Math146 - Review for midterm 2

George McNinch

2025-03-31

1. Prove: If $F \subset E$ is a finite extension of fields, then E is algebraic over F.

Solution: Let $\alpha \in E$; we must show that α is algebraic over F. Since the assumption means that E is finite dimensional as an F-vector space, the (infinite) set $\{\alpha^m \mid m \in \mathbb{Z}_{\geq 0}\}$ is not linearly independent over F. Thus there is some N and elements $a_i \in F$ for $0 \leq i \leq N$ for which

$$0 = \sum_{i=0}^{N} a_i \alpha^i.$$

But then α is a root of the polynomial

$$f(T) = \sum_{i=0}^{N} a_i T^i \in F[T]$$

so indeed α is algebraic over F. Since α was arbitrary, conclude that E is algebraic over F.

2. If $F \subset E$ is a field extension and if $\alpha_1, \dots, \alpha_n \in E$ are algebraic over F show that

$$[F(\alpha_1,\cdots,\alpha_n):F]<\infty.$$

Solution: Proceed by induction on $n \ge 1$. When n = 1, the element α_1 is algebraic over F and so $[F(\alpha_1) : F]$ is equal to the degree of the *minimal polynomial* of α_1 over F; in particular, this degree is finite.

Now suppose that n > 1 and the result is known for any field F and any collection of n-1 elements algebraic over F. We are given $\alpha_1, \dots, \alpha_n$ algebraic over F.

We know by the induction hypothesis that $[F(\alpha_1, \dots, \alpha_{n-1}) : F]$ is finite.

Moreover, since degree is multiplicative for iterated extensions, we know

$$[F(\alpha_1,\cdots,\alpha_n):F] = [F(\alpha_1,\cdots,\alpha_n):F(\alpha_1,\cdots,\alpha_{n-1})] \cdot [F(\alpha_1,\cdots,\alpha_{n-1}):F]$$

So to prove the finiteness of the indicated extension, it suffices to argue that $F(\alpha_1, \dots, \alpha_n)$ is finite over $F(\alpha_1, \dots, \alpha_{n-1})$. But

$$F(\alpha_1, \cdots, \alpha_n) = F(\alpha_1, \cdots, \alpha_{n-1})(\alpha_n)$$

so this follows from the observation that α_n is algebraic over $F(\alpha_1, \dots, \alpha_{n-1})$.

(indeed, the minimal polynomial f of α_n over F may be viewed as a polynomial in $F(\alpha_1, \dots, \alpha_{n-1})[T]$).

3. Give an example of an irreducible polynomial $g \in F[T]$ and an extension field $F \subset E$ for which f has a root in E but f does not split over E.

Solution: Here are two examples:

i. Let $F = \mathbf{Q}$, $g = T^3 - 2$ and let α a root of g in some extension field. Then $\mathbf{Q}(\alpha)$ is not a splitting field for g.

Indeed, denoting by ω a root of $T^2 + T + 1 = \frac{T^3 - 1}{T - 1}$ we know that

$$g = (T - \alpha)(T - \omega\alpha)(T - \omega^2\alpha)$$

in $\mathbf{Q}(\alpha, \omega)$, so that $\mathbf{Q}(\alpha, \omega)$ is a splitting field for g.

Now, we know that $[\mathbf{Q}(\alpha) : \mathbf{Q}] = 3$ since g is irreducible by Eisenstein. We also know that $[\mathbf{Q}(\omega) : \mathbf{Q}] = 2$ since $T^2 + T + 1$ is irreducible over \mathbf{Q} (by an argument in class which used Eisenstein). Since gcd(3,2) = 1 we know that $[\mathbf{Q}(\alpha,\omega) : \mathbf{Q}] = 6$ and in particular $\mathbf{Q}(\alpha,\omega) \neq \mathbf{Q}(\alpha)$, so $\mathbf{Q}(\alpha)$ is not a splitting field for g.

ii Let $F = \mathbf{Q}(X)$, $g = T^3 - X$ and let α a root of g in some extension field. Then $\mathbf{Q}(X, \alpha)$ is not a splitting field for g.

The argument is essentially the same as in i. – a splitting field for g is $\mathbf{Q}(X, \alpha, \omega)$ where again ω is a root of $T^2 + T + 1$, since

$$g = (T - \alpha)(T - \omega\alpha)(T - \omega^2\alpha)$$

Changing the argument above mutatis mutandum shows that $\mathbf{Q}(X, \alpha) \neq \mathbf{Q}(X, \alpha, \omega)$ so that $\mathbf{Q}(X, \alpha)$ is not a splitting field for g.

4. Let $F \subset E$ be a field extension and let $f, g \in F[T]$. Suppose that there is some $h \in E[T]$ for which deg h > 0, $h \mid f$ and $h \mid g$. Prove that there is some $k \in F[T]$ with deg k > 0, $k \mid f$ and $k \mid g$.

Solution: Let α be a root of h in some extension field of E and note that α is a root of f and of g. In particular, α is algebraic over F; let's write h for the minimal polynomial of α over F and note that deg $h \ge 1$.

Now $f(\alpha) = 0$ implies that $h \mid f$ and $g(\alpha) = 0$ implies that $h \mid g$. Thus k = h works as required.

5. Find the minimal polynomial over \mathbf{Q} of $\alpha = \exp(2\pi i/7) \in \mathbf{C}$, and find the degree $[\mathbf{Q}(\alpha) : \mathbf{Q}]$.

Solution: We know that $\alpha = \exp(2\pi i/7 \in \mathbb{C})$ is a root of the polynomial $T^7 - 1$, and since

 $\alpha \neq 1$ in fact α is a root of

$$f = \frac{T^7 - 1}{T - 1} = T^6 + T^5 + T^4 + T^3 + T^2 + T + 1 \in \mathbf{Q}[T].$$

Now, we have seen that - since 7 is prime - the polynomial f is *irreducible*. It follows that f is the minimal polynomial of α , and we deduce that $[\mathbf{Q}(\alpha) : \mathbf{Q}] = 6$.

6. Let F be a field and let α, β be elements in some extension field of F for which $n = \deg(\alpha)$ and $m = \deg(\beta)$. If $\gcd(n, m) = 1$ show that β also has degree m over $F(\alpha)$.

Solution: Let us observe that $n = [F(\alpha) : F]$ and $m = [F(\beta) : F]$. Moreover.

$$[\clubsuit) \quad [F(\alpha,\beta):F] = [F(\alpha,\beta):F(\alpha)][F(\alpha):F] = n \cdot [F(\alpha,\beta):F(\alpha)]$$

so that $n \mid [F(\alpha, \beta) : F]$. Similarly, $m \mid [F(\alpha, \beta) : F]$.

Since gcd(n,m) = 1 and since $m \mid [F(\alpha,\beta):F] = n \cdot [F(\alpha,\beta):F(\alpha)]$ it follows that

 $m \mid [F(\alpha,\beta):F(\alpha)].$

On the other hand, we know that $[F(\alpha, \beta) : F(\alpha)] \leq m$ since the minimal polynomial of β over $F(\alpha)$ must divide h_{β} in the polynomial ring $F(\alpha)[T]$.

Thus we conclude that $[F(\alpha, \beta) : F(\alpha)] = m$; since $F(\alpha, \beta) = F(\alpha)(\beta)$ this shows that the degree of β over $F(\alpha)$ is indeed m as required.

7. Let $p, q \in F[T]$ be irreducible polynomials with deg p = 3 and deg q = 4. If E is a splitting field for $f = p \cdot q$ over F, prove that $[E : F] \ge 12$.

Solution: Let α, β be roots of p resp. q in some extension field of F. The previous problem shows that q remains irreducible over $F(\alpha)$, so that

$$[F(\alpha,\beta):F] = [F(\alpha,\beta):F(\alpha)] \cdot [F(\alpha):F] = 4 \cdot 3 = 12.$$

Now, there is a splitting field of f = pq containing $F(\alpha, \beta)$, so the degree over F of any splitting field of f is a multiple of 12, as required.

- 8. Let $g = T^3 + \frac{3}{2} \cdot T + 3 \in \mathbf{Q}[T].$
 - a. Show that g is irreducible.

Solution: This follows from Eisenstein's criterion. Indeed, it suffices to argue that $2T^3 + 3T + 6 \in \mathbb{Z}[T]$ is irreducible in $\mathbb{Q}[T]$. But this follows from Eisenstein since the prime 3 does not divide the leading coefficient, 3 divides all the remaining coefficients, and 9 does not divide the constant term 6.

b. Let α be a root of g in some extension of \mathbf{Q} and let $E = \mathbf{Q}(\alpha)$. Then $\mathscr{B} = \{1, \alpha, \alpha^2\}$ is an \mathbf{Q} -basis for E (why?). Consider the linear transformation $\lambda_{\alpha} : E \to E$ given by the rule $\lambda_{\alpha}(x) = \alpha \cdot x$ for $x \in E$. Find the matrix $M_{\alpha} = [\lambda_{\alpha}]_{\mathscr{B}}$ of λ_{α} in the basis \mathscr{B} . In more detail: write e_0, e_1, e_2 for the standard basis of \mathbf{Q}^3 and consider the \mathbf{Q} -linear isomorphism $\Phi : \mathbf{Q}^3 \to E$ given by $\Phi(e_i) = \alpha^i$. Find the 3×3 matrix $M = M_\alpha$ for which $\Phi(M \cdot e_i) = \alpha \cdot \alpha^i = \alpha^{i+1}$, being careful to note that α^3 not part of the basis \mathcal{B} and so must be re-written.

Solution: Note that $\lambda_{\alpha}(1) = \alpha$, $\lambda_{\alpha}(\alpha) = \alpha^2$ and $\lambda_{\alpha}(\alpha^2) = \alpha^3 = -3 + \frac{-3}{2}\alpha$. This shows that

$$M = \begin{pmatrix} 0 & 0 & -3\\ 1 & 0 & -3/2\\ 0 & 1 & 0 \end{pmatrix}$$

c. More generally for $y \in E$ write λ_y for the linear transformation $\lambda_y(x) = y \cdot x$ for $x \in E$. Find the matrix $[\lambda_{\alpha^2}]_{\mathscr{B}}$ and the matrix $[\lambda_{1+\alpha^2}]_{\mathscr{B}}$

Solution: For any element $y = s + t\alpha + u\alpha^2 \in E$ the matrix $M_y = [\lambda_y]_{\mathscr{B}}$ is given by $sI_3 + tM_\alpha + uM_\alpha^2$ In particular, $M_{\alpha^2} = M^2 = \begin{pmatrix} 0 & -3 & 0 \\ 0 & -3/2 & -3 \\ 1 & 0 & -3/2 \end{pmatrix}$ and $M_{1+\alpha^2} = I_3 + M_{\alpha^2} = \begin{pmatrix} 1 & -3 & 0 \\ 0 & -1/2 & -3 \\ 1 & 0 & -1/2 \end{pmatrix}$

9. Consider the field of fractions $\mathbf{C}(X)$ of the polynomial ring $\mathbf{C}[X]$.

For $a \in \mathbf{C}$, consider the polynomial $q_a = T^2 - (X - a) \in \mathbf{C}(X)[T]$.

a. Show that q_a is irreducible for each a.

Solution: The irreducibility of q_a follows from Eisenstein. Indeed, X - a is irreducible in Q[X], X - a does not divide the leading coefficient of $q_a = q_a(T)$, X - a divides all remaining coefficients of q_a , and $(X - a)^2$ does not divide the constant term of q_a .

b. Let $a, b \in \mathbb{C}$ and suppose that $\sqrt{X-a}$ denotes a root of q_a in some extension field. If $a \neq b$, prove that q_b remains irreducible in $\mathbb{C}(X, \sqrt{X-a})[T] = \mathbb{C}(X)(\sqrt{X-a})[T]$.

Solution: Since q_b has degree 2, to see that q_b remains irreducible in $\mathbf{C}(X, \sqrt{X-a})[T] = \mathbf{C}(X)(\sqrt{X-a})[T]$ it is enough to argue that q_b has no root in $\mathbf{C}(X)(\sqrt{X-a})$. Let us suppose that $z \in \mathbf{C}(X)(\sqrt{X-a})$ were such a root. Since $\sqrt{X-a}$ has degree 2 over $\mathbf{C}(X)$, we may write z in the form $z = f + g\sqrt{X-a}$ for $f, g \in \mathbf{C}(X)$. Since z is a root of q_b , we know that $z^2 = X - b$. But

 $z^{2} = f^{2} + (X - a)g^{2} + 2fg\sqrt{X - a}$

so the equality $z^2 = X - b$ in $\mathbf{C}(X)(\sqrt{X-a})$ show that $f^2 + (X-a)g^2 = X - b$ and 2fg = 0.

Since 2fg = 0, either f = 0 or g = 0. If g = 0 then we see that $f^2 = X - b$ which is a contradiction since we know by (a) that q_a is irreducible over $\mathbf{C}(X)$. If f = 0 then we see that $(X - a)g^2 = X - b$ which is again a contradiction. Indeed, writing $g = \frac{h}{k}$ for $h, k \in \mathbf{C}[X]$ we see that

$$(X-a)h^2 = (X-b)k^2$$

which contradicts unique factorization in the polynomial ring C[X]. More precisely, in the LHS, the irreducible polynomial (X - a) appears with odd multiplicity, while since $a \neq b$, X - a appears with even multiplicity on the RHS.

- 10. Let $\alpha \in \mathbf{F}_{16}^{\times}$ be an element of (multiplicative) order 15.
 - a. Show that $\mathbf{F}_{16} = \mathbf{F}_2(\alpha)$ and $\mathbf{F}_{16} = \mathbf{F}_2(\alpha^3)$.

Solution: Since $16 = 2^4$, recall that the only subfields of \mathbf{F}_{16} correspond to divisors of 4; thus \mathbf{F}_2 and \mathbf{F}_4 are the only proper subfields. Since α has order 15, and since neither \mathbf{F}_2^{\times} nor \mathbf{F}_4^{\times} contain an element of order 15, it follows that $\mathbf{F}_2(\alpha) = \mathbf{F}_{16}$.

Similarly, since α^3 has multiplicative order 5, and since neither \mathbf{F}_2^{\times} nor \mathbf{F}_4^{\times} contain an element of order 5, it again follows that $\mathbf{F}_2(\alpha^3) = \mathbf{F}_{16}$.

b. For which $i \in \mathbf{Z}$ is it true that $\mathbf{F}_4 = \mathbf{F}_2(\alpha^i)$?

Solution: Note that \mathbf{F}_4^{\times} is a cyclic group of order 3. So α^i is contained in \mathbf{F}_4 if and only if $o(\alpha^i)$ divides 3, and α^i generates \mathbf{F}_4 if and only if $o(\alpha^i) = 3$. Thus $\mathbf{F}_4 = \mathbf{F}_2(\alpha^i)$ if and only if either $i \equiv 5 \pmod{15}$ or $i \equiv 10 \pmod{15}$.

11. Show that if $a, b, c \in \mathbf{Q}$ are pairwise distinct rational numbers, then the elements

$$\frac{1}{X-a}, \frac{1}{X-b}, \frac{1}{X-c}$$

are **Q**-linearly independent in the field of fractions $\mathbf{Q}(X)$ of $\mathbf{Q}[X]$.

Solution: Let $s, t, u \in \mathbf{Q}$ and suppose that

$$0 = \frac{s}{X-a} + \frac{t}{X-b} + \frac{u}{X-c}$$

= $\frac{s(X-b)(X-c) + t(X-a)(X-c) + u(X-a)(X-b)}{(X-a)(X-b)(X-c)}$

Thus the polynomial $F = s(X - b)(X - c) + t(X - a)(X - c) + u(X - a)(X - b) \in \mathbf{Q}[X]$ is 0. But note that 0 = F(a) = s(a - b)(a - c) and hence s = 0 since $a \neq b$ and $a \neq c$. Similarly, $0 = F(b) = t(b - a)(b - c) \implies t = 0$ and $0 = F(c) = u(c - a)(c - b) \implies u = 0$. Thus we conclude that s = t = u = 0 which proves the required linear independence. 12. Let p be a prime number with $p \neq 2$. Show that there are exactly (p-1)/2 non-zero squares in \mathbf{F}_p .

More precisely, show that the set $\{x^2 \mid x \in \mathbf{F}_p^{\times}\}$ has exactly $\frac{p-1}{2}$ elements.

Solution: Consider the group homomorphism $f : \mathbf{F}_p^{\times} \to \mathbf{F}_p^{\times}$ given by the rule $f(x) = x^2$. The kernel K of this homomorphism consists in the roots of the polynomial $T^2 - 1$. Since $p \neq 2$ there are exactly two such roots: $K = \{\pm 1\} = \{1, p-1\}$. The image of f is precisely the set of squares in \mathbf{F}_p^{\times} .

According to the first isomorphism theorem, the image of f is isomorphic to the quotient group \mathbf{F}_p^{\times}/K , which has order $|F_p^{\times}|/|K| = (p-1)/2$ as required.

13. Let p be a prime number and let $\mathscr{F} : \mathbf{F}_p \to \mathbf{F}_p$ be the mapping $\mathscr{F}(x) = x^p$. We showed in class that the mapping \mathscr{F} is a ring homomorphism. Using this fact, show that \mathscr{F} is an *automorphism* - i.e. that \mathscr{F} is *bijective*.

Solution:

The result stated here actually holds for any finite field K, and that is how I should have stated the problem. Namely, we showed in class that $\mathcal{F} : K \to K$ is a ring homomorphism. Using this fact, we can show that \mathcal{F} is an automorphism. This is what I'll prove below.

A ring homomorphism $K \to K$ is an automorphism (i.e. is invertible) precisely when it is bijective as a function – i.e. when it is both injective and surjective.

Since K is a finite set, the function $\mathscr{F} : K \to K$ is bijective if and only if it is injective. Thus, it is enough to argue that \mathscr{F} is injective.

Let I denote the kernel of \mathscr{F} . Then I is an ideal of the ring K. But K is a field, and so the only ideals of K are $\{0\}$ and K. Since $\mathscr{F}(1) = 1^p = 1 \neq 0, 1 \notin I$ so that $I \neq K$. Thus I = 0 which implies that \mathscr{F} is injective, as required.