
Math146 - Review solutions for midterm 1

George McNinch

2025-02-19

I. The exam will cover what is (currently) in sections 1 - 7 of the course lecture notes.

II. You should be able to give careful statements for the definitions of the following terms:

Solution: I’m not going to write detailed solutions for these since I believe they can all

be found in the lecture notes. If you can’t locate a definition in the notes, let me know
(e.g. by email).

a a commutative ring R, a field F , an integral domain R, a ring homomorphism f :
R → S, an ideal I of a commutative ring R,a principal ideal of a commutative
ring R, a principal ideal domain, the quotient ring R/I where I is an ideal of a
commutative ring,

b an irreducible element of a commutative ring R, the greatest common divisor gcd(a, b)
for elements a, b ∈ R of a principal ideal domain R, a unit of a commutative ring,
an associate of an element of a commutative ring, a 0-divisor of a commutative
ring R

c the field of fractions F of an integral domain R, the polynomial ring R[T ] for a
commutative ring R

III. You should know the statements of the following results.

a. The first isomorphism theorem for rings

Solution: Let R and S be rings and let ϕ : R → S be a surjective ring homomor-

phism. Then ϕ induces an isomorphism of rings ϕ : R/K → S where K = kerϕ is
the kernel of ϕ. The mapping ϕ is defined by ϕ(r +K) = ϕ(r) for r ∈ R.

b. the result that the unique factorization property holds in a PID

Solution: Let R be a PID and let a ∈ R be non-zero and suppose that a ̸∈ R×.

Then
(i) There are irreducible elements p1, p2, · · · , pn ∈ R such that a = p1p2 · · · pn.
(ii) If q1, q2, · · · , qm ∈ R are irreducibles and if a = q1q2 · · · qm then n = m and –

after possibly re-ordering the qj – pi and qi are associate for 1 ≤ n.
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c. The division algorithm for the polynomial ring F [T ] where F is a field.

Solution: Let f, g ∈ F [T ] with 0 ̸= g. Then there are elements q, r ∈ F [T ] such

that
(i) f = qg + r

(ii) deg r < deg g (where we recall that deg 0 = −∞).

d. Eisenstein’s irreducibility criterion

Solution: Let R be a PID with field of fractions F , let p ∈ R be irreducible, and

let f ∈ R[T ] be a polynomial of degree n ≥ 1. Write f =
n∑

i=0

aiT
i with ai ∈ R.

Assume the following:
(i) p ∤ an
(ii) p | ai for each 0 ≤ i ≤ n− 1

(iii) p2 ∤ a0.
Then f is irreducible in the polynomial ring F [T ].

e. the Gauss Lemma and consequences

Solution: Let R be a PID with field of fractions F . For 0 ̸= f ∈ R, let content(f) ∈

R be the gcd of the coefficients of f .
The Gauss Lemma is the statement that content(fg) = content(f) · content(g) for
non-zero polynomials f, g ∈ R[T ].
An important consquence is that if f is primitive – i.e. content(f) = 1 – and
if f = gh for g, h ∈ F [T ] then there are polynomials g0, h0 ∈ R[T ] such that
deg(g) = deg(g0), deg(h) = deg(h0) and f = g0h0.

IV. Be able to give examples of the following:

a. an integral domain that is not a principal ideal domain

Solution: The polynomial ring F [T, S] in two variables is not a PID, since the

ideal ⟨T, S⟩ is not principal.
(For a similar example, the polynomial ring Z[T ] is not a PID, since the ideal ⟨2, T ⟩
is not principal.)

b. a field F and a polynomial f ∈ F [T ] such that f has no root in F but f is reducible.

Solution: Let F = R and let f = (T 2 + 1)2 = T 4 + 2T 2 + 1 ∈ R[T ]. The roots of

f in C are ±i (each with multiplicity two). Since these roots are not real, f has no
roots in R. But f is reducible in R[T ] since f = (T 2 + 1) · (T 2 + 1) is the product
of two polynomials each of degree 2.
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c. A finite field F with exactly 9 elements. (Hint: Consider the field F3 = Z/3Z of
order 3, and find a polynomial of the form p = T 2 − a ∈ F3[T ] that is irreducible.
How many elements are in the quotient F [T ]/⟨p⟩?)

Solution: The squares of elements of F3 are 0 = 02, 1 = 12, 1 = 22. Since 2 is not

a square, the polynomial T 2 − 2 ∈ F3[T ] has no root in F3; since this polynomial
has degree 2, we know it to be irreducible.
Now form the field F = F3[T ]/⟨T 2 − 2⟩. Write t = T + ⟨T 2 − 2⟩ ∈ F . The
division algorithm implies that every element of F may be written uniquely in the
form a + bt with a, b ∈ F3. Put another way, we know that 1, t is a basis for the
F3-vector space F .
In the expression a+ bt there are 3 choices for a and 3 choices for b; thus there are
precisely 3× 3 = 9 elements in F .

V. You should be able to write careful solutions to problems similar to the following:

1. Let F be a field and let f, g ∈ F [T ] be polynomials for which gcd(f, g) = 1. Consider
the mapping

ϕ : F [T ] → F [T ]/⟨f⟩ × F [T ]/⟨g⟩
given by the rule ϕ(h) = (h+ ⟨f⟩, h+ ⟨g⟩).
a. Show that kerϕ = ⟨fg⟩ and that ϕ induces an isomorphism

ϕ : F [T ]/⟨fg⟩ ∼−→ F [T ]/⟨f⟩ × F [T ]/⟨g⟩

Solution: Let K = kerϕ. Clearly fg ∈ K since

ϕ(fg) = (fg + ⟨f⟩, fg + ⟨g⟩) = (0, 0).

To prove that K = ⟨fg⟩, suppose that h ∈ K = kerϕ. We know see that

0 = ϕ(h) = (h+ ⟨f⟩, h+ ⟨g⟩),

so we conclude that f | h and g | h. Let’s write h = fx for a polynomial
x ∈ F [T ].
We need to argue that g | x; indeed, if we show that x = gy then h = fx = fgy
so that h ∈ ⟨fg⟩ as required.
Since gcd(f, g) = 1 we know that 1 = af + bg for polynomials a, b ∈ F [T ]. We
now notice that

x = x · 1 = x · (af + bg) = xaf + xbg = ah+ xbg;

since g | ah and g | xbg, it follows that g | x as required. This completes the
proof that kerϕ = ⟨fg⟩.
Now the first isomorphism theorem implies that ϕ induces an isomorphism
from F [T ]/⟨fg⟩ to the image of ϕ, so to finish the proof we need to argue that
ϕ is surjective. Since 1 = af + bg we know that

bg ≡ 1 (mod f)
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and
af ≡ 1 (mod g)

Thus ϕ(bg) = (1 + ⟨f⟩, 0) and ϕ(af) = (0, 1 + ⟨g⟩).
It is now easy to see that ϕ is surjective. Indeed, let

(s+ ⟨f⟩, t+ ⟨g⟩) ∈ F [T ]/⟨f⟩ × F [T ]/⟨g⟩

be an arbitrary element. Then

ϕ(sbg + taf) = (s+ ⟨f⟩, 0) + (0, t+ ⟨g⟩) = (s+ ⟨f⟩, t+ ⟨g⟩)

which confirms that ϕ is surjective.

b. As a consequence, show that Q[T ]/⟨T 7 − 1⟩ is isomorphic to the direct product
of two fields.

Solution: Set f = T 6+T 5+T 4+T 3+T 2+T +1 =
T 7 − 1

T − 1
; since 7 is prime,

we have seen that f ∈ Q[T ] is irreducible.
Now, T 7 − 1 = f(T − 1). Since f and T − 1 are non-associate irreducible
polynomials, we know that gcd(f, T − 1) = 1.
Now part (a) shows that

Q[T ]/⟨T 7 − 1⟩ ≃ Q[T ]/⟨f⟩ ×Q[T ]/⟨T − 1⟩ ≃ Q[T ]/⟨f⟩ ×Q (♣).

Since f is irreducible, Q[T ]/⟨f⟩ is a field, and thus wee see that (♣) is the
direct product of two fields.

2. Let R be a PID, let a1, a2, · · · , an ∈ R not all 0, and let d = gcd(a1, a2, · · · , an). Note
that ai

d
∈ R for each i. Prove that gcd

(a1
d
,
a2
d
, · · · , an

d

)
= 1

Solution: We know that there are elements xi ∈ R for which

d = gcd(a1, a2, · · · , an) =
n∑

i=1

xiai(♡).

Since d is a gcd of the ai, it is in particular a divisor of each ai; thus for each
1 ≤ i ≤ n we may write ai = dbi for elements bi =

ai
d

∈ R.

Thus we may rewrite (♡) in the form

d · 1 =

n∑
i=1

xidbi = d

n∑
i=1

xibi.

Now, cancellation in the integral domain R implies that

1 =

n∑
i=1

xibi.
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This shows that 1 ∈ ⟨b1, b2, · · · , bn⟩ so that

R = ⟨1⟩ ⊆ ⟨b1, b2, · · · , bn⟩.

Thus R = ⟨1⟩ = ⟨b1, b2, · · · , bn⟩ (since the reverse inclusion ⟨b1, b2, · · · , bn⟩ ⊆ R
trivially holds) and it follows that gcd(b1, b2, · · · , bn) = 1 as required.

3. Show that u = 2 + T + ⟨T 3⟩ is a unit in the quotient ring Q[T ]/⟨T 3⟩.

Solution: Write R = Q[T ]/⟨T 3⟩ and let x = T + ⟨T 3⟩ ∈ R. Thus we are asked to

show that u = 2 + x is a unit.
We first observe that x3 = T 3 + ⟨T 3⟩ = 0 in R.
Now, notice

u(2− x) = (2 + x)(2− x) = 4− x2

Similarly,
(4− x2)(4 + x2) = 16− x4 = 16

It follows that u · 1

16
(2 − x)(4 + x2) = 1 so that v =

1

16
(2 − x)(4 + x2) ∈ R is a

multiplicative inverse for u. Thus u ∈ R× as required.
One can of course check/observe that v may be “simplified” as

v =
8− 4x+ 2x2

16
=

4− 2x+ x2
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4. Let F be a field. Prove that
√
T is not in F (T ). (Hint: Suppose the contrary,

namely that
√
T =

f

g
for f, g ∈ F [T ]. Explain why we find an equation g2T = f2

in F [T ]. Now apply unique factorization in the PID to deduce a contradiction).

Solution: Suppose as in the hint that
√
T =

f

g
for f, g ∈ F [T ]. Thus g2T =

f2 (♢)

Using unique factorization, we may write g = p1p2 · · · pm and f = q1q2 · · · qn for
irreducible polynomials pi, qj ∈ F [T ].
Thus by (♢) we have the equation

p21p
2
2 · · · p2m · T = q21q

2
2 · · · q2m

in R. The irreducible element T ∈ F [T ] appears on the LHS of this equation with
odd multiplicity, while every irreducible on the RHS appears with even multiplicity.
According to unique factorization in the polynomial ring F [T ] we know this to be
impossible; this contradiction proves that

√
T ̸∈ F (T ).

5. If R is a PID and p, q ∈ R are non-associate irreducible elements, compute gcd(p2q, pq2)?

Solution: We claim that gcd(p2q, pq2) = pq.
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Well, pq is a divisor of p2q and of pq2 so it is a common divisor. Suppose that e
is any common divisor of p2q and pq2. Unique factorization shows that the only
possible irreducible factors are p and q. Since e | p2q, the multiplicity of q in e can
be at most 1; since e | pq2, the multiplicity of p in e can be at most 1. This shows
that e | pq. Thus indeed pq is the required gcd.

6. Consider the field F5 with 5 elements.
• Prove that T 2 − 3 ∈ F5[T ] is irreducible.

Solution: The squares in F5 are 0 = 02, 1 = 12, 4 = 22, 4 = 32, 1 = 42. Since

3 is not a square in F5, the polynomial T 2 − 3 has no root in F5. Since this
polynomial has degree 2 and no root, we deduce that T 2 − 3 is irreducible in
F5[T ].

• Let γ = T + ⟨T 2 − 3⟩ ∈ F5[T ]/⟨T 2 − 3⟩; thus F5(γ) = F5[T ]/⟨T 2 − 3⟩.
Find s, t ∈ F5 so that (s+ tγ) · (1 + γ) = 1.

Solution: We calculate, using the fact that γ2 = 3:

(s+ tγ)(1 + γ) = s+ sγ + tγ + tγ2

= (s+ 3t) + (s+ t)γ

Thus we need to solve the system of linear equations{
s+ 3t = 1
s+ t = 0

or the equivalent of matrix equation

(†)
[
1 3
1 1

] [
s
t

]
=

[
1
0

]

We notice that A =

[
1 3
1 1

]
has determinant detA = 1 − 3 = −2 = 3 ∈ F5.

Thus

A−1 =
1

3

[
1 −3
−1 1

]
=

1

3

[
1 2
4 1

]
=

[
2 4
3 2

]
The solution to (†) is therefore given by[

s
t

]
= A−1

[
1
0

]
=

[
2
3

]

In other words 1

1 + γ
= 2 + 3γ in F5(γ)

7. Be able to give the proof of the following results (taken from the notes).
Let R be a PID and let p ∈ R irreducible.
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• If p | ab for a, b ∈ R then p | a or p | b.

Solution: This is Proposition 5.1.3 in the lecture notes.

• The quotient ring R/⟨p⟩ is a field.

Solution: This is Proposition 7.1.1 in the lecture notes.
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