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1. Prove: If F' C FE is a finite extension of fields, then F is algebraic over F'.

Solution: Let o € E; we must show that « is algebraic over F'. Since the assumption

means that F is finite dimensional as an F-vector space, the (infinite) set {a" | m € Z>¢} is
not linearly independent over F'. Thus there is some N and elements a; € ' for 0 <7 < N
for which

But then « is a root of the polynomial

N
f(T)=> a,T" € F[T)
=0

so indeed « is algebraic over F. Since a was arbitrary, conclude that E is algebraic over
F.

2. If F' C F is a field extension and if aq,--- ,a, € F are algebraic over F' show that

[Flag, - ,ap) : F] < oo.

Solution: Proceed by induction on n > 1. When n = 1, the element «; is algebraic over

F and so [F(aq) : F] is equal to the degree of the minimal polynomial of oy over F; in
particular, this degree is finite.

Now suppose that n > 1 and the result is known for any field F' and any collection of n —1
elements algebraic over F'. We are given o, - - - , a,, algebraic over F.

We know by the induction hypothesis that [F(ai, -+, a,—1) : F] is finite.
Moreover, since degree is multiplicative for iterated extensions, we know

[F(at, - ,an): Fl=[F(ai, - ,an) : Flag, - ;an—1)] - [F(ai, -+ ,an—1) : F|

So to prove the finiteness of the indicated extension, it suffices to argue that F'(aq,- -, ay)
is finite over F'(aq, -+ ,,—1). But

F(Oéb"' 704”) = F(Oél,"' 7an—1)(an)



so this follows from the observation that «,, is algebraic over F'(aq, -, p—1).

(indeed, the minimal polynomial f of «a, over F may be viewed as a polynomial in
F(Ozl, cee ,an_l)[T]).

3. Give an example of an irreducible polynomial ¢ € F[T] and an extension field F' C E for
which f has a root in F but f does not split over F.

Solution: Here are two examples:

i. Let F=Q, g=T3—2and let a a root of g in some extension field. Then Q(«) is not
a splitting field for g.
3

Indeed, denoting by w a root of T2 +T + 1 = T —— we know that

g= (T —a)(T —wa)(T — w?a)

in Q(a,w), so that Q(a,w) is a splitting field for g.
Now, we know that [Q(«) : Q] = 3 since g is irreducible by Eisenstein. We also know
that [Q(w) : Q] = 2 since T? + T + 1 is irreducible over Q (by an argument in class
which used Eisenstein). Since ged(3,2) = 1 we know that [Q(«,w) : Q] = 6 and in
particular Q(«,w) # Q(«a), so Q(«) is not a splitting field for g.

ii Let F =Q(X), g=T3— X and let a a root of g in some extension field. Then Q(X, &)
is not a splitting field for g.
The argument is essentially the same as in i. — a splitting field for g is Q(X, a,w)
where again w is a root of T2 + T + 1, since

g=(T—-a)(T —wa)(T — w?a)

Changing the argument above mutatis mutandum shows that Q(X, ) # Q(X, a,w)
so that Q(X, ) is not a splitting field for g.

4. Let F' C E be a field extension and let f,g € F[T]. Suppose that there is some h € E[T] for
which degh > 0, h | f and h | g. Prove that there is some k € F[T] with degk > 0, k| f
and k| g.

Solution: Let a be a root of h in some extension field of £ and note that « is a root of f

and of g. In particular, « is algebraic over F; let’s write h for the minimal polynomial of
« over F' and note that degh > 1.

Now f(a) = 0 implies that h | f and g(«) = 0 implies that h | g. Thus k = h works as
required.

5. Find the minimal polynomial over Q of o = exp(27i/7) € C, and find the degree [Q(«) : Q].

Solution: We know that a = exp(27i/7 € C is a root of the polynomial 77 — 1, and since



a # 1 in fact « is a root of

T -1

- =TS+ TP 4T+ T3 +T? 4+ T+ 1 € Q[T).

f

Now, we have seen that - since 7 is prime - the polynomial f is irreducible. It follows that
f is the minimal polynomial of «, and we deduce that [Q(«a) : Q] = 6.

6. Let F' be a field and let a, 8 be elements in some extension field of F' for which n = deg(«)
and m = deg(f). If ged(n, m) = 1 show that (3 also has degree m over F'(«).

Solution: Let us observe that n = [F(«) : F] and m = [F(8) : F]. Moreover.

so that n | [F(«, f) : F]. Similarly, m | [F(a, ) : F).
Since ged(n, m) =1 and since m | [F(a, ) : F| =n - [F(a, 5) : F(a) it follows that
m | [F(e, B) : F(av)].
On the other hand, we know that [F'(«, ) : F(«)] < m since the minimal polynomial of
over F'(a)) must divide hg in the polynomial ring F'(«)[T].
Thus we conclude that [F(a, ) : F(a)] = m; since F(a, ) = F(a)(/) this shows that the

degree of § over F(«) is indeed m as required.

7. Let p,q € F[T] be irreducible polynomials with degp = 3 and degq = 4. If E is a splitting
field for f =p-q over F, prove that [E : F] > 12.

Solution: Let a, 8 be roots of p resp. ¢ in some extension field of F'. The previous problem

shows that ¢ remains irreducible over F'(«), so that
[F(, 6) : F] = [F(e §) : ()] [F(a) : F] =43 = 12,

Now, there is a splitting field of f = pg containing F'(a, 3), so the degree over F' of any
splitting field of f is a multiple of 12, as required.

3
8. Letg=T3+§-T+3€Q[T].

a. Show that g is irreducible.

Solution: This follows from Eisenstein’s criterion. Indeed, it suffices to argue that

273 + 3T + 6 € Z[T) is irreducible in Q[T]. But this follows from Eisenstein since the
prime 3 does not divide the leading coefficient, 3 divides all the remaining coefficients,
and 9 does not divide the constant term 6.

b. Let a be a root of g in some extension of Q and let E = Q(«). Then & = {1,a,a?}
is an Q-basis for F (why?). Consider the linear transformation A, : E — E given by
the rule Ay (z) = a -z for x € E. Find the matrix M, = [A4]z of A\, in the basis %.



In more detail: write eg, e1, es for the standard basis of Q® and consider the
Q-linear isomorphism ® : Q* — E given by ®(e;) = o’. Find the 3 x 3 matrix
M = M, for which ®(M - ¢;) = a - o' = o'T!, being careful to note that o?
not part of the basis & and so must be re-written.

. -3
Solution: Note that \o(1) = a, Ao(a) = a? and A\ (a?) = o® = -3 + - o This

shows that
00 -3
M=11 0 -3/2
0 1 0

c. More generally for y € E write ), for the linear transformation \,(z) =y -z for x € E.
Find the matrix [A\,2]% and the matrix [\, 2]

Solution: For any element y = s + ta + ua?® € E the matrix M, = [\,]% is given by

sI3 + tMy + uM?

0o -3 0
In particular, M. = M? = |0 —-3/2 -3
1 0 —3/2
1 -3 0
and My, 2 =Is+ M= |0 —1/2 -3
10 —1/2

9. Consider the field of fractions C(X) of the polynomial ring C[X].
For a € C, consider the polynomial ¢, = T2 — (X — a) € C(X)[T].

a. Show that ¢, is irreducible for each a.

Solution: The irreducibility of g, follows from Eisenstein. Indeed, X —a is irreducible
in Q[X], X — a does not divide the leading coefficient of g, = ¢4 (T), X — a divides all

remaining coefficients of q,, and (X — a)? does not divide the constant term of g,.

b. Let a,b € C and suppose that v/ X — a denotes a root of ¢, in some extension field. If
a # b, prove that g, remains irreducible in C(X,vX — a)[T] = C(X)(VX — a)[T].

Solution: Since g, has degree 2, to see that g, remains irreducible in C(X, v X — a)[T] =

C(X)(VX — a)[T] it is enough to argue that g, has no root in C(X)(vX — a).
Let us suppose that z € C(X)(v/ X — a) were such a root. Since X — a has degree
2 over C(X), we may write z in the form z = f + gV X —a for f,g € C(X).

Since z is a root of gy, we know that 22 = X — b.
But
2=+ (X -a)g +2fgVX —a
so the equality 2> = X — b in C(X)(v/X — a) show that f2 4+ (X —a)g? = X — b and
2fg=0.



Since 2fg = 0, either f =0 or g = 0.

If g = 0 then we see that f2 = X — b which is a contradiction since we know by (a)
that g, is irreducible over C(X).

If f =0 then we see that (X — a)g? = X — b which is again a contradiction. Indeed,

h
writing g = z for h,k € C[X] we see that
(X —a)h? = (X — b)k?

which contradicts unique factorization in the polynomial ring C[X]. More precisely,
in the LHS, the irreducible polynomial (X — a) appears with odd multiplicity, while
since a # b, X — a appears with even multiplicity on the RHS.

10. Let a € Fj be an element of (multiplicative) order 15.

a. Show that Fig = Fa(a) and Fi5 = Fa(a?).

Solution: Since 16 = 2%, recall that the only subfields of Fig correspond to divisors

of 4; thus Fy and F,4 are the only proper subfields.

Since « has order 15, and since neither FJ nor F}* contain an element of order 15, it
follows that Fa(a) = Fig.

Similarly, since o has multiplicative order 5, and since neither F5 nor F} contain
an element of order 5, it again follows that Fa(a?) = Fig.

b. For which i € Z is it true that Fy = Fa(a')?

Solution: Note that F} is a cyclic group of order 3. So o' is contained in Fy if and

only if o(a?) divides 3, and o' generates Fy if and only if o(a?) = 3.
Thus Fy = Fo(a) if and only if either i =5 (mod 15) or i = 10 (mod 15).

11. Show that if a,b, ¢ € Q are pairwise distinct rational numbers, then the elements
1 1 1
X—-a'X-bX-c
are Q-linearly independent in the field of fractions Q(X) of Q[X].

Solution: Let s,t,u € Q and suppose that

S t U
=ty T x—e
(X~ B)(X — o) + (X — a)(X — o) + u(X —a)(X — )

(X —a)(X =0)(X —¢)
Thus the polynomial F' = s(X —b)(X —¢) + (X —a)(X —¢) + u(X — a)(X —b) € Q[X]
is 0. But note that 0 = F(a) = s(a — b)(a — ¢) and hence s = 0 since a # b and a # c.
Similarly, 0 = F'(b) =t(b—a)(b—c¢) = t=0and 0 = F(c) = u(c—a)(c—b) = u=0.

Thus we conclude that s =t = u = 0 which proves the required linear independence.




12. Let p be a prime number with p # 2. Show that there are exactly (p —1)/2 non-zero squares
in Fp.
p—1

More precisely, show that the set {z* | 2 € F'} has exactly elements.

Solution: Consider the group homomorphism f : F; — F given by the rule f(x) = 2%

The kernel K of this homomorphism consists in the roots of the polynomial 72 — 1. Since
p # 2 there are exactly two such roots: K = {+1} = {1,p—1}. The image of f is precisely
the set of squares in F.

According to the first isomorphism theorem, the image of f is isomorphic to the quotient
group F /K, which has order [F}[/[K| = (p — 1)/2 as required.

13. Let p be a prime number and let # : F, — F,, be the mapping & (z) = 2P. We showed in
class that the mapping & is a ring homomorphism. Using this fact, show that & is an
automorphism - i.e. that F is bijective.

Solution:

The result stated here actually holds for any finite field K, and that is how I
should have stated the problem. Namely, we showed in class that F : K — K is
a ring homomorphism. Using this fact, we can show that F is an automorphism.
This is what I’ll prove below.

A ring homomorphism K — K is an automorphism (i.e. is invertible) precisely when it is
bijective as a function — i.e. when it is both injective and surjective.

Since K is a finite set, the function & : K — K is bijective if and only if it is injective.
Thus, it is enough to argue that & is injective.

Let I denote the kernel of . Then [ is an ideal of the ring K. But K is a field, and so

the only ideals of K are {0} and K. Since (1) =17 =1#0, 1 ¢ I so that I # K. Thus
I = 0 which implies that & is injective, as required.



