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1 2025-01-15 - Commutative rings

See [Stewart, chapter 16] 1 for general results about commutative rings.

1.1 Definitions

Definition 1.1.1. A ring R is an additive abelian group together with an operation of multi-
plication R×R → R given by (a, b) 7→ a · b such that the following axioms hold:

• multiplication is associative

• multiplication distributes over addition: for every a, b, c ∈ R we have 2

a(b+ c) = ab+ ac

and
(b+ c)a = ba+ ca

We say that the ring R is commutative if the operation of multiplication is commutative;
i.e. if ab = ba for all a, b ∈ R.

And we say that R has identity if multiplication has an identity, i.e. if there is an element
1R ∈ R such that a · 1R = 1R · a = a for every a ∈ R. 3

In the course, we will consider (almost?) exclusively rings which are commutative and
have identity.

Here are some examples of commutative rings:
Example 1.1.2. (a) Z, Q, R, C

(b) if X is a set and if R is a commutative ring, the set XR of all R-valued functions on X
can be viewed as a commutative ring in a natural way.

1.2 Polynomial rings

If R is a commutative ring, the collection of all polynomials in the variable T having coefficients
in R is denoted R[T ].

Notice that the set of monomials S = {T i | i ∈ N} has the following properties:

(M1) every element of R[T ] is an R-linear combination of elements of S. This just amounts
to the statement that every polynomial f(T ) ∈ R[T ] has the form

f(T ) =

N∑
i=0

aiT
i

for a suitable N ≥ 0 and suitable coefficients ai ∈ R.
1As noted in the course syllabus, Tisch library has an entry for this item here; click to find online access to

the text Galois Theory, Ian Stewart. (CRC Press, 4th edition 2022).
2We often just denote multiplication by juxtaposition: i.e. we may write ab instead of a · b for a, b ∈ R
3Usually we write 1 for 1R. The idea is that 1R is the multiplicative identity of R. For example, the identity

matrix
[
1 0
0 1

]
is the multiplicative identity 1R of the matrix ring R = Mat2(R).
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(M2) the elements of S are linearly independent i.e. if

N∑
i=0

aiT
i = 0 for ai ∈ R,

then ai = 0 for every i.

Polynomials in R[T ] can be added in a natural way. (This is just like adding vectors in a
vector space).

And there is a product operation on polynomials, as follows:

if f(T ) =
N∑
i=0

aiT
i and g(T ) =

M∑
i=0

biT
i then

f(T ) · g(T ) =
N+M∑
i=0

ciT
i where ci =

∑
s+t=i

asbt.

Proposition 1.2.1. R[T ] is a commutative ring with identity.
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2 2025-01-22 - Properties of rings

2.1 Ring Homomorphisms

Definition 2.1.1. If R and S are rings, a function ϕ : R → S is called a ring homomorphism
provided that

(a) ϕ is a homomorphism of additive groups,

(b) ϕ preserves multiplication; i.e. for all x, y ∈ R we have ϕ(xy) = ϕ(x)ϕ(y), and

(c) ϕ(1R) = 1S .

Definition 2.1.2. The kernel of the ring homomorphism ϕ : R → S is given by

kerϕ = ϕ−1(0) = {x ∈ R | ϕ(x) = 0};

thus kerϕ is just the kernel of ϕ viewed as a homomorphism of additive groups.
Here are some properties of the kernel:

(K1) kerϕ is an additive subgroup of R

(K2) for every r ∈ R and every x ∈ kerϕ we have rx ∈ kerϕ.

2.2 Ideals of a ring

For simplicity suppose that the ring R (and S) are commutative rings.
Definition 2.2.1. A subset I of R is an ideal provided that

(a) I is an additive subgroup of R, and

(b) for every r ∈ R and every x ∈ I we have rx ∈ I.

We sometimes describe condition (b) by saying that "I is closed under multiplication by
every element of R".

The proof of the following is immediate from definitions:

Proposition 2.2.2. If ϕ : R → S is a ring homomorphism , then kerϕ is an ideal of R.

2.3 Quotient rings

Let R be a commutative ring and let I be an ideal of R.
Since I is a subgroup of the (abelian) additive group R, we may consider the quotient

group R/I. Its elements are (additive) cosets a+ I for a ∈ R.
It follows from the definition of cosets that the a+ I = b+ I if and only if b− a ∈ I.
The additive group can be made into a commutative ring by defining the multiplication

as follows:
For a+ I, b+ I ∈ R/I (so that a, b ∈ R), the product is given by

(a+ I)(b+ I) = ab+ I.
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In order to make this definition, one must confirm that this rule is well-defined. Namely,
if we have equalities a+ I = a′ + I and b+ I = b′ + I, we need to know that

(a+ I)(b+ I) = (a′ + I)(b′ + I).

Applying the definition, we see that we must confirm that
ab = I = a′b′ + I.

For this, we need to argue that a′b′ − ab ∈ I.
Since a+ I = a′ + I, we know that a′ − a = x ∈ I and since b+ I = b′ + I we know that

b′ − b = y ∈ I.
Thus a′ = a+ x and b′ = b+ y. Now we see that

a′b′ = (a+ x)(b+ y) = ab+ ay + xb+ xy

Since I is an ideal, we see that ay, xb, xy ∈ I henc ay + xb + xy ∈ I. Now conclude that
a′b′ + I = ab+ I as required.

It is now straightforward to confirm that the ring axioms hold for the set R/I with these
operations.
Proposition 2.3.1. If I is an ideal of the commutative ring R, then R/I is a commutative
ring with the addition and multiplication just described.

2.4 Principal ideals

Definition 2.4.1. If R is a commutative ring and a ∈ R, the principal ideal generated by a –
written Ra or 〈a〉 – is defined by

Ra = 〈a〉 = {ra | r ∈ R}.

Proposition 2.4.2. For a ∈ R, Ra is an ideal of R.
Example 2.4.3. Let n ∈ Z>0 and consider the principal ideal nZ of the ring Z generated by
n ∈ Z.

As an additive group, nZ is the infinite cyclic group generated by n.
The quotient ring Z/nZ is the finite commutative ring with n elements; these elements

are precisely the congruence classes of integers modulo n.

2.5 Isomorphism Theorem

Theorem 2.5.1. Let R,S be commutative rings with identity and let ϕ : R → S be a ring
homomorphism. Assume that ϕ is surjective (i.e. onto). Then ϕ determines an isomorphism
ϕ : R/I → S where I = kerϕ, where ϕ is determined by the rule

ϕ(a+ I) = ϕ(a) for a ∈ R.

Proof. First, you must confirm that ϕ is well-defined; i.e. that if a+I = a′+I then ϕ(a+I) =
ϕ(a′ + I).

Next, you must confirm that ϕ is a ring homomorphism (this is immediate from the
definition of ring operations on R/I).

Finally, you must confirm that kerϕ = {0}, where here 0 refers to the additive identity of
the quotient ring R/I. This additive identity is of course the trivial coset I = 0+I ∈ R/I.
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2.6 A Homorphism from the polynomial ring to the scalars

Let F is a field and let a ∈ F . consider the mapping

Φ : F [T ] → F

given by Φ(f(T )) = f(a). Namely, applying Φ to a polynomial f(T ) results in the value f(a)
of f(T ) at a.

The definition of multiplication in F [T ] guarantees that Φ is a ring homomorphism.
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3 2025-01-27 - Polynomials over a field and the division algo-
rithm

3.1 Some general notions for commutative rings

Definition 3.1.1. If R is a commutative ring with 1 and if u ∈ R we say that u is a unit - or
that u is invertible - provided that there is v ∈ R with uv = 1; then v = u−1.

We write R× for the units in R.
A commutative ring R is a field provided that every non-zero element is invertible. Thus

R is a field if R× = R \ {0}.

Proposition 3.1.2. If R is a commutative, then R× is an abelian group (with operation the
multiplication in R).

For any commutative ring R and elements a, b ∈ R we say that a divides b – written a | b
– if ∃x ∈ R with ax = b.

Proposition 3.1.3. For a, b ∈ R we have a | b if and only if b ∈ 〈a〉.

Recall that we introduced the principal ideal 〈a〉 = aR for any commutative ring R and
any a ∈ R. In fact, given a1, · · · , an ∈ R we can consider the ideal

〈a1, · · · , an〉 =
n∑

i=1

aiR

defined as

〈a1, · · · , an〉 =

{
n∑

i=1

riai|ri ∈ R

}
.

It is straightforward to check that 〈a1, · · · , an〉 is indeed an ideal of R.
Definition 3.1.4. A non-zero element a ∈ R is said to be a 0-divisor provided that there is
0 6= b ∈ R with ab = 0.
Example 3.1.5. Let n be a composite positive integer, so that n = ij for integers i, j > 0.
Consider the elements [i] = i+ nZ, [j] = j + nZ in the quotient ring Z/nZ.

Then [i] and [j] are both non-zero since 0 < i, j < n so that n ∤ i and n ∤ j. But
[i] · [j] = [n] = 0 so that [i] and [j] are 0-divisors of the ring Z/nZ.
Definition 3.1.6. A commutative ring R is said to be an integral domain provided that it has
no zero-divisors.
Example 3.1.7. (a) Any field is an integral domain.

(b) The ring Z of integers is an integral domain.

(c) Any subring of an integral domain is an integral domain.
For example, the ring Z[i] = {a+bi | a, b ∈ Z} of gaussian integers is an integral domain.

(d) Z/nZ is not an integral domain whenever n is composite.

(e) If R and S are commutative rings, the direct product R× S is never an integral domain.
Indeed, the elements (1, 0) and (0, 1) are 0-divisors.
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Lemma 3.1.8. (Cancellation) Let R be an integral domain and let a, b, c,∈ R with c 6= 0.
If ac = bc then a = b.

Proof. The equation ac = bc implies that ac− bc = 0 so that (a− b)c = 0 by the distributive
property. Since R has no zero divisors and since c 6= 0 by assumption, conclude that a− b = 0
i.e. that a = b.

Proposition 3.1.9. Let R be an integral domain and let d, d′ ∈ R \ {0}. If 〈d〉 = 〈d′〉 then d
and d are associate.

Proof. Since d ∈ 〈d〉 we may write d = xd′ and since d′ ∈ 〈d〉 we may write d′ = yd. Now we
see that d = xd′ = xyd. Since d 6= 0 cancellation (Lemma 3.1.8) implies that xy = 1. Thus
x, y ∈ R× and indeed d, d′ are associate.

3.2 The degree of a polynomial

Let F be a field and consider the ring of polynomials F [T ].
Definition 3.2.1. The degree of a polynomial f = f(T ) ∈ F [T ] is defined to be deg(f) = −∞
if f = 0, and otherwise deg(f) = n where

f =
n∑

i=0

aiT
i with each ai ∈ F and an 6= 0.

We have some easy and familiar properties of the degree function:

Proposition 3.2.2. Let f, g ∈ F [T ].

(a) deg(fg) = deg(f) + deg(g).

(b) deg(f + g) ≤ max{deg(f), deg(g)} and equality holds if deg(f) 6= deg(g).

(c) f ∈ F [T ]× if and only if deg(f) = 0. In particular, F [T ]× = F×.

Corollary 3.2.3. For a field F , the polynomial ring F [T ] is an integral domain.

Proof. Let f, g ∈ F [T ] and suppose that fg = 0. We must argue that either f = 0 or
g = 0.

Proposition 3.2.4. Let f, g ∈ F [T ]. If g 6= 0 and deg g < deg f then [g] = g + 〈f〉 is a
non-zero element of F [T ]/〈f〉.

3.3 The division algorithm

Theorem 3.3.1. Let F be a field, and let f, g ∈ F [T ] with 0 6= g. Then there are polynomials
q, r ∈ F [T ] for which

f = qg + r

and deg r < deg g.
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Proof. First note that we may suppose f to be non-zero. Indeed, if f = 0, we just take
q = r = 0. Clearly f = qg + r, and deg(r) = −∞ < deg(g) since g is non-zero.

We now proceed by induction on deg(f) ≥ 0.
For the base case in which deg(f) = 0, we note that f = c is a constant polynomial; here

c ∈ F×.
If deg(g) = 0 as well, then g = d ∈ F× and then c = (c/d)d + 0 so we may take q = c/d

and r = 0. Now deg(r) = −∞ < deg(g) as required.
If deg(g) > 0, we simply take q = 0 and r = f : we then have f = 0 · g + f and

deg(f) = 0 < deg(g) as required.
We have now confirmed the Theorem holds when deg(f) = 0.
Proceeding with the induction, we now suppose n > 0 and that the Theorem holds when-

ever f has degree < n. We must prove the Theorem holds when f has degree n.
Since f has degree n, we may write f = anT

n + f0 where an ∈ F× and f0 ∈ F [T ] has
deg(f0) < n.

Let us write g = deg(g); we may write g = bmTm + g0 where bm ∈ F× and g0 ∈ F [T ] has
deg(g0) < m.

If n < m we take q = 0 and r = f to find that f = qg + r and deg(r) < deg(g).
Finally, if m ≤ n we set

f1 = f − (an/bm)Tn−mg = anT
n + f0 −

(
an
bm

bmTn +
an
bm

Tn−mg0

)
= f0 −

an
bm

Tn−mg0.

We have deg(f0) < n by assumption, and deg

(
an
bm

Tn−mg0

)
< n by the Proposition

together with the fact that deg(g0) < m.
Thus deg(f1) < n. Now we apply the induction hypothesis to write

f1 = q1g + r1 with deg(r1) < deg(g).

Finally, we have

f = f1 + (an/bm)Tn−mg = q1g + r1 + (an/bm)Tn−mg =
(
q1 + (an/bm)Tn−m

)
g + r1

so we have indeed written f = qg + r in the required form.

Corollary 3.3.2. Let F be a field and let f ∈ F [T ]. For a ∈ F , there is a polynomial q ∈ F [T ]
for which

f = q(T − a) + f(a).

Corollary 3.3.3. For f ∈ F [T ] an element a ∈ F is a root of the polynomial f if and only
if T − a | f in F [T ].
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4 2025-01-29 - ideals of the polynomial ring

4.1 Ideals of the polynomial ring F [T ]

Corollary 4.1.1. Let F be a field and let I be an ideal of the ring F [T ]. Then I is a principal
ideal; i.e. there is g ∈ I for which

I = 〈g〉 = g · F [T ].

Proof. If I = {0} 4 the results is immediate. Thus we may suppose I 6= 0.
Consider the set {deg(g)|0 6= g ∈ I}. This is a non-empty set of natural numbers, hence

it contains a minimal element by the well-ordering principle.
Choose g ∈ I such that deg(g) is this minimal degree; we claim that I = 〈g〉.
Clearly 〈g〉 ⊆ I. To complete the proof, it remains to establish the inclusion I ⊆ 〈g〉. Let

f ∈ I and use the Division Algorithm to write f = qg+r for q, r ∈ F [T ] with deg r < deg g.
Observe that f − qg ∈ I so that r ∈ I. Since deg r < deg g conclude that r = 0. This

shows that f = qg ∈ 〈g〉 as required, completing the proof.

Let F be a field, F [T ] be the ring of polynomials with coefficients in F , let f, g ∈ F [T ] be
polynomials which are not both 0.
Definition 4.1.2. The greatest common divisor gcd(f, g) of the pair f, g is a monic poly-
nomial d such that

(a) d | f and d | g,

(b) if e ∈ F [T ] satisfies e | f and e | g, then e | d.

Remark 4.1.3. If d, d′ are two gcds of f, g then d | d′ and d′ | d. In particular, deg(d) = deg(d′)
and d′ = αd for some α ∈ F×. It is then clear that there is no more than one monic polynomial
satisfying i. and ii.
Proposition 4.1.4. Let f, g ∈ F [T ] not both 0 5.

(a) 〈f, g〉 is an ideal. According to the previous

corollary, there is a monic polynomial d ∈ F [T ] with

〈d〉 = 〈f, g〉.

Then d = gcd(f, g)

(b) In particular, d = gcd(f, g) may be written in the form d = uf + vg for u, v ∈ F [T ].

Proof. For a., write I = 〈f, g〉 = 〈d〉. Since f, g ∈ I, the definition of 〈d〉 shows that d | f and
d | g.

Now suppose that e ∈ F [T ] and that e | f and e | g. Then f, g ∈ 〈e〉 which shows that
〈f, g〉 ⊆ 〈e〉.

But this implies that 〈d〉 ⊂ 〈e〉 so that e | d as required. Thus we see that d is indeed
equal to gcd(f, g).

Since d ∈ 〈d〉 = 〈f, g〉, assertion b. follows from the definition of 〈f, g〉.
4We will write simply 0 for the ideal {0}.
5Note that f, g are not both 0 if and only if the ideal ⟨f, g⟩ is not 0.
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4.2 Principal ideal domains (PIDs) and gcds

Definition 4.2.1. An integral domain R is said to be a principal ideal domain (abbreviated
PID) provided that every ideal I of R has the form

I = 〈a〉 for some a ∈ R;

i.e. provided that every ideal of R is principal.
Example 4.2.2. (a) The ring Z of integers is a PID.

(b) For any field F , the ring F [T ] of polynomials is a PID - this follows from the Corollary
to the divison algorithm, above.

(c) The rings Z[i] and Z[
√
2] are PIDs – to see this one can argue that these rings are Euclidean

domains and then one proves that any Euclidean domain is a PID.
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5 2025-02-03 - prime elements and unique factorization

5.1 Prime elements in a PID

Let R be a PID.
For a1, · · · , an ∈ R write 〈a1, · · · , an〉 = Ra1+ · · ·+Ran for the ideal generated by the ai,

as before.
Our results about gcd in the polynomial ring actually hold in the generality of the PID

R. We quickly give the statements:
Definition 5.1.1. Let a, b ∈ R such that 〈a, b〉 6= 0. A gcd of a and b is an element d ∈ R such
that

(i) d | a and d | b (in words: "d is a common divisor of a and b")

(ii) if e | a and e | b then e | d. (in words: "any common divisor of a and b divides d")

Definition 5.1.2. Two elements d, d′ ∈ R are said to be associates provided that there is a
unit u ∈ R× for which d = ud′.

It is straightforward to check that the property "d and d′ are associates" defines an equiv-
alence relation on R.

Lemma 5.1.3. Let R be an integral domain and let d, d′ ∈ R.

(a) If 〈d〉 = 〈d′〉 then d and d′ are associates.

(b) If R is a PID and if d and d′ are gcds of a and b then d and d′ are associates.

Proof. Using the definition of gcd we see that d | d′ and d′ | d. Thus d′ = dv and d = d′u for
u, v ∈ R.

This shows that d′ = dv = d′uv. Using cancellation, find that 1 = uv so that u, v ∈ R×.

Remark 5.1.4. This definition of course covers the cases when R = Z and when R = F [T ].
The main thing to point out is that when R = Z, there is a unique positive gcd for any pair
a, b ∈ Z and when R = F [T ] there is a unique monic gcd for any pair f, g ∈ F [T ].

For a general PID there need not be a natural choice of gcd, so for x, y ∈ R we can only
speak of gcd(x, y) up to multiplication by a unit of R.

Proposition 5.1.5. Let R be a PID and let x, y ∈ R with 〈x, y〉 6= 0.

(a) Since R is a PID, we may write find d ∈ R with

〈d〉 = 〈x, y〉.

Then d = gcd(x, y).

(b) In particular, d = gcd(x, y) may be written in the form d = ux+ vv for u, v ∈ R.

To prove Proposition 5.1.5 proceed as in the proof of Proposition 4.1.4.
Let R be a PID.
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Definition 5.1.6. A non-zero element p ∈ R is said to be irreducible provided that p 6∈ R×

and whenever p = xy for x, y ∈ R then either x ∈ R× or y ∈ R×.
Remark 5.1.7. Assume that p, a ∈ R with p irreducible. Then either gcd(p, a) = 1 or
gcd(p, a) = p.

Proposition 5.1.8. p ∈ R is irreducible if and only if (♣): whenever a, b ∈ R and p | ab then
either p | a or p | b.

Proof. (⇒): Assume that p is irreducible, suppose that a, b ∈ R and that p | ab. We must
show that p | a or p | b.

For this, we may as well suppose that p ∤ a; we must then prove that p | b. Since p ∤ a, we
see that gcd(a, p) = 1 by the Remark above. Then ua+ vp = 1 for elements u, v ∈ R.

Now we see that
b = 1 · b = (ua+ vp) · b = uab+ vpb.

Since p | ab we see that p | uab+ vpb which proves that p | b, as required.
(⇐): Assume that condition (♣) holds for p. We must show that p is irreducible. For

this, assume p = xy for x, y ∈ R; we must show that either x ∈ R× or y ∈ R×.
Since p = xy, in particular p | xy and we may apply (♣) to conclude without loss of

generality that p | x.
Write x = pa. We now see that p = xy = pay; by cancellation, find that 1 = ay so that

y ∈ R×. We conclude that p is irreducible, as required.

Example 5.1.9. If f ∈ F [T ] is reducible (i.e. not irreducible) then the quotient ring F [T ]/〈f〉
is not an integral domain.

Indeed, write f = gh for g, h ∈ F [T ] non-units. Thus deg f > deg g, deg h > 0 by
Proposition 3.2.2. According to Proposition 3.2.4, the classes [g], [h] ∈ F [T ] are non-zero, but
[g] · [h] = [f ] = 0 Thus F [T ]/〈f〉 has zero divisors and is not an integral domain.

5.2 Unique factorization in a PID

Theorem 5.2.1. Let R be a PID, let 0 6= a ∈ R, and suppose that a is not a unit.

(a) There are irreducible elements p1, p2, · · · , pn ∈ R such that a = p1 · p2 · · · pn.

(b) if q1, · · · , qm ∈ R are irreducibles such that a = q1 · · · qm then n = m and – after possibly
reordering the qi – there are units ui ∈ R× for which qi = uipi for each i.

Proof. We first prove (a).
For this, we first prove the following claim:
(∗): if the conclusion of (a) fails, there is a sequence of elements a1, a2, · · · ∈ R with the

property that for each i ≥ 1 we have:

• ai+1 | ai and

• ai and ai+1 are not associate.

Note that if a is irreducible, we are done. Otherwise, we can write a = xy with x, y ∈ R
and x, y 6∈ R×.
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6 Irreducible polynomials over a field

6.1 Fields as quotient rings

Proposition 6.1.1. Let F be a field and let f be an irreducible polynomial in F [T ]. Then
F [T ]/〈f〉 is a field.

6.2 Some criteria for irreducibility

Proposition 6.2.1. Let F be a field and let f ∈ F [T ] be a polynomial with deg(f) ≤ 3. If f
has no root in F then f is irreducible.
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7 The Field of fractions of an Integral Domain
Recall Example 3.1.7 that any subring of a field is an integral domain. We now want to argue
that the converse to this statement is true, as well. Namely, an integral domain R is a subring
of a field. In fact, we are essentially going to give a construction of such a field from R.

Let’s fix an integral domain R. To confirm the suggested converse to the above Corollary,
we must construct a field F and an inclusion i : R ⊂ F .

Of course, if we have such a mapping i, then for any 0 6= b ∈ R, the element i(b) is non-zero
in F and hence i(b)−1 =

1

i(b)
should be an element of F (even though i(b)−1 is possibly not

an element of R). For any a ∈ R we should be able to multiply i(a) and 1

i(b)
in F to form the

fraction i(a)

i(b)
. If we choose to identify R with the image i(R), we might simply write a

b
=

i(a)

i(b)
for this fraction.

So if the field F exists, it must contain all fractions a

b
for a, b ∈ R with 0 6= b.

In fact, we are going to construct a field F by formally introducing such fractions.
Consider the set W = {(a, b) | a, b ∈ R, b 6= 0} and define a relation ∼ in W by the

condition

(a, b) ∼ (s, t) ⇐⇒ at = bs.

This relation is motivated by the observation that for fractions in a field F we have

a

b
=

s

t
⇐⇒ at = bs.

One needs to check the following:

Proposition 7.0.1. ∼ defines an equivalence relation on W .

Proof. We must confirm properties of ∼:

(reflexive) if (a, b) ∈ W , then ab = ba =⇒ (a, b) ∼ (a, b).

(symmetric) if (a, b), (s, t) ∈ W then

(a, b) ∼ (s, t) =⇒ at = bs =⇒ sb = ta =⇒ (s, t) ∼ (a, b).

(transitive) Let (a, b), (s, t), (u, v) ∈ W and suppose that (a, b) ∼ (s, t) and (s, t) ∼ (u, v).
The assumptions mean that at = bs and sv = tu.
Multiplying the equation at = bs by v on each side, we see that

atv = bsv =⇒ atv = btu =⇒ (av)t = (bu)t;

since t 6= 0 and since the cancellation law holds in an integral domain, conclude av = bu.
Hence (a, b) ∼ (u, v) which confirms the transitive law.
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We are now going to show that the fractions - i.e. the equivalence classes in W – form a
field. We define Q = Q(R) to be the set of equivalence classes of W under the equivalence
relation ∼.

We write a

b
= [(a, b)] for the equivalence class of (a, b) ∈ W . Thus Q is the set of (formal)

fractions of elements of R, and

a

b
=

s

t
⇐⇒ (a, b) ∼ (s, t) ⇐⇒ at = bs

It remains to argue that Q has the structure of a field. To do this, we must define binary
operations + and · on the set Q and check that they satisfy the correct axioms.

Define addition of fractions: for a, b, s, t ∈ R with b, t 6= 0,

(♣)
a

b
+

s

t
=

at+ bs

bt
.

And define multiplication of fractions:

(♦)
a

b
· s
t
=

as

bt
.

Theorem 7.0.2. For an integral domain R, the set Q(R) of fractions of R forms a field with
the indicated addition and multiplication.

Sketch of proof. What must be checked??

• must first confirm that (♣) is well-defined! i.e. if a′, b′, s′, t′ ∈ R with a

b
=

a′

b′
and

s

t
=

s′

t′
, we must check that a

b
+

s

t
=

a′

b′
+

s′

t′
; i.e. that

at+ bs

bt
=

a′t′ + b′s′

b′t′
.

This is straightforward if a bit tedious.

• One readily checks that 0 =
0

1
is an identity for the binary operation + on Q.

• One readily checks that + is commutative for Q.

• One readily checks that −a

b
is an additive inverse for a

b
.

• With some more effort, one confirms that + is associative on Q; i.e. for α, β, γ ∈ Q

(α+ β) + γ) = α+ (β + γ).

Thus (Q,+) is an abelian group. Now consider the operation ♦) of multiplication.

• must again confirm that (♦) is well-defined! i.e. if a′, b′, s′, t′ ∈ R with a

b
=

a′

b′
and

s

t
=

s′

t′
, we must check that a

b
· s
t
=

a′

b′
· s

′

t′
; i.e. that

as

bt
=

a′s′

b′t′
.
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• One readily checks that 1 =
1

1
is an identity for the binary operation · on Q.

• One readily checks that · is commutative for Q.

• With some more effort, one confirms that · is associative on Q; i.e. for α, β, γ ∈ Q

(α · β) · γ = α · (β · γ).

• Next, one must confirm the distributive law: for α, β, γ ∈ Q,

α(β + γ) = αβ + αγ.

Phew!

Remark 7.0.3. Despite the details of the preceding proof, all that is happening is confirming
properties of operations of fractions that you have used since grade-school. . .

Now, we want to emphasize a crucial property of the field of fractions of an integral
domain.

Let Q(R) be the field constructed above, and note that there is a natural ring homomor-
phism i : R → Q(R) given by r 7→ i(r) =

r

1
for r ∈ R. This homomorphism is one-to-one:

indeed, if r

1
= 0 =

0

1
, then r · 1 = 0 · 1 =⇒ r = 0. Thus, we may identify R with a subring

of Q(R).

Proposition 7.0.4. Let R be an integral domain, let ϕ : R → S be any ring homomorphism,
and suppose that for all 0 6= d ∈ R, ϕ(d) ∈ S× - i.e. ϕ(d) is a unit in S. Then there is a
unique homomorphism ϕ̃ : Q(R) → S with the property that ϕ̃|R = ϕ.

Proof. Let x ∈ Q(R) be any element. Thus x =
a

b
=

a

1
· 1
b

for a, b ∈ R with b 6= 0.

Let’s first argue that uniqueness of ϕ̃. If ϕ̃ is a ring homomorphism, then

1 = ϕ̃(1) = ϕ̃(b · 1
b
) = ϕ(b)ϕ̃(

1

b
) =⇒ ϕ̃(

1

b
) = ϕ(b)−1

Since ϕ̃ is a ring homomorphism, we must have

(♣) ϕ̃(x) = ϕ̃(
a

1
)ϕ̃(

1

b
) = ϕ(a) · ϕ(b)−1

which confirms the uniqueness.
It now only remains to check that the rule (♣) determines a ring homomorphism, which

is straightforward.

Example 7.0.5. The field of rational functions
Let F be a field, and consider R = F [T ] the ring of polynomials. This is in integral

domain, and its field of fractions Q(R) is usually written F (T ) and is known as the field of
rational functions over F .

Note that
F (T ) =

{
f

g
| f, g ∈ F [T ]

}
;

thus elements of F (T ) are fractions f

g
whose numerator and denominator are polynomials; we

usually call such expressions rational functions.
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7.1 Another field of fractions

Let p be a prime number and consider the field F = Q(α) obtained by adjoining a cube root
α = p1/3 of p to Q.

Since T 3 − p ∈ Q[T ] is irreducible, results reviewed earlier show that F has a Q-basis
consisting of {1, α, α2} – i.e. every element can be expressed uniquely in the form

a+ bα+ cα2 for a, b, c ∈ Q

.
Consider the subset

R = Z[α] = {a+ bα+ cα2 | a, b, c ∈ Z} ⊂ F

Lemma 7.1.1. R is a subring of F . In particular, since F is a field, R is an integral domain.

Sketch of proof. One must check the following:

• R is an additive subgroup of F

• R is closed under the multiplication of F .

Since R is an integral domain, we can construct its field of fractions Q = Q(R).
In fact, we have
[]{lem:field-isom}

Proposition 7.1.2. There is an isomorphism of fields Q(R) ' F = Q(α).

Proof. Write ϕ : R → F for the inclusion mapping given by ϕ(x) = x (this looks confusing;
the point is that x = a+ bα+ cα2 with a, b, c ∈ Z, and to view x ∈ F we just view a, b, c ∈ Q.

Since ϕ is one-to-one, if 0 6= x ∈ R then 0 6= ϕ(x); since F is a field ϕ(x) ∈ F×. Thus the
Proposition above implies that there is a ring homomorphism ϕ̃ : Q(R) → F .

Of course, since Q(R) is a field, ϕ̃ is one-to-one. So it only remains to check that ϕ̃ is onto.
Let x = s+ tα+ uα2 ∈ F for s, t, u ∈ Q.
Now find a, b, c, d ∈ Z so that s =

a

d
, t =

b

d
, u =

c

d
.

Then x = s+ tα+uα2 =
a+ bα+ cα2

d
∈ Q(R) is a fraction of elements in Z[α] = R – i.e.

is in the image of ϕ̃.

7.2 Eisenstein’s criteria

Let A be a PID and let p ∈ A be irreducible. Write F for the field of fractions of A.

Theorem 7.2.1. Let f = Tn +
∑n−1

i=0 aiT
i ∈ A[T ], where ai ∈ A. Suppose that p | ai for all

i and that p2 6| a0. Then f is irreducible in F [T ].
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