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I. The exam will cover what is (currently) in sections 1 - 7 of the conrse lecture nofes.

II. You should be able to give careful statements for the definitions of the following terms:

Solution: I'm not going to write detailed solutions for these since I believe they can all

be found in the lecturemofes. If you can’t locate a definition in the notes, let me know
(e.g. by email).

a a commutative ring R, a field F', an integral domain R, a ring homomorphism f :
R — S, an ideal I of a commutative ring R,a principal ideal of a commutative
ring R, a principal ideal domain, the quotient ring R/I where I is an ideal of a
commutative ring,

b an irreducible element of a commutative ring R, the greatest common divisor ged(a, b)
for elements a,b € R of a principal ideal domain R, a unit of a commutative ring,
an associate of an element of a commutative ring, a 0-divisor of a commutative
ring R

¢ the field of fractions F of an integral domain R, the polynomial ring R[T] for a
commutative ring R

III. You should know the statements of the following results.

a. The first isomorphism theorem for rings

Solution: Let R and S be rings and let ¢ : R — S be a surjective ring homomor-

phism. Then ¢ induces an isomorphism of rings ¢:R/K — S where K = ker ¢ is
the kernel of ¢. The mapping ¢ is defined by ¢(r + K) = ¢(r) for r € R.

b. the result that the unique factorization property holds in a PID

Solution: Let R be a PID and let a € R be non-zero and suppose that a ¢ R*.

Then

(i) There are irreducible elements p1,pa,- - ,pn € R such that a = pipa-- - py.

(ii) If ¢1,q2, -+ ,qm € R are irreducibles and if a = q1q2 - - - g, then n = m and —
after possibly re-ordering the g; — p; and ¢; are associate for 1 < n.
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c. The division algorithm for the polynomial ring F[T] where F' is a field.

Solution: Let f,g € F[T] with 0 # ¢g. Then there are elements ¢, € F[T] such
that

(i) f=q9+r

(ii) degr < degg (where we recall that deg ) = —00).

d. Eisenstein’s irreducibility criterion

Solution: Let R be a PID with field of fractions F', let p € R be irreducible, and

let f € R[T] be a polynomial of degree n > 1. Write f = ZaiTi with a; € R.
=0
Assume the following:

(i) ptan

(ii) p | a; foreach 0 <i<mn—1

(iii) p? 1 ao.

Then f is irreducible in the polynomial ring F[T].

e. the Gauss Lemma and consequences

Solution: Let R be a PID with field of fractions F'. For 0 # f € R, let content(f) €

R be the ged of the coefficients of f.

The Gauss Lemma is the statement that content(fg) = content(f) - content(g) for
non-zero polynomials f, g € R[T].

An important consquence is that if f is primitive — i.e. content(f) = 1 — and
if f = gh for g,h € F[T] then there are polynomials go,ho € R[T] such that
deg(g) = deg(go), deg(h) = deg(ho) and f = goho.

IV. Be able to give examples of the following:

a. an integral domain that is not a principal ideal domain

Solution: The polynomial ring F[T,S] in two variables is not a PID, since the

ideal (T, S) is not principal.
(For a similar example, the polynomial ring Z[T] is not a PID, since the ideal (2, T)
is not principal.)

b. a field F' and a polynomial f € F[T] such that f has no root in F' but f is reducible.

Solution: Let F' =R and let f = (7% +1)? = T% + 272 + 1 € R[T]. The roots of

f in C are +i (each with multiplicity two). Since these roots are not real, f has no
roots in R. But f is reducible in R[T] since f = (T2 + 1) - (T? + 1) is the product
of two polynomials each of degree 2.



c. A finite field F' with exactly 9 elements. (Hint: Consider the field F3 = Z/3Z of
order 3, and find a polynomial of the form p = T? — a € F3[T] that is irreducible.
How many elements are in the quotient F[T']/(p)?)

Solution: The squares of elements of F3 are 0 = 02,1 = 12,1 = 22. Since 2 is not

a square, the polynomial 72 — 2 € F3[T] has no root in F3; since this polynomial
has degree 2, we know it to be irreducible.

Now form the field F = F3[T]/(T? — 2). Write t = T + (T? —2) € F. The
division algorithm implies that every element of [’ may be written uniquely in the
form a + bt with a,b € Fs. Put another way, we know that 1,¢ is a basis for the
F'5-vector space F'.

In the expression a + bt there are 3 choices for a and 3 choices for b; thus there are
precisely 3 x 3 = 9 elements in F.

V. You should be able to write careful solutions to problems similar to the following;:

1. Let F be a field and let f, g € F[T] be polynomials for which ged(f, g) = 1. Consider
the mapping
¢: F[T] — F[T]/(f) x F[T]/(g)
given by the rule ¢(h) = (h+ (f),h + (g)).
a. Show that ker ¢ = (fg) and that ¢ induces an isomorphism

¢ : F[T]/(fg) = F[T]/(f) x F[T1/(g)

Solution: Let K = ker ¢. Clearly fg € K since

o(fg9) = (fg+(f), fg+(9)) = (0,0).
To prove that K = (fg), suppose that h € K = ker ¢. We know see that

0=¢(h)=(h+(f),h+(g)),

so we conclude that f | h and g | h. Let’s write h = fx for a polynomial
x € F[T).

We need to argue that g | x; indeed, if we show that x = gy then h = fz = fgy
so that h € (fg) as required.

Since ged(f, g) = 1 we know that 1 = af + bg for polynomials a,b € F[T]. We
now notice that

r=z-1=z-(af +bg) = zaf + xbg = ah + xbg;

since g | ah and g | xbg, it follows that g |  as required. This completes the
proof that ker ¢ = (fg).

Now the first isomorphism theorem implies that ¢ induces an isomorphism
from F[T]/(fg) to the image of ¢, so to finish the proof we need to argue that
¢ is surjective. Since 1 = af + bg we know that

bg=1 (mod f)



and
af =1 (mod g)

Thus ¢(bg) = (14 (f),0) and ¢(af) = (0,1 + (g)).
It is now easy to see that ¢ is surjective. Indeed, let

(s + (f):t+(9)) € FIT]/(f) x F[T]/(9)

be an arbitrary element. Then

¢(sbg +taf) = (s + (f),0) + (0, +(g)) = (s + {f), 1 + (9))
which confirms that ¢ is surjective.

b. As a consequence, show that Q[T]/(T" — 1) is isomorphic to the direct product
of two fields.

T7
Solution: Set f =T+ T+ T4+ T3 +T?> +T +1 = T

-1
1 ; since 7 is prime,

we have seen that f € Q[T is irreducible.

Now, T7" —1 = f(T —1). Since f and T — 1 are non-associate irreducible
polynomials, we know that ged(f, 7 — 1) = 1.

Now part (a) shows that

QITI/TT —1) = Q[T/{f) x QITI/(T = 1) = QIT]/(f) x Q ().
Since f is irreducible, Q[T]/(f) is a field, and thus wee see that (&) is the
direct product of two fields.

2. Let Rbe a PID, let aj,as, -+ ,a, € Rnot all 0, and let d = ged(ay, ag,- - ,ay). Note

a; , aip as G
— . P <—,—,~~,—>——1
that 1 € R for each i. Prove that ged 14 4

Solution: We know that there are elements z; € R for which

d =ged(ay,ag, -+ ,a,) = inai(@).
i=1

Since d is a ged of the a;, it is in particular a divisor of each a;; thus for each

o
1 <i < n we may write a; = db; for elements b; = EZ € R.

Thus we may rewrite (©) in the form

d-1= il‘ldbz = dil‘zbl
i=1 i=1

Now, cancellation in the integral domain R implies that

n
i=1



This shows that 1 € (by,bs, -+ ,b,) so that
R=(1) C (b1,ba, -+ ,bn).

Thus R = (1) = (by,be, -+ ,b,) (since the reverse inclusion (by,be, - .b,) C R
trivially holds) and it follows that ged(by, ba, -+ ,b,) = 1 as required.

3. Show that u =2 + T + (T3) is a unit in the quotient ring Q[T]/(T3).

Solution: Write R = Q[T]/(T®) and let z = T + (T3) € R. Thus we are asked to

show that v = 2 + z is a unit.
We first observe that 3 = T3 + (T3) = 0 in R.
Now, notice
uw2—1z)=2+2)(2—2)=4—2*
Similarly,
(4 —2?) (44 2%) =16 — 2" = 16

1 1
It follows that w - 1—6(2 —x)(4+ 2?) =1 so0 that v = E(Q —z)(4+2?) € Risa

multiplicative inverse for u. Thus u € R* as required.
One can of course check/observe that v may be “simplified” as

_8—4x—|—2x2 4 — 2 + 22

16 8

[

4. Let F be a field. Prove that /T is not in F(T). (Hint: Suppose the contrary,

namely that /T = S for f,g € F[T]. Explain why we find an equation ¢?T = f?
g

in F[T]. Now apply unique factorization in the PID to deduce a contradiction).

Solution: Suppose as in the hint that /7 = S for f,g € F[T]. Thus ¢°T =
g

2 ()

Using unique factorization, we may write g = pips---pm and f = q1q2 - - - gy for
irreducible polynomials p;, ¢; € F[T].

Thus by ({) we have the equation

pivs - vy T = dids - i,
in R. The irreducible element 7" € F[T| appears on the LHS of this equation with
odd multiplicity, while every irreducible on the RHS appears with even multiplicity.
According to unique factorization in the polynomial ring F[T] we know this to be
impossible; this contradiction proves that /T ¢ F(T).

5. If Risa PID and p, q € R are non-associate irreducible elements, compute ged(p?q, pg?)?

Solution: We claim that ged(p?q, pg?) = pq.



Well, pq is a divisor of p?q and of pg? so it is a common divisor. Suppose that e
is any common divisor of p?q and pg?. Unique factorization shows that the only
possible irreducible factors are p and ¢. Since e | p?q, the multiplicity of ¢ in e can
be at most 1; since e | pg?, the multiplicity of p in e can be at most 1. This shows
that e | pg. Thus indeed pq is the required ged.

6. Consider the field F5 with 5 elements.
o Prove that T2 — 3 € F5[T] is irreducible.

Solution: The squares in F5 are 0 = 02,1 = 12,4 = 22,4 = 32,1 = 42. Since

3 is not a square in F5, the polynomial 7% — 3 has no root in F5. Since this

polynomial has degree 2 and no root, we deduce that 72 — 3 is irreducible in
F5[T].

o Let v =T+ (T? —3) € F5[T)/(T? — 3); thus F5(y) = F5[T]/(T? - 3).
Find s,t € F5 so that (s+ty)- (1+7v) = 1.

Solution: We calculate, using the fact that 42 = 3:
(s +t7)(1 4+ 7) = s + sy + ty + t?
=(s+3t)+ (s+1t)y
Thus we need to solve the system of linear equations

s+3t =1
s+t =0

or the equivalent of matrix equation

o [ 3= b

We notice that A = B i’] has determinant det A =1—-3 = -2 =3 € F;.
Thus

A_1_11 3] _1f1 2] [2 4
T 3|-1 1| 314 1] |3 2

The solution to (f) is therefore given by

=)= [

1
S =2+ 3y in F5(v)

In other words

7. Be able to give the proof of the following results (taken from the notes).
Let R be a PID and let p € R irreducible.



o If p|abfora,be R thenp|aorp|b.

Solution: This is Proposition 5.1.3 in the lecture notes.

o The quotient ring R/(p) is a field.

Solution: This is Proposition 7.1.1 in the lecture notes.



