(L)$ is Γ -stable, so that condition (A2) of Theorem 4.1 holds as well.

Thus according to Theorem 4.1 there is a unique homomorphism of \mathcal{A} -group schemes

$$\psi: \mathcal{P} \to ((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})^0$$

such that $\psi_{/K}: G \to (R_{L/K}G_{/L})^{\Gamma}$ is the isomorphism of Proposition 2.4. We have evident containments:

$$\mathcal{P}(\mathscr{A}) \subset \mathcal{Q}(\mathscr{B}) \cap G(K) \subset \operatorname{Stab}_{G(K)}(x) \subset \operatorname{Stab}_{G(L)}(y).$$

Moreover, $(R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma}(\mathscr{A}) = \mathcal{Q}(\mathscr{B}) \cap G(K)$. Since $\mathcal{P}(\mathscr{A})$ has finite index in $\operatorname{Stab}_{G(K)}(x)$ by [BrTi 84, 4.6.28] it follows that the image of $\mathcal{P}(\mathscr{A})$ has finite index in $R_{\mathscr{B}/\mathscr{A}}(\mathcal{Q})^{\Gamma}$, so that condition (A3) of Theorem 4.1 holds. According to that Theorem, ψ determines an isomorphism

$$(\sharp)$$
 $\psi: \mathcal{P} \xrightarrow{\sim} ((R_{\mathscr{B}/\mathscr{B}}\mathcal{Q})^{\Gamma})^0$

of \mathscr{A} -group schemes.

The group $G_{/L}$ is split and \mathcal{Q} is a parahoric group scheme over \mathscr{B} with generic fiber $G_{/L}$. Thus by Theorem A of the introduction, the special fiber $\mathcal{Q}_{/k}$ has a Levi factor. Now Proposition 4.2 shows that the special fiber $(R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})_{/k}$ has a Levi factor. Since Γ has order relatively prime to p, Theorem C shows that $((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})_{/k})^{\Gamma} = (R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})_{/k}^{\Gamma}$ has a Levi factor. Finally, (\sharp) shows that $\psi_{/k}$ is an isomorphism of group schemes $\mathcal{P}_{/k} \to ((R_{\mathscr{B}/\mathscr{A}}\mathcal{Q})^{\Gamma})_{/k}^{0}$, so indeed $\mathcal{P}_{/k}$ has a Levi factor and the proof is complete.

6. ACKNOWLEDGMENTS

After I showed to Gopal Prasad the results of [Mc 10], he pointed out to me that it should be possible to find a proof of Theorem B using Rousseau's Theorem. I heartily thank Prasad for his interest in this work and for his suggestions. I benefited from seeing some unpublished notes of P. Gille on matters related to Rousseau's theorem. Finally, I'd like to thank the referee for the suggestion to use J-K. Yu's result Proposition 2.5 to simplify the proof of the main theorem; earlier versions of this manuscript used a more complicated argument and required more restrictive hypotheses for the main result.

REFERENCES

- [Bo 91] Armand Borel, Linear Algebraic Groups, 2nd ed., Grad. Texts in Math., vol. 126, Springer Verlag, 1991.
- [BS 68] A. Borel and T. A. Springer, Rationality properties of linear algebraic groups. II, Tôhoku Math. J. (2) 20 (1968), 443-497.
- [BrTi 84] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376.
- [CGP 10] Brian Conrad, Ofer Gabber, and Gopal Prasad, Pseudo-reductive groups, New Mathematical Monographs, vol. 17, Cambridge University Press, Cambridge, 2010.
- [Ed 92] Bas Edixhoven, Néron models and tame ramification, Compositio Math. 81 (1992), no. 3, 291–306.
- [Li 02] Qing Liu, *Algebraic geometry and arithmetic curves*, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications.
- [Mc 10] George J. McNinch, Levi decompositions of a linear algebraic group, Transform. Groups 15 (2010), no. 4, 937–964.
- [Mc 13] ______, On the descent of Levi factors, Archiv der Mathematik, posted on 2013, DOI 10.1007/s00013-012-0467-y, (to appear in print).
- [Pr 01] Gopal Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group, Bull. Soc. Math. France 129 (2001), no. 2, 169–174.
- [Ro 77] Guy Rousseau, Immeubles des groupes réducitifs sur les corps locaux, U.E.R. Mathématique, Université Paris XI, Orsay, 1977 (French). Thèse de doctorat; Publications Mathématiques d'Orsay, No. 221-77.68.
- [Se 79] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979.
- [Se 97] ______, Galois cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author
- [Sp 98] Tonny A. Springer, Linear algebraic groups, 2nd ed., Progr. in Math., vol. 9, Birkhäuser, Boston, 1998.
- [Ti 77] J. Tits, Reductive groups over local fields, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69.
- [Yu 03] Jiu-Kang Yu, Smooth models associated to concave functions in Bruhat-Tits theory (2003). manuscript at www.math.purdue.edu/~jyu/preprints.php.

DEPARTMENT OF MATHEMATICS, TUFTS UNIVERSITY, 503 BOSTON AVENUE, MEDFORD, MA 02155, USA *E-mail address*: george.mcninch@tufts.edu, mcninchg@member.ams.org