Math146 - Review solutions for midterm 1

George McNinch

2025-02-19

- I. The exam will cover what is (currently) in sections 1 7 of the course lecture notes.
- II. You should be able to give careful statements for the definitions of the following terms:

Solution: I'm not going to write detailed solutions for these since I believe they can all be found in the lecture notes. If you can't locate a definition in the notes, let me know (e.g. by email).

- a a commutative ring R, a field F, an integral domain R, a ring homomorphism f: $R \to S$, an ideal I of a commutative ring R, a principal ideal of a commutative ring R, a principal ideal domain, the quotient ring R/I where I is an ideal of a commutative ring,
- b an *irreducible element* of a commutative ring R, the greatest common divisor gcd(a, b) for elements $a, b \in R$ of a principal ideal domain R, a *unit* of a commutative ring, an *associate* of an element of a commutative ring, a 0-divisor of a commutative ring R
- c the field of fractions F of an integral domain R, the polynomial ring R[T] for a commutative ring R
- III. You should know the statements of the following results.
 - a. The first isomorphism theorem for rings

Solution: Let R and S be rings and let $\phi : R \to S$ be a *surjective* ring homomorphism. Then ϕ induces an isomorphism of rings $\overline{\phi} : R/K \to S$ where $K = \ker \phi$ is the kernel of ϕ . The mapping $\overline{\phi}$ is defined by $\overline{\phi}(r+K) = \phi(r)$ for $r \in R$.

b. the result that the *unique factorization property* holds in a PID

Solution: Let R be a PID and let $a \in R$ be non-zero and suppose that $a \notin R^{\times}$. Then

- (i) There are irreducible elements $p_1, p_2, \dots, p_n \in \mathbb{R}$ such that $a = p_1 p_2 \cdots p_n$.
- (ii) If $q_1, q_2, \dots, q_m \in R$ are irreducibles and if $a = q_1 q_2 \cdots q_m$ then n = m and after possibly re-ordering the $q_j p_i$ and q_i are associate for $1 \le n$.

c. The division algorithm for the polynomial ring F[T] where F is a field.

Solution: Let $f, g \in F[T]$ with $0 \neq g$. Then there are elements $q, r \in F[T]$ such that

(i) f = qg + r
(ii) deg r < deg g (where we recall that deg 0 = −∞).

d. Eisenstein's irreducibility criterion

Solution: Let R be a PID with field of fractions F, let $p \in R$ be irreducible, and let $f \in R[T]$ be a polynomial of degree $n \ge 1$. Write $f = \sum_{i=0}^{n} a_i T^i$ with $a_i \in R$. Assume the following:

(i) $p \nmid a_n$ (ii) $p \mid a_i$ for each $0 \le i \le n-1$ (iii) $p^2 \nmid a_0$.

Then f is irreducible in the polynomial ring F[T].

e. the Gauss Lemma and consequences

Solution: Let *R* be a PID with field of fractions *F*. For $0 \neq f \in R$, let content $(f) \in$

R be the gcd of the coefficients of *f*. The *Gauss Lemma* is the statement that $\operatorname{content}(fg) = \operatorname{content}(f) \cdot \operatorname{content}(g)$ for non-zero polynomials $f, g \in R[T]$. An important consquence is that if *f* is primitive – i.e. $\operatorname{content}(f) = 1$ – and if f = gh for $g, h \in F[T]$ then there are polynomials $g_0, h_0 \in R[T]$ such that $\operatorname{deg}(g) = \operatorname{deg}(g_0), \operatorname{deg}(h) = \operatorname{deg}(h_0)$ and $f = g_0 h_0$.

- IV. Be able to give examples of the following:
 - a. an integral domain that is not a principal ideal domain

Solution: The polynomial ring F[T, S] in two variables is not a PID, since the ideal $\langle T, S \rangle$ is not principal. (For a similar example, the polynomial ring $\mathbf{Z}[T]$ is not a PID, since the ideal $\langle 2, T \rangle$ is not principal.)

b. a field F and a polynomial $f \in F[T]$ such that f has no root in F but f is reducible.

Solution: Let $F = \mathbf{R}$ and let $f = (T^2 + 1)^2 = T^4 + 2T^2 + 1 \in \mathbf{R}[T]$. The roots of

f in **C** are $\pm i$ (each with multiplicity two). Since these roots are not real, f has no roots in **R**. But f is reducible in $\mathbf{R}[T]$ since $f = (T^2 + 1) \cdot (T^2 + 1)$ is the product of two polynomials each of degree 2.

c. A finite field F with exactly 9 elements. (**Hint:** Consider the field $\mathbf{F}_3 = \mathbf{Z}/3\mathbf{Z}$ of order 3, and find a polynomial of the form $p = T^2 - a \in \mathbf{F}_3[T]$ that is *irreducible*. How many elements are in the quotient $F[T]/\langle p \rangle$?)

Solution: The squares of elements of \mathbf{F}_3 are $0 = 0^2, 1 = 1^2, 1 = 2^2$. Since 2 is not a square, the polynomial $T^2 - 2 \in \mathbf{F}_3[T]$ has no root in \mathbf{F}_3 ; since this polynomial has degree 2, we know it to be *irreducible*. Now form the field $F = \mathbf{F}_3[T]/\langle T^2 - 2 \rangle$. Write $t = T + \langle T^2 - 2 \rangle \in F$. The division algorithm implies that every element of F may be written uniquely in the form a + bt with $a, b \in \mathbf{F}_3$. Put another way, we know that 1, t is a basis for the \mathbf{F}_3 -vector space F. In the expression a + bt there are 3 choices for a and 3 choices for b; thus there are precisely $3 \times 3 = 9$ elements in F.

- V. You should be able to write careful solutions to problems similar to the following:
 - 1. Let F be a field and let $f, g \in F[T]$ be polynomials for which gcd(f, g) = 1. Consider the mapping

$$\phi: F[T] \to F[T]/\langle f \rangle \times F[T]/\langle g \rangle$$

given by the rule $\phi(h) = (h + \langle f \rangle, h + \langle g \rangle).$

a. Show that ker $\phi = \langle fg \rangle$ and that ϕ induces an isomorphism

 $\overline{\phi}: F[T]/\langle fg\rangle \xrightarrow{\sim} F[T]/\langle f\rangle \times F[T]/\langle g\rangle$

Solution: Let $K = \ker \phi$. Clearly $fg \in K$ since

$$\phi(fg) = (fg + \langle f \rangle, fg + \langle g \rangle) = (0,0).$$

To prove that $K = \langle fg \rangle$, suppose that $h \in K = \ker \phi$. We know see that

$$0 = \phi(h) = (h + \langle f \rangle, h + \langle g \rangle),$$

so we conclude that $f \mid h$ and $g \mid h$. Let's write h = fx for a polynomial $x \in F[T]$.

We need to argue that $g \mid x$; indeed, if we show that x = gy then h = fx = fgy so that $h \in \langle fg \rangle$ as required.

Since gcd(f,g) = 1 we know that 1 = af + bg for polynomials $a, b \in F[T]$. We now notice that

$$x = x \cdot 1 = x \cdot (af + bg) = xaf + xbg = ah + xbg;$$

since $g \mid ah$ and $g \mid xbg$, it follows that $g \mid x$ as required. This completes the proof that ker $\phi = \langle fg \rangle$.

Now the first isomorphism theorem implies that ϕ induces an isomorphism from $F[T]/\langle fg \rangle$ to the image of ϕ , so to finish the proof we need to argue that ϕ is surjective. Since 1 = af + bg we know that

$$bg \equiv 1 \pmod{f}$$

and

$$af \equiv 1 \pmod{g}$$

Thus $\phi(bg) = (1 + \langle f \rangle, 0)$ and $\phi(af) = (0, 1 + \langle g \rangle)$. It is now easy to see that ϕ is surjective. Indeed, let

$$(s + \langle f \rangle, t + \langle g \rangle) \in F[T] / \langle f \rangle \times F[T] / \langle g \rangle$$

be an arbitrary element. Then

$$\phi(sbg + taf) = (s + \langle f \rangle, 0) + (0, t + \langle g \rangle) = (s + \langle f \rangle, t + \langle g \rangle)$$

which confirms that ϕ is surjective.

b. As a consequence, show that $\mathbf{Q}[T]/\langle T^7 - 1 \rangle$ is isomorphic to the direct product of two fields.

Solution: Set $f = T^6 + T^5 + T^4 + T^3 + T^2 + T + 1 = \frac{T^7 - 1}{T - 1}$; since 7 is prime,

we have seen that $f \in \mathbf{Q}[T]$ is *irreducible*.

Now, $T^7 - 1 = f(T - 1)$. Since f and T - 1 are non-associate irreducible polynomials, we know that gcd(f, T - 1) = 1. Now part (a) shows that

$$\mathbf{Q}[T]/\langle T^7 - 1 \rangle \simeq \mathbf{Q}[T]/\langle f \rangle \times \mathbf{Q}[T]/\langle T - 1 \rangle \simeq \mathbf{Q}[T]/\langle f \rangle \times \mathbf{Q} \quad (\clubsuit).$$

Since f is irreducible, $\mathbf{Q}[T]/\langle f \rangle$ is a field, and thus we see that (\clubsuit) is the direct product of two fields.

2. Let R be a PID, let $a_1, a_2, \dots, a_n \in R$ not all 0, and let $d = \gcd(a_1, a_2, \dots, a_n)$. Note that $\frac{a_i}{d} \in R$ for each i. Prove that $\gcd\left(\frac{a_1}{d}, \frac{a_2}{d}, \dots, \frac{a_n}{d}\right) = 1$

Solution: We know that there are elements $x_i \in R$ for which

$$d = \gcd(a_1, a_2, \cdots, a_n) = \sum_{i=1}^n x_i a_i(\heartsuit)$$

Since d is a gcd of the a_i , it is in particular a divisor of each a_i ; thus for each $1 \le i \le n$ we may write $a_i = db_i$ for elements $b_i = \frac{a_i}{d} \in R$. Thus we may rewrite (\heartsuit) in the form

$$d \cdot 1 = \sum_{i=1}^{n} x_i db_i = d \sum_{i=1}^{n} x_i b_i.$$

Now, cancellation in the integral domain R implies that

$$1 = \sum_{i=1}^{n} x_i b_i.$$

This shows that $1 \in \langle b_1, b_2, \cdots, b_n \rangle$ so that

$$R = \langle 1 \rangle \subseteq \langle b_1, b_2, \cdots, b_n \rangle.$$

Thus $R = \langle 1 \rangle = \langle b_1, b_2, \cdots, b_n \rangle$ (since the reverse inclusion $\langle b_1, b_2, \cdots, b_n \rangle \subseteq R$ trivially holds) and it follows that $gcd(b_1, b_2, \dots, b_n) = 1$ as required.

3. Show that $u = 2 + T + \langle T^3 \rangle$ is a unit in the quotient ring $\mathbf{Q}[T]/\langle T^3 \rangle$.

Solution: Write $R = \mathbf{Q}[T]/\langle T^3 \rangle$ and let $x = T + \langle T^3 \rangle \in R$. Thus we are asked to show that u = 2 + x is a unit. We first observe that $x^3 = T^3 + \langle T^3 \rangle = 0$ in R. Now, notice $u(2-x) = (2+x)(2-x) = 4 - x^{2}$ Similarly,

$$(4 - x^2)(4 + x^2) = 16 - x^4 = 16$$

It follows that $u \cdot \frac{1}{16}(2-x)(4+x^2) = 1$ so that $v = \frac{1}{16}(2-x)(4+x^2) \in R$ is a multiplicative inverse for u. Thus $u \in \mathbb{R}^{\times}$ as required. One can of course check/observe that v may be "simplified" as

$$v = \frac{8 - 4x + 2x^2}{16} = \frac{4 - 2x + x^2}{8}$$

4. Let F be a field. Prove that \sqrt{T} is not in F(T). (Hint: Suppose the contrary, namely that $\sqrt{T} = \frac{f}{g}$ for $f, g \in F[T]$. Explain why we find an equation $g^2T = f^2$ in F[T]. Now apply unique factorization in the PID to deduce a contradiction).

Solution: Suppose as in the hint that $\sqrt{T} = \frac{f}{q}$ for $f, g \in F[T]$. Thus $g^2T =$ f^2 (\diamondsuit)

Using unique factorization, we may write $g = p_1 p_2 \cdots p_m$ and $f = q_1 q_2 \cdots q_n$ for irreducible polynomials $p_i, q_j \in F[T]$. Thus by (\diamondsuit) we have the equation

$$p_1^2 p_2^2 \cdots p_m^2 \cdot T = q_1^2 q_2^2 \cdots q_m^2$$

in R. The irreducible element $T \in F[T]$ appears on the LHS of this equation with odd multiplicity, while every irreducible on the RHS appears with even multiplicity. According to unique factorization in the polynomial ring F[T] we know this to be impossible; this contradiction proves that $\sqrt{T} \notin F(T)$.

5. If R is a PID and $p, q \in R$ are non-associate irreducible elements, compute $gcd(p^2q, pq^2)$?

Solution: We claim that $gcd(p^2q, pq^2) = pq$.

Well, pq is a divisor of p^2q and of pq^2 so it is a common divisor. Suppose that e is any common divisor of p^2q and pq^2 . Unique factorization shows that the only possible irreducible factors are p and q. Since $e \mid p^2q$, the multiplicity of q in e can be at most 1; since $e \mid pq^2$, the multiplicity of p in e can be at most 1. This shows that $e \mid pq$. Thus indeed pq is the required gcd.

- 6. Consider the field \mathbf{F}_5 with 5 elements.
 - Prove that $T^2 3 \in \mathbf{F}_5[T]$ is irreducible.

Solution: The squares in \mathbf{F}_5 are $0 = 0^2$, $1 = 1^2$, $4 = 2^2$, $4 = 3^2$, $1 = 4^2$. Since 3 is not a square in \mathbf{F}_5 , the polynomial $T^2 - 3$ has no root in \mathbf{F}_5 . Since this polynomial has degree 2 and no root, we deduce that $T^2 - 3$ is irreducible in $\mathbf{F}_5[T]$.

• Let $\gamma = T + \langle T^2 - 3 \rangle \in \mathbf{F}_5[T]/\langle T^2 - 3 \rangle$; thus $\mathbf{F}_5(\gamma) = \mathbf{F}_5[T]/\langle T^2 - 3 \rangle$. Find $s, t \in \mathbf{F}_5$ so that $(s + t\gamma) \cdot (1 + \gamma) = 1$.

Solution: We calculate, using the fact that $\gamma^2 = 3$:

$$(s+t\gamma)(1+\gamma) = s+s\gamma+t\gamma+t\gamma^{2}$$
$$= (s+3t) + (s+t)\gamma$$

Thus we need to solve the system of linear equations

$$\begin{cases} s+3t &= 1\\ s+t &= 0 \end{cases}$$

or the equivalent of matrix equation

$$(\dagger) \quad \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

We notice that $A = \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix}$ has determinant det $A = 1 - 3 = -2 = 3 \in \mathbf{F}_5$. Thus

$$A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & -3 \\ -1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$

The solution to (\dagger) is therefore given by

$$\begin{bmatrix} s \\ t \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

In other words $\frac{1}{1+\gamma} = 2 + 3\gamma$ in $\mathbf{F}_5(\gamma)$

7. Be able to give the proof of the following results (taken from the notes). Let R be a PID and let $p \in R$ irreducible. • If $p \mid ab$ for $a, b \in R$ then $p \mid a$ or $p \mid b$.

Solution: This is Proposition 5.1.3 in the lecture notes.

- The quotient ring $R/\langle p\rangle$ is a field.

Solution: This is Proposition 7.1.1 in the lecture notes.