Math146 - Review for the final exam

George McNinch

2025-03-31

I. The final exam is *comprehensive*, though it will weight material covered since the second midterm more heavily. The problems and definitions mentioned in this review document primarily concern the material since the second midterm; thus, in preparing for the final exam, you should also study the review material for both midterms, and the midterms themselves.

The recent material concerns §13 - §16 of the course lecture notes, namely:

perfect fields and separable polynomials, automorphisms of algebraic objects, the Fundamental Theorem of Galois Theory, and the material concerning the insolvability of the quintic.

- II. You should be able to give careful statements answering the following questions about definitions:
 - separable polynomial
 - perfect field
 - separable extension of fields; normal extension of fields
 - the definition fixed field F^H of a subgroup $H \subseteq \operatorname{Aut}(F)$
 - the Galois group $\operatorname{Gal}(E/F)$ for a field extension $F \subseteq E$.
- III. You should know the following statements and examples
 - the Fundamental Theorem of Galois Theory
 - the fact that any finite field is perfect
 - a condition for the roots of a polynomial in a splitting field to be distinct
 - an example of an irreducible polynomial $q \in F[T]$ of degree > 1 such that q has exactly one root in a splitting field E of q over F.
 - an example of a non-abelian Galois group
 - a description of the Galois group $Gal(\mathbf{F}_{p^n}/\mathbf{F}_p)$ of the finite field \mathbf{F}_{p^n} for a prime number p
 - an example of a field extension $F \subset E$ such that E is not normal over F.
 - for $a \in K$, describe the roots of $T^n a \in K[T]$ in a splitting field of f over K

IV. You should be able to write careful solutions to problems similar to the following:

1. Let L_1 and L_2 be splitting fields over K of the polynomial $f \in K[T]$. We have seen before that $L_1 \simeq L_2$. More precisely, there is an isomorphism $\phi : L_1 \to L_2$ for which $\phi(a) = a$ for all $a \in K$.

Use ϕ to show that there is an isomorphism $\operatorname{Gal}(L_1/K) \xrightarrow{\sim} \operatorname{Gal}(L_2/K)$. (Be sure to show that the mapping you exhibit is in fact an isomorphism).

- 2. Let ω be a root of $f(T) = \frac{T^5 1}{T 1} = T^4 + T^3 + T^2 + T + 1 \in \mathbf{Q}[T]$ in some splitting field of f over \mathbf{Q} .
 - a. Explain why $\mathbf{Q}(\omega)$ is a normal separable extension of \mathbf{Q} .
 - b. Describe the group $\operatorname{Gal}(\mathbf{Q}(\omega)/\mathbf{Q})$. What is its order? What can you say about its group structure?
- 3. Let K be a finite field and let a ∈ K be an element for which f = T³ a ∈ K[T]is *irreducible*. Let L = K(³√a) be a splitting field for f over K.
 Using results from the lectures, Prove the following: if g ∈ K[T] is an irreducible polynomial of degree 3, then g splits over L.
- 4. Let $K = \mathbf{Q}(X)$ be the field of rational functions over **Q**. Observe that

$$L = \mathbb{Q}(X)(\sqrt{X}, \sqrt{X+1})$$

is a splitting field over $\mathbb{Q}(X)$ of the polynomial

$$(T^2 - X)(T^2 - (X + 1)) \in \mathbf{Q}(X)[T] = K[T]).$$

- a Show that $[L:\mathbb{Q}(X)] = 4$ and deduce that $\operatorname{Gal}(L/\mathbb{Q})$ has order 4.
- b. Recall that any group of order 4 is either cyclic or isomorphic to the group

$$\mathscr{K} = \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}.$$

Decide whether $\Gamma = \operatorname{Gal}(L/\mathbf{Q})$ is cyclic or is isomorphic to \mathscr{K} .

- c. By finding all subgroups of Γ , use the fundamental theorem of Galois theory to list all intermediate fields of the extension $\mathbb{Q}(X) \subseteq L = \mathbb{Q}(X)(\sqrt{X}, \sqrt{X+1})$.
- 5. For $n \in \mathbb{Z}_{\geq 0}$, let $\mathscr{P}_n = \{f \in K[T] \mid \deg f < n\}$, and note that $\dim_K \mathscr{P}_n = n$. Fix a polynomial $g \in K[T]$ of degree ≤ 2 , say $g = a_0 + a_1T + a_2T^2$ for $a_0, a_1, a_2 \in K$. Show that multiplication by g defines a mapping

$$\lambda_g: \mathscr{P}_n \to \mathscr{P}_{n+2};$$

Thus $\lambda_g(h) = gh$ for $h \in \mathscr{P}_n$.

If n = 3, find the matrix representing the linear mapping λ_g with respect to the monomial bases of \mathcal{P}_3 and \mathcal{P}_5 .

- 6. Let L be a splitting field over **Q** of the polynomial $T^3 7$.
 - a. Let $\omega \in L$ be root of $\frac{T^7 1}{T 1}$. Show that $\operatorname{Gal}(L/\mathbf{Q}(\omega))$ is cyclic, isomorphic to $\langle \sigma \rangle$. What is the order of this group (i.e. what is the order of σ)?
 - b. Let $\alpha \in L$ be a root of $T^3 7$. Show that $\operatorname{Gal}(L/\mathbf{Q}(\alpha))$ is cyclic, isomorphic to $\langle \tau \rangle$. What is the order of this group (i.e. what is the order of τ)?
 - c. Prove that $\tau \sigma \tau = \sigma^3$ in $\operatorname{Gal}(L/\mathbf{Q})$.