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1 Commutative rings

1.1 Definitions

Definition 1.1.1. A ring R is an additive abelian group together with an operation of multipli-
cation R x R — R given by (a,b) — a - b such that the following axioms hold:

o multiplication is associative

o multiplication distributes over addition: for every a,b,c € R we have
a(b+c) =ab+ac
and
(b+ c)a = ba + ca.

We often just denote multiplication by juxtaposition: i.e. we may write ab instead of a - b
for a,b € R

We say that the ring R is commutative if the operation of multiplication is commutative; i.e.
if ab = ba for all a,b € R.

And we say that R has identity if multiplication has an identity, i.e. if there is an element
1rp € Rsuch that a-1g = 1 - a = a for every a € R.

Usually we write 1 for 1. The idea is that 1g is the multiplicative identity of R. For example,

. . . |1 0f. e . _—
the identity matrix 0 1] is the multiplicative identity 1z of the matrix ring R = Mata(R).
In these notes, unless otherwise indicated a ring is assumed to be commutative and to have
identity.

Here are some examples of commutative rings:

Ezample 1.1.2. (a) Z the ring of integers, Q the ring of rational numbers, R the ring of real
numbers, C the ring of complex numbers.

(b) if X is a set and if R is a commutative ring, the set X of all R-valued functions on X can
be viewed as a commutative ring where the sum and product of functions f : X — R are
defined “pointwise”.

1.2 Polynomial rings

If R is a commutative ring, the collection of all polynomials in the variable T having coefficients
in R is denoted R[T].
Notice that the set of monomials S = {T" | i € N} has the following properties:

(M1) every element of R[T] is an R-linear combination of elements of S. This just amounts to
the statement that every polynomial f(7") € R[T] has the form

N .
F(T)=> aT
=0

for a suitable N > 0 and suitable coefficients a; € R.



(M2) the elements of S are linearly independent i.e. if

N .
ZaiTZ =0 for a; €R,
i=0

then a; = 0 for every 1.
Polynomials in R[T] can be added in a natural way. (This is just like adding vectors in a

vector space).
And there is a product operation on polynomials, as follows:

N M
if f(T) = Z a;T" and ¢(T) = Z b;T" then
=0 i=0
N+M .
F(T)-g(T)= > T" where ¢ = Y ab.
i=0 s+t=i

Proposition 1.2.1. R[T] is a commutative Ting with identity.



2 Properties of rings

2.1 Ring Homomorphisms

Definition 2.1.1. If R and S are rings, a function ¢ : R — S is called a ring homomorphism
provided that

(a) ¢ is a homomorphism of additive groups,

(b) ¢ preserves multiplication; i.e. for all z,y € R we have ¢(zy) = ¢(x)d(y), and
(c) #(1Rr) = 1s.

Definition 2.1.2. The kernel of the ring homomorphism ¢ : R — S is given by

kerg = ¢7'(0) = {z € R | ¢(z) = 0};
thus ker ¢ is just the kernel of ¢ viewed as a homomorphism of additive groups.
Here are some properties of the kernel:
(K1) ker ¢ is an additive subgroup of R

(K2) for every r € R and every = € ker ¢ we have rz € ker ¢.

2.2 Ideals of a ring

For simplicity suppose that the ring R (and S) are commutative rings.

Definition 2.2.1. A subset I of R is an ideal provided that

(a) I is an additive subgroup of R, and

(b) for every r € R and every x € I we have rx € I.

We sometimes describe condition (b) by saying that “I is closed under multiplication by every
element of R”.
The proof of the following is immediate from definitions:

Proposition 2.2.2. If¢: R — S is a ring homomorphism , then ker ¢ is an ideal of R.

Remark 2.2.3. In any commutative ring R the trivial subgroup 0 = {0} is an ideal, and the
subgroup R itself is also an ideal.

2.3 Quotient rings

Let R be a commutative ring and let I be an ideal of R.

Since I is a subgroup of the (abelian) additive group R, we may consider the quotient group
R/I. Tts elements are (additive) cosets a + I for a € R.

It follows from the definition of cosets that the a + I =b+ I if and only if b —a € I.

The additive group can be made into a commutative ring by defining the multiplication as
follows:



For a4+ I,b4+1 € R/I (so that a,b € R), the product is given by
(a+I)(b+I)=ab+ 1.

In order to make this definition, one must confirm that this rule is well-defined. Namely, if
we have equalities a +1 =a’ + 1 and b+ 1 = b + I, we need to know that

(a+D)(b+1)=(a+ 1) +1).
Applying the definition, we see that we must confirm that
ab=1=adt +1.

For this, we need to argue that a’t/ —ab € I.

Since a + I = a’ + I, we know that ¢’ —a = x € I and since b+ I = V' + I we know that
W—b=yecl

Thus @’ = a+ x and ' = b+ y. Now we see that

at = (a+x)(b+y) =ab+ ay + xb+ xy

Since [ is an ideal, we see that ay,zb,zy € I henc ay + xb + zy € I. Now conclude that
a'b + I = ab+ I as required.

It is now straightforward to confirm that the ring axioms hold for the set R/I with these
operations.

Proposition 2.3.1. If I is an ideal of the commutative ring R, then R/I is a commutative ring
with the addition and multiplication just described.

2.4 Principal ideals

Definition 2.4.1. If R is a commutative ring and a € R, the principal ideal generated by a —
written Ra or (a) — is defined by

Ra = {(a) = {ra | r € R}.

Proposition 2.4.2. For a € R, Ra is an ideal of R.

Ezxample 2.4.3. Let n € Z~o and consider the principal ideal nZ of the ring Z generated by
n € Z.

As an additive group, nZ is the infinite cyclic group generated by n.

The quotient ring Z/nZ is the finite commutative ring with n elements; these elements are
precisely the congruence classes of integers modulo n.

2.5 Isomorphism Theorem

Theorem 2.5.1. Let R,S be commutative rings with identity and let ¢ : R — S be a ring
homomorphism. Assume that ¢ is surjective (i.e. onto). Then ¢ determines an isomorphism
¢ : R/I — S where I = ker ¢, where ¢ is determined by the rule

¢pla+1)=¢(a) foraecR.



Proof. First, you must confirm that ¢ is well-defined; i.e. that if a + 1 = a’ + I then ¢(a+I) =
o(a' +1I).

Next, you must confirm that ¢ is a ring homomorphism (this is immediate from the definition
of ring operations on R/I).

Finally, you must confirm that ker ¢ = {0}, where here 0 refers to the additive identity of

the quotient ring R/I. This additive identity is of course the trivial coset I =0+1¢€ R/I. [

2.6 A Homorphism from the polynomial ring to the scalars

Let F'is a field and let a € F. consider the mapping
O:F[T|— F

given by ®(f(T)) = f(a). Namely, applying ® to a polynomial f(7') results in the value f(a) of
f(T) at a.
The definition of multiplication in F[T] guarantees that ® is a ring homomorphism.



3 Polynomials over a field and the division algorithm

3.1 Some general notions for commutative rings

Definition 3.1.1. If R is a commutative ring with 1 and if u € R we say that u is a unit - or that
1

u is tnvertible - provided that there is v € R with uwv = 1; then v =u™".
We write R* for the units in R.
A commutative ring R is a field provided that every non-zero element is invertible. Thus R
is a field if R* = R\ {0}.

Proposition 3.1.2. If R is a commutative, then R* is an abelian group (with operation the
multiplication in R).

For any commutative ring R and elements a,b € R we say that a divides b — written a | b —
if dx € R with az = b.

Proposition 3.1.3. For a,b € R we have a | b if and only if b € (a).

Recall that we introduced the principal ideal (a) = aR for any commutative ring R and any
a € R. In fact, given a1, -+ ,a, € R we can consider the ideal

(ar, -+ ,an) = Z%‘R
=1

defined as
(ar, -+ ,an) = {Zﬁaim € R} .
i=1

It is straightforward to check that (ai,--- ,a,) is indeed an ideal of R.

Definition 3.1.4. A non-zero element a € R is said to be a 0-divisor provided that there is
0 # b € R with ab = 0.

Ezample 3.1.5. Let n be a composite positive integer, so that n = ij for integers 7,5 > 0.
Consider the elements [i] = i + nZ, [j] = j + nZ in the quotient ring Z/nZ.

Then [i] and [j] are both non-zero since 0 < 4, j < nsothatntiandn{j. But [i|-[j] =[n] =0
so that [¢] and [j] are O-divisors of the ring Z/nZ.

Definition 3.1.6. A commutative ring R is said to be an integral domain provided that it has no
zero-divisors.

Ezample 3.1.7. (a) Any field is an integral domain.
(b) The ring Z of integers is an integral domain.

(¢) Any subring of an integral domain is an integral domain.

For example, the ring Z[i| = {a + bi | a,b € Z} of gaussian integers is an integral domain.
(d) Z/nZ is not an integral domain whenever n is composite.

(e) If R and S are commutative rings, the direct product R x S is never an integral domain.
Indeed, the elements (1,0) and (0,1) are 0-divisors.

Lemma 3.1.8. (Cancellation) Let R be an integral domain and let a,b,c,€ R with ¢ # 0. If
ac = bec then a = b.



Proof. The equation ac = be implies that ac — bc = 0 so that (a — b)c = 0 by the distributive
property. Since R has no zero divisors and since ¢ # 0 by assumption, conclude that a — b =0
i.e. that a =b. O

Proposition 3.1.9. Let R be an integral domain and let d,d" € R\ {0}. If (d) = (d') then d
and d' are associate.

Proof. Since d € (d) we may write d = xzd' and since d’ € (d) we may write d’ = yd. Now we
see that d = xd’ = xyd. Since d # 0 cancellation (Lemma BIR) implies that zy = 1. Thus
x,y € R* and indeed d,d’ are associate. O

3.2 An important result on polynomial rings

Proposition 3.2.1. Let R and S be rings, let ¢ : R — S be a ring homomorphism, and let
a € S be an element. There is a unique ring homomorphism

U R[T] - S
such that ¥(T) = a and such that V| = ¢.

Proof. Let f,g € R[T], say
n m
f= Z a;T" and g¢g= Z b;T"
i=0 =0

be elements of R[T].
To see that ¥ is an additive homomorphism, note that f+g = . (n’m)(ai + b;)T" so that

max(n,m) n m
U(f+g)= > (ai+b)a'=> aa'+> bl =U(f)+¥(g)
=0 =0 =0

n+m

Similarly, to see that ¥ is multiplicative, note that fg =3 /"] c;T" where ¢; = 5 sii—i Asbt-
Now,

n+m n m
W(fo) = S ofeal = (z ¢<ai>ai) (z ¢<bi>ai) _u(p)- vl
1=0 1=0 1=0

3.3 The degree of a polynomial

Let F be a field and consider the ring of polynomials F[T].

Definition 3.3.1. The degree of a polynomial f = f(T') € F[T] is defined to be deg(f) = —o0o if
f =0, and otherwise deg(f) = n where

n
f= ZaiTi with each a; € F' and a,, # 0.
i=0

We have some easy and familiar properties of the degree function:

Proposition 3.3.2. Let f,g € F[T].

10



(a) deg(fg) = deg(f) + deg(g).
(b) deg(f + g) < max{deg(f),deg(g9)} and equality holds if deg(f) # deg(g).
(c) fe€ F[T)* if and only if deg(f) = 0. In particular, F[T]* = F*.

Corollary 3.3.3. For a field F, the polynomial ring F[T) is an integral domain.
Proof. Let f,g € F|T] and suppose that fg = 0. We must argue that either f =0or g =0. O

Proposition 3.3.4. Let f,g € F[T]. If g # 0 and deg g < deg f then [g] = g+ (f) is a non-zero
element of F[T|/(f).

3.4 The division algorithm

Theorem 3.4.1. Let F be a field, and let f,g € F[T] with 0 # g. Then there are polynomials
q,r € F[T] for which
f=a9+r

and degr < degg.

Proof. First note that we may suppose f to be non-zero. Indeed, if f = 0, we just take g = r = 0.
Clearly f = qg + r, and deg(r) = —oo < deg(g) since g is non-zero.

We now proceed by induction on deg(f) > 0.

For the base case in which deg(f) = 0, we note that f = ¢ is a constant polynomial; here
ceF*.

If deg(g) = 0 as well, then g = d € F* and then ¢ = (¢/d)d + 0 so we may take ¢ = ¢/d and
r = 0. Now deg(r) = —oo < deg(g) as required.

If deg(g) > 0, we simply take ¢ = 0 and r = f: we then have f =0-¢g+ f and deg(f) =0 <
deg(g) as required.

We have now confirmed the Theorem holds when deg(f) = 0.

Proceeding with the induction, we now suppose n > 0 and that the Theorem holds whenever
f has degree < n. We must prove the Theorem holds when f has degree n.

Since f has degree n, we may write f = a,T" + fo where a, € F* and fy € F[T] has
deg(fo) < n.

Let us write g = deg(g); we may write g = b,,T™ + go where b,, € F* and gy € F[T] has
deg(go) < m.

If n < m we take ¢ = 0 and r = f to find that f = gg + r and deg(r) < deg(g).

Finally, if m < n we set

—m n Qn mn Qn n—m Qn n—m
flzf_(an/bm)Tn g:anT +f0_ <me + =T gO) :fO_biT go-

bm bm m

We have deg(fo) < n by assumption, and deg <ZLnT"mgo> < n by the Proposition together

m

with the fact that deg(go) < m.
Thus deg(f1) < n. Now we apply the induction hypothesis to write

fi=qg+r1 with deg(r1) < deg(g).
Finally, we have
f=hn+ (an/bm)Tn_mg =qg+r+ (an/bm)Tn_mg = (Ql + (an/bm)Tn_m) g+m

so we have indeed written f = qg + r in the required form. O

11



Corollary 3.4.2. Let F be a field and let f € F[T). For a € F, there is a polynomial q € F[T
for which
f=4a(T —a)+ f(a).

Corollary 3.4.3. For f € F[T] an element a € F is a root of the polynomial f if and only if
T —a| f in F[T]. In particular, if d = deg(f), f has no more than d distinct roots in F.

Proof. The first statement is clear from Corollary B2=2. Now consider the distinct roots
Qg 0 €F

of f. Then T — oy divides f so that f = (T — aq) f1 for some f; € F[T]. Since as is a root of f
we see that

0= f(a2) = (a2 — a1) fi(a2)

which shows that as is a root of f; since a1 # ao. Thus we find that
f=T—a)(T—a2)fo

for some fy € F[T]. Continuing in this way we find that [[{_, (T —«;) divides f, so that e < deg f
by Proposition B=332. O

12



4 Ideals of the polynomial ring

4.1 Description of ideals of the polynomial ring

Corollary 4.1.1. Let F be a field and let I be an ideal of the ring F[T]. Then I is a principal
ideal; i.e. there is g € I for which
I=(g)=g- FI[T]

Proof. If I = 0 the results is immediate. Thus we may suppose I # 0.

Consider the set {deg(g)|0 # ¢g € I}. This is a non-empty set of natural numbers, hence it
contains a minimal element by the well-ordering principlé .

Choose g € I such that deg(g) is this minimal degree; we claim that I = (g).

Clearly (g) € I. To complete the proof, it remains to establish the inclusion I C (g). Let
f € I and use the Division Algorithm to write f = gg + r for q,r € F[T] with degr < degg.

Observe that f —qg € I so that r € I. Since degr < deg g conclude that » = 0. This shows
that f = qg € (g) as required, completing the proof. O

Let F be a field, F[T] be the ring of polynomials with coefficients in F, let f,g € F[T] be
polynomials which are not both 0.

Definition 4.1.2. The greatest common divisor ged(f, g) of the pair f, ¢ is a monic polynomial
d such that

(a) d| fandd]|yg,
(b) if e € F[T] satisfies e | f and e | g, then e | d.
Remark 4.1.3. If d,d’" are two geds of f,g then d | d and d' | d. In particular, deg(d) = deg(d’)

and d’ = ad for some « € F*. Tt is then clear that there is no more than one monic polynomial
satisfying i. and ii.

Note that f,g are not both 0 if and only if the ideal (f,g) is not 0.

Proposition 4.1.4. (a) (f,g) is an ideal. Since F[T] is a principal ideal domain by Corol-
lary G-1-1, there is a monic polynomial d € F[T) with

(d) ={f.9)-
Then d = ged(f, g)
(b) In particular, d = ged(f, g) may be written in the form d = uf + vg for u,v € F[T].

Proof. For a., write I = (f,g) = (d). Since f,g € I, the definition of (d) shows that d | f and
d|g.
Now suppose that e € F[T] and that e | f and e | g. Then f,g € (e) which shows that

(f,9) € (e).

But this implies that (d) C (e) so that e | d as required. Thus we see that d is indeed equal
to ged(f, 9)-

Since d € (d) = (f,g), assertion b. follows from the definition of (f,g). O

13
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4.2 Principal ideal domains (PIDs)

Definition 4.2.1. An integral domain R is said to be a principal ideal domain (abbreviated
PID) provided that every ideal I of R has the form

I = (a) for some a € R;

i.e. provided that every ideal of R is principal.
Ezample 4.2.2. (a) The ring Z of integers is a PID.

(b) For any field F', the ring F[T] of polynomials is a PID - this follows from the Corollary to
the divison algorithm, above.

(c) The rings Z[i] and Z[/2] are PIDs — to see this one can argue that these rings are Enclidean

domains and then one proves that any Euclidean domain is a PID.

4.3 PIDs and greatest common divisors

Let R be a PID.
The results about ged in the polynomial ring proved in Section BZ actually hold in the
generality of the PID R. We quickly give the statements:

Definition 4.3.1. Let a,b € R such that (a,b) # 0. A ged of a and b is an element d € R such
that

(i) d | a and d | b (in words: “d is a common divisor of a and b”)

(ii) if e | @ and e | b then e | d. (in words: “any common divisor of a and b divides d”)

Lemma 4.3.2. If R is a PID and if d and d’ are gcds of a and b then d and d' are associates.
Proof. This follows from Proposition 37179 O

Proof. Using the definition of ged we see that d | ' and d’' | d. Thus d’ = dv and d = d'u for
u,v € R.
This shows that d’ = dv = d'uv. Using cancellation, find that 1 = uv so that u,v € R*. [

Remark 4.3.3. This definition of course covers the cases when R = Z and when R = F[T]. The
main thing to point out is that when R = Z, there is a unique positive gcd for any pair a,b € Z
and when R = F[T] there is a unique monic gcd for any pair f,g € F[T].

For a general PID there need not be a natural choice of ged, so for z,y € R we can only
speak of ged(z,y) up to multiplication by a unit of R.

Proposition 4.3.4. Let R be a PID and let x,y € R with (x,y) # 0.
(a) Since R is a PID, we may write find d € R with
(d) = (z,9).
Then d = ged(x,y).

(b) In particular, d = ged(x,y) may be written in the form d = ux + vv for u,v € R.

14
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To prove Proposition B=34 proceed as in the proof of Proposition B4

Proposition 4.3.5. Let R be a PID and let a,b € R not both 0. Put d = ged(a,b), so that

a b a b
8’861%' Then ged <d’d> =1.

Proof. According to Proposition B34 (b), we may write d = ax + by for suitable z,y € R. Since
d | a we know that % € R; similarly p € R. We now see that

a b a b

now applying cancellation — i.e. Lemma B8 — we conclude that

1=24 + b
—at T aY
) a b . a b C
This shows that 1 € ) the ideal generated by p and 7 But this implies that
b b
R C <Z, d> so that (1) = R = <Z’d>' According to Proposition BZ34 this proves that
b
ged <Z, d) =1 as required. ]
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5 Prime elements and unique factorization

5.1 Irreducible elements

Let R be a principal ideal domain.

Definition 5.1.1. A non-zero element p € R is said to be irreducible provided that p ¢ R* and
whenever p = zy for z,y € R then either x € R* or y € R*.

Remark 5.1.2. Assume that p,a € R with p irreducible. Then either ged(p,a) =1 or ged(p,a) =
.

Proposition 5.1.3. p € R is irreducible if and only if (&): whenever a,b € R and p | ab then
either p | a orp| 0.

Proof. (=): Assume that p is irreducible, suppose that a,b € R and that p | ab. We must show
that p| aor p|b.
For this, we may as well suppose that p { a; we must then prove that p | b. Since p t a, we
see that ged(a,p) = 1 by the Remark above. Then ua + vp = 1 for elements u,v € R.
Now we see that
b=1-b= (ua+vp)-b=muab+ vpb.

Since p | ab we see that p | uab + vpb which proves that p | b, as required.

(«<): Assume that condition (&) holds for p. We must show that p is irreducible. For this,
assume p = zy for z,y € R; we must show that either x € R* or y € R*.

Since p = xy, in particular p | zy and we may apply (&) to conclude without loss of generality
that p | z.

Write = pa. We now see that p = xy = pay; by cancellation, find that 1 = ay so that
y € R*. We conclude that p is irreducible, as required. O

Remark 5.1.4. For any integral domain R, we can speak of irreducible elements defined as in
Definition 510, And we can speak of prime elements, where an element p € R is prime if it
satisfies condition (&) of Proposition BI3. In this language, Proposition B1-3 shows that in a
PID, an element is prime iff it is irreducible.

Corollary 5.1.5. Let R be a PID, let p,ay,--- ,a, € R with p prime, and suppose that p |
ajaz---an =[] a;. Thenp|a; for some 1 <i<n.

Ezample 5.1.6. Let F' a field and let f € F[T] be a non-constant polynomial; i.e. deg(f) > 0. If
f is reducible there are polynomials g, h € F[T] for which f = gh and deg(g),deg(h) > 0.

Ezample 5.1.7. If f € F[T] is reducible (i.e. not irreducible) then the quotient ring F[T]/(f) is
not an integral domain.

Indeed, write f = gh for g,h € F[T] non-units. Thus deg f > degg,degh > 0 by Proposi-
tion B332. According to Proposition B33, the classes [g], [h] € F[T] are non-zero, but [g] - [h] =
[f] =0 Thus F[T]/(f) has zero divisors and is not an integral domain.

5.2 Unique factorization in a PID

The Fundamental Theorem of Arithmetic says that any integer n > 1 may factored uniquely as
a product of primes. This result holds for any PID, as follows:

Theorem 5.2.1. Let R be a PID, let 0 # a € R, and suppose that a is not a unit.
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(a) There are irreducible elements p1,p2,-- - ,pn € R such that a =p1 -p2-- - pn.

(b) if 1, ,qm € R are irreducibles such that a = q1 -+ qm then n = m and — after possibly
reordering the q; — there are units u; € R* for which q; = u;p; for each i.

Proof. We first prove (a). For this, we first prove the following claim:

(*): if the conclusion of (a) fails, there is a sequence of elements a1, as,--- € R\ R* with the
property that for each i > 1 we have: (i) a;41 | a; and (ii) a;+1 and a; are not associate.
To prove (x), let 1 = a. Now suppose we have found elements aj, as,--- ,a, such that for

each 1 < i < n conditions (i) and (ii) hold, and such that the conclusion of (a) fails for a,. In
particular, a, is reducible, so we may write a, = xy with z,y € R and z,y ¢ R*. Without
loss of generality, we may suppose that the conclusion of (a) fails for  and we set a,+1 = =.
By construction, an+1 | an; moreover a,11 and a, are not associates. Thus we have proved by
induction that (%) holds.

To prove (a), we will now show that (x) leads to a contradiction.

Let {a;} be a sequence of elements as in (x) and let I be given by

1= J{as).

i>1

Since
<a1> C <a2> C <CL3> (@R

it is straightforward to see that I is an ideal. Since R is a PID, we may write I = (d) for some
d € R. By the definition of I, we may find an index N for which d € (a;) for each j > N.

Fix j > N. We may write d = x - a; for x € R.

On the other hand, (a;) C (d), we we may write a; =y -d for y € R.

We now see that d = z - aj = xyd so that z,y € R* by cancellation (Lemma BIR). Thus d
and a; are associates so that (d) = (a;). In particular, we have proved that

<d> = <aN> = <CLN+1> = (aN+2> — ...

contradicting the assumption (ii) that ;11 and a; are not associates. This contradiction proves

(a).

We now prove (b). We are given an equality

P1-"Pn=4q1 " Qdm

with p;, ¢; irreducible and n,m > 1.

We proceed by induction on the minimum min(n, m), and without loss of generality we
suppose that n < m so that n = min(n,m).

In case n = 1, our assumption is p; = qi - - - gm. Applying Corollary 5173 we see that p; | ¢;
for some 1 < j < m. Since p; and g¢; are irreducible, we see that ¢; = u - p; for some unit v € R*

Thus
p1=u-Mm qu
i)
Applying cancellation (Lemma BTH) we see u - [[,,;¢; = 1 so that ¢; € R* for i # j. Thus
m = 1 and p; and ¢; are associates, as required. This confirms the base-case of the induction.
Now suppose that n > 1 and that the result is known when the element has an expression as
a product of < n irreducibles.
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Thus we have
P1-"Pn =41 "qm

and m > n. Now p, | ¢1 - - - ¢ and as before we see for some 1 < j < m that ¢; = up,, for a unit
u € R*. Without loss of generality we may suppose that j = m. We find

P1- Pn—1"Pn=U Pn Q41" " dm-1
Applying cancellation (Lemma BTR) we find that

Replacing g1 by the irreducible ugq;, we can view the right-hand side as a product of m — 1
irreducibles. Since m—1 > n—1 we may apply the induction hypothesis to find that m—1 =n—1
and that after re-ordering we have p; associate to ¢; for 1 < ¢ < m — 1. Since p, and ¢,, are
associate as well, this proves (b). O
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6 The Field of fractions of an Integral Domain

Recall Example BI72 that any subring of a field is an integral domain. We now want to argue
that the converse to this statement is true, as well. Namely, an integral domain R is a subring
of a field. In fact, we are essentially going to give a construction of such a field from R.

Let’s fix an integral domain R. To confirm the suggested converse to the above Corollary, we
must construct a field F' and an inclusion ¢ : R C F.

Of course, if we have such a mapping ¢, then for any 0 # b € R, the element i(b) is non-zero

1
in F' and hence i(b)~! = —— should be an element of F' (even though i(b)~! is possibly not an

i(b)

1
element of R). For any a € R we should be able to multiply i(a) and W in F' to form the
i
. i(a) o . . . . . . a ia)
fraction m If we choose to identify R with the image i(R), we might simply write 7= m
for this fraction.

So if the field F' exists, it must contain all fractions % for a,b € R with 0 # b.

In fact, we are going to construct a field F' by formally introducing such fractions.
Consider the set W = {(a,b) | a,b € R,b # 0} and define a relation ~ on the set W by the

condition

(a,b) ~ (s,t) <= at = bs.
This relation is motivated by the observation that for fractions in a field ' we have

a s
— = - <= at = bs.
bt

One needs to check the following:
Proposition 6.0.1. ~ defines an equivalence relation on W.
Proof. We must confirm properties of ~:
(reflexive) if (a,b) € W, then ab=ba = (a,b) ~ (a,b).
(symmetric) if (a,b), (s,t) € W then

(a,b) ~ (s,t) = at=bs = sb=ta = (s,t) ~ (a,b).

(transitive) Let (a,b),(s,t), (u,v) € W and suppose that (a,b) ~ (s,t) and (s,t) ~ (u,v). The
assumptions mean that at = bs and sv = tu.

Multiplying the equation at = bs by v on each side, we see that
atv = bsv = atv = btu = (av)t = (bu)t;

since t # 0 and since the cancellation law holds in an integral domain — see Lemma BT,
conclude av = bu. Hence (a,b) ~ (u,v) which confirms the transitive law.
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We are now going to show that the fractions - i.e. the equivalence classes in W — form a field.
We define @@ = Q(R) to be the set of equivalence classes of W under the equivalence relation ~.

We write % = [(a,b)] for the equivalence class of (a,b) € W. Thus @ is the set of (formal)

fractions of elements of R, and

%z% <~ (a,b) ~ (s,t) <= at ="bs

It remains to argue that @@ has the structure of a field. To do this, we must define binary
operations + and - on the set () and check that they satisfy the correct axioms.
Define addition of fractions: for a,b,s,t € R with b,t # 0,

a s at+bs
W) T
And define multiplication of fractions:
a s as
© 3T w

Theorem 6.0.2. For an integral domain R, the set Q(R) of fractions of R forms a field with
the indicated addition and multiplication.

Sketch of proof. What must be checked??

a a s s
o must first confirm that (&) is well-defined! i.e. if a’,V/,s',t' € R with 3= and =
a s d &
e must check that — + — = — 4+ —; i.e. that
v AR TR

at+bs ad't' +0's
bt Wt

This is straightforward if a bit tedious.
0
e One readily checks that 0 = 1 is an identity for the binary operation + on Q.
e One readily checks that + is commutative for Q.
. —a . .. . a
¢ One readily checks that > is an additive inverse for —.
e With some more effort, one confirms that + is associative on Q; i.e. for o, 5,7 € Q

(a+B)+7)=a+ (B+7).

Thus (Q, +) is an abelian group. Now consider the operation <») of multiplication.

!/ s Sl

o must again confirm that () is well-defined! i.e. if ', V', s, € R with % = % and =

! /

a s a
we must check that — - - = — - —; i.e. that
b t b
as _a's'
bt bt
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1
One readily checks that 1 = 1 is an identity for the binary operation - on Q.

e One readily checks that - is commutative for Q.

With some more effort, one confirms that - is associative on Q; i.e. for o, 5,7 € Q
(a@-B)-v=a-(B-7)
e Next, one must confirm the distributive law: for o, 5,7 € Q,
a(f+7) =af+ay.
Phew! O

Remark 6.0.3. Despite the details of the preceding proof, all that is happening is confirming
properties of operations of fractions that you have used since grade-school. . .

Now, we want to emphasize a crucial property of the field of fractions of an integral domain.
Let Q(R) be the field constructed above, and note that there is a natural ring homomorphism
i: R — Q(R) given by r — i(r) = g for r € R. This homomorphism is one-to-one: indeed, if
r

0
1= 0= T thenr-1=0-1 = r =0. Thus, we may identify R with a subring of Q(R).

Proposition 6.0.4. Let R be an integral domain, let ¢ : R — S be any ring homomorphism,
and suppose that for all 0 # d € R, ¢(d) € S* - i.e. ¢(d) is a unit in S. Then there is a unique
homomorphism ¢ : Q(R) — S with the property that ¢|r = ¢.

1
Proof. Let z € Q(R) be any element. Thus x = % = % ‘5 for a,b € R with b # 0.
Let’s first argue that uniqueness of ;5 If 5 is a ring homomorphism, then
~ ~ 1 ~1 ~1 —1
1= 3(1) = (b 3) = 60)I;) = l3) = o)
Since 5 is a ring homomorphism, we must have
®) ) = 3()d() = ola) - 4(0)

which confirms the uniqueness.
It now only remains to check that the rule (&) determines a ring homomorphism, which is
straightforward. O

Ezample 6.0.5. The field of rational functions

Let F be a field, and consider R = F[T| the ring of polynomials. This is in integral domain,
and its field of fractions Q(R) is usually written F(7T) and is known as the field of rational
functions over F'.

Note that

rr)={L) g€ rm 2o},

thus elements of F(T) are fractions i whose numerator and denominator are polynomials; we

usually call such expressions rational functions.
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7 Irreducible polynomials over a field

7.1 Fields as quotient rings

Proposition 7.1.1. Let R be a PID and let p € R be an irreducible element. Then the quotient
ring A= R/(p) is a field.

Proof. Let a € A be non-zero. To prove that A is a field, we must show that o has a multiplicative
inverse. Thus « has the form h + (p) and since o # 0 we know that p 1 h. Since p is irreducible,
Remark 6172 shows that ged(p, h) = 1.

Thus according to Proposition B=34 there are elements z,y € R for which

l=xp+yh
Let 3 =y + (p) € A. Then
af =yh+(p)=1+(p
since yh =1 (mod p). Thus S is the multiplicative inverse of « in A. O

Ezxample 7.1.2. o Z/pZ is a field for a prime number p.

As a special case of Proposition [CI1, we have:

Corollary 7.1.3. Let F be a field and let f be an irreducible polynomial in F[T]. Then A =
F[T)/{f) is a field.

For small degree polynomials, one can confirm irreducibility just by considering roots, as
follows:

Proposition 7.1.4. Let F be a field and let f € F[T] be a polynomial with deg(f) < 3. If f has
no root in F then f is irreducible.

Proof. Suppose that f is reducible, say f = gh with deg(g),deg(h) > 0. Since deg(f) < 3 and
since deg(g) + deg(h) = deg(f) by Proposition BZ32, we see that at least one of g or h must have
degree 1; without loss of generality we suppose deg(g) = 1.

Thus g = aT' + b for a,b € F with a # 0. Set o = -0 € F and observe that f(a) =
a
g(a)h(a) = 0; thus f has the root a € F. O

Ezample 7.1.5. Let p be a prime number. Then the polynomial 72 — p € Q[T] is irreducible. In
particular,

Q(vp) = QT /(T? - p)
is a field.

7.2 The rational roots test
Theorem 7.2.1. Let R be a PID with field of fractions F and let f € R[T], say
f=a+aT+ - +a,T"

with a; € R and a, # 0.
Ifa:EGF is a root of f for x,y € R and y # 0 and ged(z,y) =1 then x | ap and y | ay,.
Yy
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Proof. Since « is a root of f we have the equation

0=f(a)=ao+a <z>+"'+a” <:;>"_z:;a (5)

in the field F'. Multiplying by the non-zero element "™ € R we find the equation
n
0= aoyn + alxy"_l 44 anxn — Zaixzyn—z
i=0

in R.
Thus we see that

n

n
apy" = —(alwy”’l + -t apz”) = — E aix'y" ' = —x E aixlflynfl
i=1 =1

which shows that x | apy™. Since ged(x,y) =1 also ged(z,y™) = 1. Now conclude that x | aop.
Similarly, we see that

n—1 n—1
n i, n—i n—i—1
ana” ==Y a'y" ==y Y amiy
=0 =0

which shows that y | a,2™. Since ged(z™,y) = 1 we conclude that y | a,, as required. O

Remark 7.2.2. Let f = > " ja;T" € R[T] as in the statement of Theorem 2. According to

x
theorem, to find a root of f in the field of fractions F' of R, we must consider all fractions o = —

Y
where ged(z,y) = 1, where z is a divisor of ag and where y is a divisor of ay,.

Writing ag = plpz---p, and a, = qiq2 - - gy, for irreducibles p; and g;, we see that it is
possible in principle to make a list of all possible o and then check for each candidate whether
or note « is a root of f.

Ezample 7.2.3. Consider the polynomial f = T3 —3T? +2T —6 € Z[T)]. For any root a = Te Q
Y

with ged(z,y) = 1 we must have that z | 6 and y | 1. Thus according to Theorem 21, the
possible rational roots are o« = +1,£2, +3, 46.

Notice that if 2 € R is negative, then f(z) < 0. Thus the possible rational roots are simple
a=1,2,3,6. We notice that f(1) = —6, f(2) = —6 and f(3) = 0. Using the division algorithm
we see that

T3 - 372 +2T — 6 = (T? +2)(T — 3)

It is now clear that 6 is not a root and that 72 4 2 is irreducible. We f has exactly one rational
root, namely o = 3.

7.3 The Gauss Lemma

Let R be a PID with field of fractions F. The polynomial ring R[T] is the subring of F[T
consisting of polynomials whose coefficients lie in R. In particular R[T] is itself an integral
domain.

Remark 7.3.1. Note that in the case where R is already a polynomial ring F'[X], we introduce a
new variable T different from X.
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Definition 7.3.2. The content content(f)of the element f = Eé\io a;T* € R[T] where a; € R is
defined to be
content(f) = ged(ag, a1, - ,an).

We say that the polynomial f € R[T] is primitive if content(f) = 1.
Lemma 7.3.3. Let f € R[T] be a non-zero polynomial and let ¢ = content(f) € R. Then f may
be written f = cfo where fy € R[T)] is primitive.
Proof. Write f = Y"1 ;a;T* with a; € R. Then by definition we have ¢ = ged(ag, - -+ ,ay,). Note
that ¢ | a; for each i; we write b; = % € R.
, c
We set fo => 1" o b;T" € R[T] and notice that

n n
C'f() = ZC'biTi = ZaiTi = f
i=0 i=0
as required. Finally,

content(fo) = ged (b, - - -, bp) = ged (@’ o 7%) _q
& c

by Proposition B235. Thus fj is indeed primitive. O
Lemma 7.3.4. Let p € R be irreducible and consider the assignment
he h: R[T] = (R/{(p)[T]

defined as follows: for h = Zfio c;T € R[T) with ¢; € R, the polynomial h € (R/(p))[T] is given

by
N

h=> [a]T’
i=0
where [¢;] = ¢; + pR is the class of ¢; modulo pR.

(a) This assignment is a ring homomorphism.

(b) For h € R[T], h =0 if and only if p | content(h).

Proof. (a) follows from Proposition B=Z0. For (b), just observe that h = 0 if and only if p | ¢;
for every i. O

Proposition 7.3.5. (“The Gauss Lemma”) If f,g € R[T| are primitive, then the product fg is
primitive.

Proof. Suppose on the contrary that there are primitive polynomials f,g € R[T] for which fg is
not primitive. Writing d = content(fg) for the content of the product, we know that (d) # R so
that d is divisible by some prime p € R.

Consider the ring homomorphism h +— h of Lemma =34

Now, p | content(fg) = 0 = fg = f-g. Since R/pR is a field, the ring (R/pR)[T] is an
integral domain, so we may conclude that either f =0 or g = 0.

But according to Lemma =34 (b), f =0 = p | content(f) and g=0 = p | content(g).
This contradicts our assumption that 1 = content(f) = content(g). Thus indeed content(fg) =

[

1.
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Theorem 7.3.6. Suppose that f € R[T] is a primitive polynomial, and that g,h € K[T)] are
polynomials for which f = gh in K[T|. Then there are polynomials gi,h1 € R[T| with degg =
deg g1 and degh = deg hy for which f = gihy in R[T].

T z
Proof. Using Lemma 33, we may write g = —g1 and h = —hy where g1, h; € R[T| are primitive
w
and x,y, z,w € R with y,w # 0. We now see that

(V) yw- f=2xz-g1hs.

Since f is primitive, notice that yw = content(ywf). Moreover,the Gauss Lemma — i.e.
Proposition =33 — shows that g1h; is primitive; thus, we have content(zzgih;) = xz.
It follows that
(yw) = (x2)

i.e. that (&) w-yw = zz for a unit u € R* — see Proposition B19.
But then (O) and (&) together show that yw - f = w-yw - g1h1 and now the cancellation law
Lemma BT in the integral domain R[T] implies f = (ug;) - h1 which proves the Theorem. [J

7.4 Eisenstein’s irreducibility criterion

Theorem 7.4.1. Let p € R be irreducible, and let

f= ZaiTi € R[T], (wherea; € R, 0<i<n)
=0

be a polynomial with a, # 0. Suppose that p 1 ay, that p | a; for 0 <i < n —1 and that p*{ ag.
Then f is irreducible when viewed as an element of F[T].

Proof. Let ¢ = content(f). Then ¢ # 0 (mod p) since p { a,,. Observe now that the polynomial

-~ 1 -

f = —f € R[T] still satisfies the assumptions of the Theorem. Since f is irreducible in K[T7] if
c

and only if the same is true for f, it suffices to prove the Theorem when f = fis primitive.

Now, according to Theorem =38 the irreducibility of f € F[T] will follow once we show that
if f = gh for g,h € R[T] then either degg = 0 or degh = 0. So suppose f = gh for g,h € R[T)].

Consider the ring homomorphism f + f : R[T] — (R/pR)[T] as in Lemma =34. As-
sumptions on the coefficients a; show f = gh to be a non-zero multiple of 7". Using unique
factorization in the principal ideal domain (R/pR)[T| — see Theorem 271 —, it follows that g is
a non-zero multiple of 7% and h is a non-zero multiple of 77 where i + j = n and 0 < 7,5 < n.
Moreover ¢ = deg g and j = deg h.

Now the Theorem follows since if 7,5 > 0 then p divides the constant term of both g and h,
and then p? | ag contradicting our assumption. ]

Ezample 7.4.2. (a) Let p be a prime integer, let n > 1 and let f = 7™ — p. Then Theorem 271
shows that f € Q[T is irreducible.

(b) Let K be a field and consider the ring K[X] of polynomials over K. The field of fractions
of K[X] is the field F' = K(X) of rational functions.

Let n > 1 and consider the polynomial f = T" — X € F[T] = K(X)[T]. Then f is
irreducible in K (X)[T] by Theorem 2.
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7.5 Irreducibility of certain cyclotomic polynomials

For a prime number p consider the polynomial
" —1

F(T)=F,(T) =

(T) = Fy(T) =

Applying the change of variables U = T — 1 we see that

> (%)

U+1DP -1 o

=TP 4P 24 4T +1eQ[T)].

F(U+1):(U+1)—1_ U
U+ (pﬁl)Up—1+...+ @m (f;)U
- U

—urly (pfl>Up—2+---+ (;))U—i-p

In particular, g(U) = F(U+1) = Z?:_ol c;U? € Q[U] has degree p— 1 and the coefficients are

given by the formulae
p .
= 0<i<p-—1.
& (Z + 1>7 St1xp
Proposition 7.5.1. For a prime number p > 0, the polynomial
TP -1
o T-1

F(T) =TP P24 4T +1eQT]

of degree p — 1 is irreducible.
Proof. Clearly F(T) € Q[T] is irreducible if and only if g(U) € Q[U] is irreducible. Now, g(U) €
Z[U] since binomial coefficients " are always integers. We are going to apply Eisenstein’s

m
criteria to show the irreducibility of g(U). For this, we first note that c¢,—; = 1 is not divisible

by p and that cg = p is divisible by p but not by p?.
The irreduciblity will now follow from Theorem 271 once we argue that (&) : p | <p> for
i

each1 <i<p-—1.
p\_ _»t
1 illp—1i)!

To prove (&) just note that
Since 0 < i < p, neither ¢! nor (p —i)! is divisible by p. On the other hand
pl=p-(p—1)-(p—2)---2-1
is divisible by p.

Since one knows that (p

> € Z, unique factorization — see Section 52 — implies that p | <p)
i

as required. O

Ezample 7.5.2. For example, f(T) = T* + T3 +T? + T + 1 € QIT] is an irreducible since

T° -1 . o
f(r) = T3 and since p = 5 is prime.
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8 Some recollections of Linear Algebra

Let F be a field. Much of what you learned in a course on linear algebra remains valid for vector
spaces over I’ and not just for vector spaces over Ror C.

8.1 Vector Spaces

Definition 8.1.1. A wvector space over F' is an additive abelian group V together with a mapping
FxV =V

denoted by
(o, v) — av

called scalar multiplication that is required to satisfy several axioms:
(VS1) the multiplicative identity 1 = 1p € F satisfies 1 -v = for all v € V.
(VS2) scalar multiplication is associative: for all o, 5 € F'and all v € V', we have a(Sv) = (af)v.

(VS3) scalar multiplication distributes over addition in V: for all a, 8 € F' and for all v,w € V,
we have
a-(v+w)=a-v+a-w
and

(a+pB)-v=av+ Po.

You should compare these requirements with axioms you may have seen in a course in linear
algebra. The present list is probably shorter — that is because one needs axioms governing the
behavior of addition, which we have handled by requiring V' to be an additive abelian group.

8.2 Linear Transformations, subspaces and quotient vector spaces

Definition 8.2.1. Let V be a vector space over F. A subset W C V is called a subspace (or
more precisely, an F-subspace) provided that

(a) W is an additive subgroup of V', and

(b) W is closed under scalar multiplication by F' — i.e.

aweW forall o€ FandallweW.
Definition 8.2.2. If V and W are vector spaces over F', a function T" : V. — W is a linear
transformation (or more precisely, an F-linear transformation) if
(a) T is a homomorphism of additive groups V' — W, and

(b) T commutes with scalar multiplication — i.e. T'(aww) = aT'(v) for all @« € F and all v € V.
Definition 8.2.3. If V, W are vector spaces, a linear transformation T : V' — W is an isomorphism

if there is a linear transformation S : W — V such that T oS =1y and SoT = 1y.
If T' is an isomorphism, one says that V' and W are isomorphic vector spaces.

27



Proposition 8.2.4. Let V,W be F-vector spaces and letT : V — W be a linear transformation.
Then T is an isomorphism if and only if T is bijective.

Proof. Suppose that T is bijective. Then we know that T is an isomorphism of additive groups,
and hence there is an inverse isomorphism S : W — V. It only remains to show that S is a linear
transformation (rather than simply a group homomorphism).

So let a € F and w € W. Since T is onto, we may write w = T'(v) for some v € V. Now,

S(aw) = S(aT(v)) = S(T(aw) = 1w (aw) = awv = aS(T(v)) = aS(w).

On the other hand, if T is an isomorphism, then the inverseisomorphism S is an inverse
function to 71" so in particular 7T is one-to-one and onto. O

Proposition 8.2.5. If T :V — W is a linear transformation, then
(a) ker(T) is a subspace of V', and
(b) the image T(V) ={T(v) |v € V} is a subspace of W.

Proof. Exercise! O

Proposition 8.2.6. Let W be a subspace of the F-vector space V. The quotient group V/W
has the structure of an F-vector space, and the natural quotient mapping 7w :V — V/W given by
7(v) = v+ W is an F-linear transformation.

Proof. We must define a scalar multiplication for the additive group V/W. Given a € F' and an
element v + W € V/W, define
a-(v+W)=(aw)+ W.

We must confirm that this rule is independent of the choice of coset representative v for v + W.
Thus, we must suppose that
v+W =0 4+W

and we must show that a- (v+ W) =a- (v + W) i.e. that cv + W = av' + W.

The assumption that v + W = v/ + W means that v — v’ € W. Since W is a F-subspace, we
find that a(v —v') € W and using the distributive law we conclude that av — av’ € W. This
shows that av+ W = av’ + W as required. This proves that we’ve given a well-defined operation
of scalar multiplication.

It now remains to check that the associative and distributive laws hold for this operation.
Since these properties hold for the scalar multiplication in V', the verification is straightforward;
details are left to the reader. O

Proposition 8.2.7. If T : V. — W is a linear transformation, there is an isomorphism T :
V/ker(T) — T(V) given by T(v + kerT) =T (v) forve V.

Proof. The first isomorphism theorem for groups tells us that the rule T is an isomorphism of
groups. In view of @prop:inv-iso, it remains to argue that 7" is a linear transformation.
Thus, let « € F and = € V/kerT. We may write x = v + ker T' for some v € V. Now, by
definition we have
ar =a(v+kerT) = av+ ker T.

Thus, since T is a linear tranformation we find the following:
T(az) = T(ow + ker T) = T(av) = oT(v) = oT (v + ker T).

This confirms that T’ commutes with scalar multiplication and is thus a linear transformation. [
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8.3 Bases and dimension

You are probably familiar with the notions of spanning set and of linear independence. One issue
to be aware of is how to handle possibly-infinite sets in this setting.
To quote from Michael Artin’s algebra text (Arfin 2017):

In algebra it is customary to speak only of linear combinations of finitely many
vectors. Therefore, the span of an infinite set S must be interpreted as the set of
those vectors V which are linear combinations of finitely many elements of S...

Definition 8.3.1. If S C V is a set of elements, the span of S is defined to be

,
span(S) = {Zai% |r€Z>p,a;€ Foo; e V(1<i< r)}

i=1

It is clear that span(S) is a subspace of V.

Definition 8.3.2. A subset S C V of the vector space V is said to be linearly independent if when-
ever n € Z>o, whenever z1,--- ,x, € V are distinct elements of V', and whenever o, -+ ,ap, € F
then

n
Zaixi:() = «a; =0 foreach1<j <n.
i=1

Remark 8.3.3. We say that the vector space is finitely generated if there is a finite set S C V for
which V' = span(S). In fact, V is then finite dimensional (see Definition B=38 below).

Definition 8.3.4. Let V be a vector space over the field F'. A basis for V is a subset S C V
(a) S spans V;ie. V =span(V), and

(b) S is linearly independent.

Proposition 8.3.5. Let V' be an F-vector space.

(a) There is a basis B for V.

(b) If W C V is a subspace of V., and if € is a basis for W, there is a basis B for V with
€ C AB.

(c) If V = span(S) then there is a basis of V contained in S.

(d) If S C V is a linearly independent subset, there is a basis of V' containing S.

(e) Any two bases of V' have the same cardinality.

Proof. When V is finitely generated,results (a)-(e) can be found in (Hoffman and Kunze T977),
§2.2 and 2.3, and in (Friedberg, Insel, and Spence 2002) §1.6.

For the general case of (a)-(d) see (Friedberg. Insel, and Spence 2002) §1.7.

A proof of (e) in case %, and Py are infinite bases for V requires the Schroeder-Bernstein
I'heorem; we won’t need this result in the course. ]
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Definition 8.3.6. If V is a vector space with basis 9%, the dimension of V

e written dimV or dimp V' - is equal to the cardinality of the set %.

It follows from Proposition B34 (e) that the dimension of V' doesn’t depend on the choice
of basis.

Proposition 8.3.7. Let V,W be F-vector spaces, let B be a basis for V, and let x, € W for
each b € B. Then there is a unique linear transformation T : V. — W such that T'(b) = xy, for
each b € A.

Ezample 8.3.8. Let F[T] be the polynomial ring over the field F. THen F[T] is in particular a
vector space over F' with countably infinite basis given by {T% | i > 0}.

Th linear independence of this basis precisely means that if f = vaz 0a; " € F[T)fora; € F,
then f = 0 if and only if all a; = 0.

Proposition 8.3.9. Let T : V — W be a linear transformation of F-vector spaces with dimV <
oo. Then

dimp V = dimp T(V) + dimp ker(V').
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9 Field extensions
Definition 9.0.1. Let F' and E be fields and suppose that F' C FE is a subring. We say that F' is

a subfield of ¥ and that F is a field extension of F'.
Throughout this discussion, let F' C E be an extension of fields.

9.1 Algebraic extensions of fields

Definition 9.1.1. An element o € E is said to be algebraic over F' provided that there is some
polynomial 0 # f € F[T] for which « is a root — i.e. for which f(a) = 0.
If « is not algebraic over F', we say that « is transcendental over F.

Example 9.1.2. e it is a fact that 7, e € R are transcendental over Q.
e Of course, 7, e are algebraic over R.

o Any element o = a + bi € C (for a,b € R) is algebraic over R. Indeed, « is a root of the
polynomial

(1) = (T = a)(T - @)
=T? - 2Re(a)T + |af?
=T? — 24T + (a* + b*) € R[T]

where Re(a) = a denotes the real part of the complex number «.

9.2 The minimal polynomial

Proposition 9.2.1. Let o € E and suppose that « is algebraic over F'. Then there is a unique
monic irreducible polynomial p € F[T| for which « is a root.
Moreover,

(a) p is the monic polynomial of smallest degree for which

a s a root.

(b) if f € F[T) is any polynomial with f(a) =0, then p | f.

Proof. Let I = {f € F[T] | f(a) = 0}. It is straightforward to check that it is an additive
subgroup, and it is closed and under multiplication with any polynomial in F[T]); thus [ is an
ideal of F'[T].

Since « is algebraic, I # {0}. Thus I coincides with the principal ideal I = (p) for some
monic 0 # p € F[T], and p is the unique monic element of smallest degree in I.

It only remains to argue that p is irreducible. Suppose that f,g € F[T] and that p | fg. We
need to argue that p | f or p | g. Well, since fg = pq for ¢ € F[T], we see that

0= (pg)(@) = (fg)(@) = f(a) - g(e).

Since f(a),g(«) are elements of the field E, the only way their product can be 0 is for at least
one factor to be zero - i.e. either f(a) =0 or g(a) = 0. But then either f € I or g € I and thus

p|lforplg. O
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Corollary 9.2.2. Let o € E. If p € F[T) is irreducible and monic, and if p(a) = 0, then p is
the minimal polynomial of o over F'.

Definition 9.2.3. Let o € E be algebraic over F.

e The irreducible polyomial p of the proposition is known as the minimal polynomial of «
over F'.

e The degree of o over F' is defined to be the degree of the minimal polynomial p.

Ezxample 9.2.4. An element o« € F has degree 1 over F, since it is the root of the irreducible
degree 1 polynomial T'— « € F[T].

Ezxample 9.2.5. Consider the complex number z = a + bi € C with a,b € R. Then z has degree
< 2 over R, and that degree is 2 if and only if b # 0.

Indeed, if b = 0, then z = a € R is a root of T — a € R[T] so z has degree 1 over R.
Otherwise, z is a root of

p= (T —2)(T—%) =T - 24T + (a® + b*) € R[T].

Since p has roots z, zZ, it has no real roots; since it has degree 2, p is irreducible over R. Now
the Corollary shows that p is the minimal polynomial of z.

Ezample 9.2.6. Let F be a field and let F/(X) be the field of fractions Q(F[X]) of the polynomial
ring F[X].
F(X) is often called the field of rational functions over F'; its elements have the form

i:@ for f,g € F[X]

g 9(X)
Then the element X € F(X) is transcendental over F'.
Indeed, given any non-zero polynomial f(T') € F[T], we wonder: is f(X) = 0?7 and of course,
the answer is “no” because f(X) is just the polynomial f(T") after the substitution 7"+ X.
In particular, the degree of X over F' is undefined (or we could define it to be 00).

Ezample 9.2.7. Consider the field F = Q(v/2) defined by adjoining to Q a root of 72 — 2. We
identify F' with a subfield of R.
Consider the polynomial p(T) = T* — 2 and write ow = 21/ for the positive real root of p(T').
Since p € Q[T is irreducible, o has degree 4 over Q.
On the other hand, a has degree 2 over F. Indeed, note that in F[T7,

p(T) =T* —2 = (T? —V2)(T? + V2).

Since « is a root of T? — /2 € F[T], the degree of a over F is < 2. To see that equality
holds, we must argue that T2 — /2 is irreducible over F.

To establish this irreducibility, we will argue that 72 — v/2 has no root in F.

A typical element of F has the form = a + bv/2 for a,b € Q.

Suppose that

() V2=2a=(a+bV2)? =a®+2b* + 2abV/2.

But then comparing coefficients we see that a? + 2b*> = 0 and 2ab = 1.
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Now
> +20°=0 = a=b=0 = 2ab# 1.

Thus the assumption ({) is impossible and so
T? —V2e FIT) = Q(V2)[T]

is indeed irreducible.
We repeat for emphasis:

« the minimal polynomial of a over Q is T — 2 and has degree 4,

« the minimal polynomial of  over Q(v/2) is T? — /2 and has degree 2.

9.3 Generation of extensions and primitive extensions

Definition 9.3.1. Let S C E be a subset. The smallest subfield of E containing F' and S is
denoted by F(S). If S = {u1,u2, - ,un} is a finite set, we often write F'(S) = F(uy, - ,un)
for this field.

If = F(uy,...,u,) we say that the elements u; generate the extension E of F.

If n = 1, the extension F(u) = F(u1) of F is said to be a primitive extension (or sometimes:
a simple extension).

Remark 9.3.2. Remark: Note that F'(S) is equal to the intersection

F(S)= (K

Ke&

of the collection

& ={K C E | K a subfield of E containing F and S}.

Since the intersection of subfields is again a subfield (check!), the notation F'(S) is meaningful.

Remark 9.3.3. Note that by definition
F(ui,ug, ... upn) = Fup,ug, ... up—1)(tn).

So to “describe” the extension F' C F(uq,...,u,) we can focus on describing primitive exten-
sions. Given a description of primitive extensions, we can first describe the extension F' C F'(uy)
of F', next we can describe the extension F'(u1) C F(uy)(ug2) of F(u1), and so on.

Proposition 9.3.4. Let o € FE.
a. If « is algebraic over F with minimal polynomial p € F[T] over F, then
F(a) ~ F[T]/(p),

where « identifies with T + (p).

In particular, F(«) has as an F-basis the elements

where n = degp = deg a.
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b. If a is transcendental over F, then F(«a) ~ F(T) where F(T) is the field of fractions of the
polynomial ring F[T).

Proof. Construct the homomorphism
¢: F[T] — E such that ¢ is the identity, and ¢(T') = a.

We are going to argue in both case (a) and (b) that ¢ induces the desired isomorphism.

First consider case (a). Suppose that « is algebraic with minimal polynomial p. The previous
Proposition now shows that ker ¢ = (p).

Since p is irreducible, the quotient F[T]/(p) is a field. According to the first isomorphism
theorem, ¢ induces an isomorphism between F'[T]/(p) and its image K. Thus K C FE is a subfield
containing F' and «, so by definition F'(«) C K.

On the other hand, « identifies with the class T' + (p), and so we’ve seen that the elements
1,a,--,a™ ! form an F-basis for K viewed as a vector space over F. Now, any subfield K of
E containing F and o must contain all F-linear combinations of the elements o'; thus K C K
and this proves that

KcF(a)= () Ki.
K€€
We now conclude that K = F(«) as required.

Now consider case (b). The condition that « is transcendental is equivalent to the requirement
that ker ¢ = {0}.

Thus for any non-zero polynomial f € F[T], ¢(f) = f(a) is a non-zero element of F'(«). In
particular, f(a)~! € E. B

Now the defining property of the field of fractions gives a unique ring homomorphism ¢ :
F(T) — FE for which ¢\F[T] = ¢.

Since F(T) is a field, gz~5 is one-to-one, and its image is a subfield of E containing a. On
the other hand, any subfield of E containing o must contain the image of ¢ and statement (b)
follows at once. O

Ezample 9.3.5. For any transcendental number v € R, the subfield Q(v) of R is isomorphic to
the field Q(T") of rational functions.
In particular, Proposition B232 shows that there is an isomorphism Q(e) ~ Q(m).

Remark 9.3.6. Here is a question we’ll answer in an upcoming lecture. As before, let F' C E be
a field extension.
If a, B € E are algebraic over F, is o + 3 algebraic over F'? How about « - 87

Ezample 9.3.7. Let E = Q[T]/(T? — 2) and let v = T + (T2 — 2). Of course, £ ~ Q(+/2) and
under this isomorphism, v is mapped to /2. Put another way, 7 is a root of 7% — 2 in F.

We recall that since 7° —2 has degree 3, F has dimension 3 as a Q-vector space, and {1,7, v%}
is a Q-basis for F.

For an element a = a + by + ¢y? consider the Q-linear mapping

A EF— F

given by the left mutiplication with «; i.e. by the rule Ao (5) = « - 8 for g € E.
We are going to compute the matriz of A, in the above basis for E. For this, note that the
s

choice of basis determines a linear isomorphism ¢ : E — Q3 given by ¢(s +ty +uy?) = |t
u
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So we are looking for a 3 x 3 matrix M = M, with the property that

(Aa(B)) = M - $(B).

a
o Ay(1) = a so that ¢(Aa(1)) = |b| . This is the first column of M.
c
o
e A7) = ay =ay+by? +cy3 = ay + by? + 2¢ = 2¢ + ay + by? so that ¢p(Aa(7) = | a
b
This is the second column of M. -
op
o M(7?) = ay? = a2+ by + eyt = ay? +2b+2cy = 2b+2cy+ay? so that p(\a(72) = [2¢].
a

This is the third column of M.

Thus
a ¢ 2b
M == MO( = Ma+b,y+c,y2 = b a 26
c b a

We claim for a1, as € E that My, +q, = Mo, + My, and My, .q, = My, - M,,. Since M, is
the matrix determined by the linear transformation \,, our claim will follow if we just observe
that Ao, + Aoy = Aajtas and Aoy © Aay = Aaj.ap (Where o denotes the composition of linear
transformations). But for § € F notice that Ay, 0 Aoy (8) = Aoy (@28) = a1aaff = oo, (B); the
other verification is similarly straightforward.

This proves that a +— M, determines a ring homomorphism

F — Matgxg(Q)

1 0 2
Consider the element 1+~ € E and notice that M;, = [1 1 0].
0 11

1 -2
Now, we can compute the inverse matrix M1+771 = é —1 1 2 | which we recognize
1 -1 1
as the matrix M;_ 23
Thus we see that
11 9
Ereiak AU hND

\

9.4 The degree of a field extension

Definition 9.4.1. We write [E : F| = dimp E and say that [E : F| is the degree of the extension
FCFE.

If E is not a finite dimensional vector space over F, then [E : F| = dimp E = oo.

Proposition 9.4.2. Let a € E. Then « is algebraic over F if and only if [F(«) : F]| < cc.
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Remark 9.4.3. If « is transcendental, the cardinality of an F-basis for F'(«) fails to be countable
if F'is uncountable. Indeed, you can show that the elements

{Tl_aeF(T)meF}

are linearly independent.

Proposition 9.4.4. Let E be an extension of the field F and let o € E. The following are
equivalent:

a. « s algebraic over F.
b. the primitive extension F(«) is a finite extension of F.

c. o € Ey for some subfield By C E with ' C Ey which is a finite extension of F'.

Proof. a. = b: If « is algebraic, let d = dega be the degree of o over F'. We have seen
that 1,c,...,a%! form an F-basis for F(a), so [F(a) : F] = d and thus F(«) is indeed a finite
extension of F.

b. = c¢: This is immediate; just take Ey = F(«).

c. = a.: Assume dimp E; = d. Since o € E; and E; is a field, also o € E; for all i € Zxg.
Since F; has dimension d over F', it follows from linear algebra that the d + 1 elements

are linearly dependent. over F. Let ¢y, c1,...,cq € F not all zero be such that

and consider the polynomial
d
f(T)=> T e FIT).
i=0

Since not all of the coefficients ¢; are 0, f(T') # 0. Since f(a) = 0, we have proved that « is
algebraic over F' as required. O

Proposition 9.4.5. Let F C E C K be fields where K is a finite extension of E and E is a
finite extension of F'. Then K is a finite extension of F' and moreover:

[K:F|=[K:E]-[E:F].

Proof. Let
ai,...,ay € E  be an F-basis for £

and let
bi,...,bpr € K be an E-basis for K

Multiplying in the field K, we consider the elements asb;, and we assert:

B ={asb; |1 <s<N,1<t< M} isan F-basis for K
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e 9% spans K over F': indeed, let x € K. We must express x as a linear combination of the
vectors A.

Since the {b:} span K over E, we may write

T =urby + - -upyby for up € E.

Since the {as} span E over F, for each 1 <t < M we may write

ug = vigal +---oygay  for vgy € F

M M N
T = Zutbt = Z (Z Us,t%) by = Z CERA asby
t=1

t=1 \s=1 1<s<N,1<t<M

e % is linearly independent over F'.
Suppose that
M /N
B MR TRNE 3 A
1<s<N,1<t<M t=1 \s=1
for coefficients vy € F'.

Now use the fact that {b;} are linearly independent over E to conclude for each 1 <t < M

that
N

0= E Vst Qs

s=1

For any 1 <t < M, use the fact that {as} are linearly independent over F' to conclude for
each 1 < s < N that vs; = 0.

O

Corollary 9.4.6. Let E be a finite extension of F'. If a € E then the degree of a over F' is a
divisor of [E : F|:

degr(a) | [E : F).

Proof. Apply Proposition @23 to the tower of field extensions
FCF(a)CE

to deduce that
[E:F)=[F:F(a)][Fla): F|

and the result follows since [F(«) : F| = degp . O
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9.5 Examples of finite extensions

Ezample 9.5.1. [Q(v/2,V3) : Q] = 4.

The polynomials 72—, 7% — 3 € Q are known to be irreducible over Q (can you give a quick
argument?)

We claim that 72 — 3 remains irreducible over Q(v/2) —i.e. that T2 — 3 € Q(v/2)[T] is
irreducible.

If we verify the claim, it follows that

[Q(vV2,v3) : Q(V2)] =2

and thus

[Q(V2,V3): Q1 = [Q(V2,v3): Q(V2)]- [Q(V2) : Q] = 2-2 = 4

as required.

Let’s now prove the claim. Since 72 — 3 has degree 2, the irreducibility will follow provided
we argue that 72 — 3 has no root in Q(v/2).

So: suppose that 3 = (a + bv/2)? for a,b € Q. Thus

34+0-v2=3=a%+20%+2abV2

and comparing coefficients we find that

3=a®>+20> and 0= 2ab.

Now 2ab = 0 = a = 0 or b = 0 and the equation 3 = a? + 2b? is then impossible (since
neither 3 nor 3/2 is a square in Q). This completes the proof that T2 — 3 is irreducible over

Q(v2).
Ezample 9.5.2. [Q(v2 ++/3) : Q] = 4.
To prove the claim, we argue that

Q(V2+v3) = Q(v2,V3);

the assertion then follows from the previous example.
Write K = Q(v/2 + v/3). To confirm this equality, first note that trivially we have

K CQ(V2,v3)
so it is enough to argue
V2,V/3€eK.

(Why?)
In fact, it is easy to see that V2e K <— V3eK (since V2+V3eK by construction!).
So it only remains to argue e.g. that v/3 € K.
Let’s observe that

L1 B-VE VBB
V2+V3  V2+V3 V32 1

and since K is a field,

W+xf2+\/§—(\f—\@)+(\/§+\/§)—2\/§€ff
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so indeed V3 € K.
The preceding calculation confirms (for example) that v/2 may be written in the form

V2 = a+ ba+ ca? + do®
=a+b(V2+V3) +c(V2+ V32 +d(V2+V3)3

for some coefficients a, b, ¢,d € Q, though we’d need to do some work to find a, b, ¢, d.

9.6 Algebraic extensions

Let F C E be any extension of fields. We are going to argue that
Eae = {u € E | u is algebraic over F'}

is a subfield of E.
For example, this requires us to know that if z,y € E,g then x—y € Ej,)g. It is not completely
clear how to find an algebraic equation satisfies by x — y, so we use a more indirect argument.
Our main tool is the following:

Lemma 9.6.1. Let o, 8 € E be algebraic. Then [F(«, )] : F] is a finite extension. In particular,

a =+ and o - B are algebraic over F; if 0 # «, then also o' = = is algebraic over F.
Q@

Proof. Indeed, 3 is algebraic over F' hence algebraic over F(a) so
[F(c, B) : F(a)] < o0

since F(a, 8) = F(a)(B).
Since « is algebraic over F, [F'(a) : F| < oo and thus

is finite. The result now follows from Proposition E24. O

Corollary 9.6.2. Let E be an extension field of F'. The set of all elements of E which are
algebraic over F' forms a subfield Ey, of E.

Proof. We first observe that E,, is an additive subgroup of E. For this, note that 0 € Ej,jg so it
just remains to show that if 2,y € E,, then x — y € Ej,,. But this statement follows from the
Lemma G561

It now remains to argue that E,, is closed under multiplication and contains the inverse of
its non-zero elements. These statements again follow from Lemma TG O

Definition 9.6.3. An extension field E of F' is algebraic over F if each element of E is algebraic
over F.

Proposition 9.6.4. FEvery finite extension of fields is algebraic.

Proof. Let F C E be a finite extension and let & € E be an arbitrary element of F. Since
[F(«) : F]isadivisor of [E : F|, [F(«) : F] is finite and hence « is algebraic by Proposition &244.
This shows that E is algebraic over F' as required. O
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Lemma 9.6.5. Let F' C E be an algebraic extension, and let aq,...,an € E. Then

[Fag,...,an) : F] < 0.

Proof. Proceed by induction on n > 1.

First consider the case n = 1. Since E is algebraic over F, a = « is algebraic over F' and
[F(a) : F] is finite by previous results.

Now suppose n > 1 and write E; = F(ay,...,q;) for 1 <i < n. The induction hypothesis is
then: [E; : F] < oo for i < n. Note that F,, = E,,_1(a,), and — since ay, is algebraic over F' —
ay, is algebraic over E,,_1. Thus

[Epn : En_1] = [En-1(an) : Ep—1] < o0
by Proposition @22 and it follows by induction that
[En: Fl=[Ep: En_1] - [En-1: F] < o0
as required. O

Proposition 9.6.6. Let E be an algebraic extension of F' and let K be an algebraic extension
of E. Then K is an algebraic extension of F.

Proof. Let a € K. We must argue that « is algebraic over F. Since « is algebraic over F, it is
the root of some polynomial

f(T)=ao+a T+ asT?*+ - +anT" a; € E.

Now, form the extension F; = F(ag,a1,...,ay). Since E is algebraic over F, all a; are
algebraic over F. It follows from Lemma 061 that [E : F] < co. Since « is algebraic over Ej
we know that [E(«) : Eq] < oo by Proposition B24. It now follows that

[El(a) : F] = [El(a) : El][El : F] < o0
so that « is algebraic over F' by Proposition I64. O

9.7 Another example

Consider the field K = Q(T') where T is transcendental over Q. It follows from Theorem 271
that

X"—T—aeK[X]=Q(T)[X]

is irreducible for n = 2,3 for any a € Q.
These irreducibility statements mean that

[K(WT —a):K]=2 and [K(VT —a):K]=3

(or writing everything out in full detail, that

Q. VT —a): Q(T)] =2 and [Q(T,VT —a): Q(T)] =3.)
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Lemma 9.7.1. K(VT —a,v/T —a) = Q(T,VT — a, /T — a) has degree 6 over K = Q(T).
Proof. Let L = K(\/T — a,~/T — a). The claim will follow if we show that

(%) [L:K(WT—a)=3

since then

[L:K|=[L:K(VT —a)]- [ K(VT —a): K]=3-2=6.
Now, (&) follows if we argue that f(X) = X® — T —a € K(v/T — a)[X] is irreducible; since
f has degree 3, it suffices to argue that f has no root in K(v/7T — a).

But were o € K(v/T — a) a root of f, we know that o has degree 3 over K. But this is
impossible since

ae K(VT —a) = deggal| [K(VT —a): K] =2.

This completes the proof that f is irreducible over K (v/T' — a) and thus the Lemma is verified.
O
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10 Constructible real numbers

As an example of the utility of field theory, we are going to describe a field-theory-based answer
to a “geometric-constructions/geometric” question about numbers. Loosely put, we are going to
answer the question: “can one trisect an angle using ruler and compass?”

10.1 Ruler and compass constructions

As a starting point, we are given two points at unit distance in the Euclidean plane.
Given any two distinct known points P and @), one can construct:

o the line through P and @ (this uses a straightedge)

o the circle with center P which passes through @ (this uses a compass)

One views the points of intersection of lines and circles that have been constructed as con-
structible (i.e. known) points.
Here are some useful constructions that we are going to use without further argumentation:

Lemma 10.1.1. (&) Given a point P on a line L, and a second point Q not on L, we can
construct a line L' parallel to L passing through Q.

/ |

L -Q

Lemma 10.1.2. (V) Given a line L and a point P not lying on L, one can construct a line L'
containing P and perpendicular to L.

L L
-P

Lemma 10.1.3. (#) Given two points P # Q on a line L, a second line L', and a point R on
L', we can construct a point S on L’ such that

|PQ| = [RS].
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10.2 Constructions

Definition 10.2.1. A real number r is constructible if one can construct a line segment of length
|r| using straightedge and compass.

Proposition 10.2.2. The set of constructible real numbers forms a subfield C' C R.

Sketch of proof. First, use Lemma I3 to show that C' forms an additive subgroup of R.
To argue that C' is closed under multiplication, proceed as follows:

o Given positive constructible numbers y, z, w construct a diagram with points P,Q, R,Y as
follows with |PQ| = z, |PR| = w and |PY| =y.

o Now use () to construct the line through Y parallel to the line through @ and R.

o Writing X for the (constructible) point of intersection of the indicated lines, write z = |PX|
and notice that z/y = z/w.

e Now let a,b > 0 be constructible and let y = a, z = b and w = 1; the above argument
shows that z = yz = ab is constructible.

Similar arguments give the constructibility of a/b where a,b > 0 are constructible. O

Let’s observe that according to the Proposition, every rational number is constructible.

We may and will suppose that the points (1,0) and (0,1) in the plane are constructible.
In particular, the coordinates r, s of any constructible point P = (r,s) are constructible real
numbers.
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10.3 Lines and Circles over a field
Of course, any line may be described as the set of solutions to an equation
aX +bY +¢c=0
for a,b,c € R, and any circle may be described as the solutions to an equation
X?+Y?+aX +bY +¢c=0

for a,b,c € R.

If F'is a subfield of R, a line over F' means a line with equation aX 4 bY + ¢ = 0 where
a,b,ce F.

Similarly, a circle over F' means a circle with equation

X2 4+Y?24+aX+bY +¢=0 wherea,b,ceF.

Lemma 10.3.1. e If the points P # Q) both have coordinates in F, the line through P and
Q is a line over F.

o If C 1is circle for which both the radius and the coordinates of its center are all in F, then
C is a circle over F.

Constructing points via ruler and compass amounts to finding the intersections of lines and
circles. We record the following fact about such intersections:

Proposition 10.3.2. Let F' C R be a subfield. The coordinates of the points of intersection of
lines over F and circles over F belong to the field F(\/u) for some u € F.

(a,b)

If in this diagram the line and the circle are “over F”, the conclusion is that a,b € F(y/u)
for a suitable u € F.

10.4 Characterizing constructible numbers

Using Proposition IIZ32, we can give an important characterization of constructible real num-
bers:

Theorem 10.4.1. u € R is constructible <= there are uy,...,u, € R such that:

a. u} € Q,
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b. u? € Q(uq,...,ui—1) for 2<i<n, and

c. u€ Qur,...,up).

Proof. =: This follows from the Proposition.

<: Use the following: if F' is any subfield of the field of constructible numbers, then /u is
constructible for each positive © € F. For this, construct a circle of diameter 1 + u, and a line
perpindicular to the diameter, intersecting the diameter 1 unit from the west pole:

Then = = /u. O

Corollary 10.4.2. If u is a constructible real number, then u is algebraic over Q and deg(u) is
a power of 2.

10.5 Angle trisection

Lemma 10.5.1. a. For any angle 6, we have the following identities:

4 cos®(0) — 3 cos(f) — cos(36) = 0.
b. Let o = cos (g) « is a root of the irreducible polynomial

f(T) =8T3 6T — 1 € Q[T).
In particular, the degree of o over Q is 3.
c. « is not a constructible number.
Proof. Recall the trigonometric identities:
sin(a + 8) = sin(«) cos(B) + cos(a) sin(B) (10.1)
and

cos(a + ) = cos(a) cos(f) — sin(«) sin(B). (10.2)
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Taking o = 3 we get
sin(2a) = 2sin(a) cos(a)

and
cos(2a) = cos?(a) — sin?().

For a real number 6, we find that “double angle formula”

cos(26) = cos®(0) — sin?(6)
) =

= cos?(6) — (1 — cos?(8))
= 2cos?(f) — 1
This shows that
2cos?(6) — cos(20) —1 =0 (10.3)

To prove (a), let & = 26 and § = 6 in (I2); we get

cos(360) = cos(260 + 0)
= co0s(26) cos(#) — sin(26) sin(0)
= (2cos?(#) — 1) cos(6) — (2sin(#) cos(0)) sin(8)
= 2cos®(6) — cos(f) — 2 cos(d) sin’(6)
= 2cos(6) — cos(f) — 2cos(8)(1 — cos?(8))
= 4cos®(0) — 3cos(h).

This shows that 4 cos?(6) — 3cos(6’) — cos(30) = 0 as required.
1
We now prove (b) If & = —, then of course cos(36) = 37 50 (a) shows 6 to be a root of the

equation 473 — 3T — 5 € Q[T ] Multiplying this polynomial by 2 gives 873 — 67 — 1 and we can
use the rational roots test Theorem [21 to confirm the that this polynomial has no root in Q
and is thus irreducible in Q[T7.

Now (c) follows from Corollary 472, since 3t 2™ for any m > 1. O

Theorem 10.5.2. [t is impossible to find a general construction for trisecting an angle.

1 3 1
Proof. Since cos (g) =3 and sin (g) = \g, one can construct points Q = 5(1,\/3),P =

(0,0), R = (1,0) and then ZQPR is g
We claim that one can’t construct further points 5,7 such that the ZQPS, ZSPT and
/T PR are all equal.

Indeed, if it were so, the coordinates of 7' would be (cos (g) ,sin (g)), and then cos <g)

would be a constructible number, contrary to Lemma ITIH .
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11 Splitting fields

11.1 The notion of a splitting field

Let F be a field and consider a polynomial
f=ao+aT+- - +a,T" € F[T]

of degree n > 1.

Definition 11.1.1. If ' is an extension field of F', we say that f splits over E provided that there
are elements rq,...,7r, € E such that

n

f=@—r)(T=ry)-(T—ry)=][(T-r) € EIT).
=1

Definition 11.1.2. If f splits over the field extension E of F', and if r1,...,r, € E are the roots
of f, we say thtat E is a splitting field for f over F' if moreover E = F(ry,...,my).

Thus a splitting field E is somehow a minimal field extension over which f splits.
Ezample 11.1.3. E = Q(i) is a splitting field over Q for the polynomial f = 72 — 2T + 2 since

f=T—-1-0)(T—-1+1) € Q(i)[T]
and since Q(i) = Q(1 +14,1 — 7).

Theorem 11.1.4. Let f € F[T] has degree n > 1. Then there exists a splitting field E for f
over F' with [E : F] <nl.

Proof. Proceed by induction on n > 1. The result holds when n = 1, since then f splits over
E=F.

Now suppose that the result is known for all fields F' and all polynomials of degree < n — 1.

Now, choose an irreducible factor p of f in F[T], say of degree d < n. Choose a root of p in
some field extension of F', and consider the field K = F(«a). We know that [K : F] = [F(«) :
F] =d = degp.

Since « is a root of p, it is also a root of f; thus by the remainder theorem — see Corollary B2
—, We may write

f=(T—-a)-g forge K[T] with degg=mn— 1.

Now use the induction hypothesis to construct a splitting field E for g over K with [E : K| <
(n—1)L

Thus E = K(rg,...,r,) and

g=[]@-r) e E[T).
i=2
We now have

n

f=T~a)-g=(T—a) [T —r) e BIT];

thus, f splits over E. Moreover, £ = K(rg,...,r,) = F(a,r2,...,7,) which confirms that E is
a splitting field of f over F.
Finally, note that
[E:F|=[F:K|[K:F|<(n-1)!-d<n!

sinced <n. O O
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11.2 More examples of splitting fields
11.2.1 Fourth root of 2

The field E = Q(i, v/2) is a splitting field for f = T* — 2 over Q, and [E : Q] = 8.
First, if we write o = v/2 for the real fourth root of 2, the roots of f are precisely +a, +icv.
Indeed,

(T — a)(T + a)(T — ia)(T + ia) = (T? = V2)(T? +v2) = f.
Now, E = Q(i, v2) = Q(+a, +ia).
Finally, to see that [E : Q] = 8, first note that [Q(a) : Q] = 4 since T* — 2 is irreducible over
Q.
Now a € R = Q(a) C R, so Q(a) does not contain a root of T? + 1. Thus T2 + 1 is
irreducible over Q(a)
This shows that

E:Q]=[E:Q(a)]-[Q(a): Q] =2-4=38.

11.2.2 Transcendental extension

E = C(X, VX +1) is a splitting field over C(X) for 7% — (X + 1), and [E : C(T)] = 4.

11.2.3 Finite field example

Let F' = F7 be the field with 7 elements.
Let’s describe the splitting field for f = T2 — 3 € F[T] over F.
First, note that the cubes mod 7 are as follows:

return [ (n,n**3 % 7) for n in range(7) ]

(o, oo, 1, 1, (2, 1), @3, 6, (4, 1), (5, 6), (6, 6)]

In particular, f = 72 —3 has no root in F = F7. So if a denotes a root of f in some extension
field, then F'(«) is a degree 3 extension of F.

Now let’s notice that the multiplicative order of (the class of) 2 in F7* is 3: indeed 23 =8 =1
(mod 7) but 2,22 # 1 (mod 7). So we can observe that also 2« and 4« are also roots of 7% — 3.
Thus

f = (T = a)(T - 20)(T ~ 4a) € F(a)[T] = F+(a)[T].

This shows that F(a) = F7(a) is a splitting field over F of f = T3 — 3.
Observe that |F(a)| = 72 = 343; elements of F(a) all have the form

a+ba+ca® a,bceFr.

11.3 Uniqueness of splitting fields

We are going to argue that a splitting field for a polynomial f over F' is essentially unique.
Let us first make an observation: if § : F — F} is an isomorphism of fields, then 6 may be

extended to an isomorphism
0: F[T| — F\[T]
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with the property that 6(7) = T. Note that polynomials satisfy
p € F[T] isirreducible <=  0(p) € Fi[T] is irreducible.

Lemma 11.3.1. Let 0 : F — Fy be an isomorphism of fields, let E = F(u) where u is algebraic
over F' with minimal polynomial p € F[T], and let p1 = 0(p). If v is a root of p1 in an extension
field of Fy, there is a unique way of extending 0 to an isomorphism ¢ : F(u) — Fi(v) subject to
the conditions (i) ¢(u) = v, and (ii) ¢|p = 0, i.e. the restriction of ¢ to F' is given by 6.

This diagram might be useful for visualizing the situation:

Flu) & F®v)

e 1
F % B

Proof. We first observe that ¢ is uniquely determined by the indicated conditions. Indeed, F'(u)
is spanned as F-vector space by elements of the form u’, and since ¢ is a ring homomorphism it
must satisfy ¢(u’) = v’

We now prove the existence of ¢. We first note that —according to Proposition B34 — there
are isomorphisms 7 : F[T]/(p) = F(u) and ¢ : Fy[T]/(p1) = F1(v) with

YT+ (p)) =u and (T + (p1)) =0

such that yr = id and ¢p, =id.

Now, consider the ring homomorphism F'[T] % R [T] =5 Fy[T]/(p1) where 7 is the quotient
mapping. This mapping 7 o € is onto and has kernel (p); according to the First Isomorphism
Theorem — see Theorem 222 — it induces an isomorphism

& F[T]/{p) = [T/ (p1)

such that @z = 0 and such that ®(T' + (p)) = T+ (p1).
Now 1o ®ony~!: F(u) = Fi(v) has the required properties. O

Remark 11.3.2. Using the notations of the preceding proof, the isomorphism F(u) — Fj(v)is
given by

F(u) 25 FIT)/(p) 2 BT/ (1) 5 Fi(v).

Ezample 11.3.3. Consider the field F' = Q(i). Write o : Q(i) — Q(7) for complex conjugation;
thus o(a + bi) = a+ bi = a — bi for a,b € Q. The mapping o is an automorphism of the field
F =Q(3).

We claim that the polynomials f; = T2 — (1 +4) and fo = T? — (1 —1i) in F[T] are irreducible.
Note that fo = o(f1) so it is sufficient to argue that f is irreducible.

According to Proposition T4 it is enough to argue that the degree 2 polynomial f; has no
roots in F' = Q(3).

If a € Q(i) is a root of fi then a? =1+ i so that

o?-o(a?)=14i)-o(1+i)=(1+i)(1—i) =2

But then (ao(a))? = 2, and it is easy to see that o - o(a) = a@ € Q. Since v2 ¢ Q this
contradiction proves that there is no root o € F' of f;. Thus indeed f; and fy are irreducible.
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In particular F(v/1414) = Q(i,v1 + 1) and F(v/1 — i) = Q(i,4/1 — i) are degree 2 extensions of
the field F' = Q7).
Now Lemma II=371 shows that there is an isomorphism ¢ : Q(4, /1 + z) — Q(i,v/1 — 7) such
that ¢(v/1+1i) = /1 — i and such that ¢|q(;) = o; in particular, ¢(i) =
[T

Proposition 11.3.4. Let E be a splitting field over F for f € F[T], let  : F — Fy be a field
isomorphism, and let g = 0(f) € Fi[T|. Let Ey be a splitting field for g over Fy. Then there is
an isomorphism ¢ : E — Ey such that ¢|p = 0.

Proof. We use induction on n = deg f. If n =1, then £ = F, £} = F} and we can simply take
o =0.

Now suppose that n > 1 and that the result holds for all field F' and all polynomials of degree
<n.

Let p € F[T] be an irreducible factor of f, so that ¢ = 6(p) is an irreducible factor of g.

Since f splits over E, also p splits over E. Choose a root u € E of p. Thus F C F(u) C E.

Choose also a root v € E; of g, so that F} C Fy(v) C E. R
_ According to the preceding Lemma, there is an isomorphism 6 : F(u) — Fi(v) such that
0| = 6 and such that 0(u) =

Write

[=(T—-u)se F(u)[T] forse F(u)[T]

and
g = (T — 'U)$1 S Fl(v)[T] for 81 € F1<’U)[T]

Now, F is a splitting field for s over F'(u) and E; is a splitting field for s; over Fj(v). And
since 0(f) = g and 6(u) = v it is easy to see that 6(s) = s;.

Thus the induction hypothesis gives an isomorphism ¢ : E' — E; such that ¢|p(,) = 9. This
isomorphism ¢ has the required properties. ]

We find the following theorem as an immediate consequence:

Theorem 11.3.5. Let f € F[T] be a polynomial with deg f > 0. If E and Ey are splitting fields
for f over F, there is an isomorphism ¢ : E — FEjy such that ¢(a) = a for each a € F —i.e. such
that ¢\ is the identity mapping.

Proof. In the Proposition, just take 6 to be the identity map! O

Remark 11.3.6. Observe that the proof of Proposition =34 requires us to prove the statement
involving 6, even though in Theorem =31 we are interested in only in the case § = id.

11.3.1 Example: automorphisms of a splitting field

The ideas behind the results Proposition =34 and Theorem =31 will be really important as
we start talking about Galois theory. So, it seems useful to first do a non-trivial example.

Let’s give an example of automorphisms of a splitting field.

Let’s fix a prime number p, consider the polynmomial f = T3 — p € Q[T], and let E be a
splitting field for this polynomial over Q.

The Theorem IT—31 tells us that any splitting field of f over Q is isomorphic to E. Let’s try
to understand what this statement could mean about automorphisms of FE.

3
First, let’s make some observations. Notice that if 8 and 3’ are roots of f, then <6) =1

/8/
ie. 5/ is a root of T3 — 1. Moreover, g’ =1 if and only if 8 = '
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Let’s exclude the “trivial” cube root of unity; observe that

T3 —1

=T?>+T+1 T
T 1 +T+1€Q[T]

has roots w,w? € C where

<27ri) <27r’é> Lisi <2m’> cC
w=exp|— | =cos | — isin [ — :
3 3 3

Notice that w # 1 and w? = 1 so viewed as an element of the group C*, w has order 3.
2 is rational, so T? + T + 1 is irreducible over Q.

We can now construct a splitting field E of f over Q abstractly. Take E = Q(«,w) where «
is a root of 7% — p and w is a root of T2 + T + 1.

First notice that

Neither w nor w

E= Q(OZ,U.)) = Q(aawa7w2a)

so that F is a splitting field. Now notice that degg a = 3 and degqw = 2 so T? + T +1 remains
irreducible over Q(«). Thus we may conclude that

£ Q] = [Q(a,w) : Q(a)] - [Q(a) : Q] = 6.

Now observe that this argument actually shows that if we fix any root 5 of f in E, and any
root ¢ of T2+ T + 1 in E then

f=(T=B)T ~ BT~ CP).

E.g. if we choose ( = w? and 8 = wa, then

f=(T =BT~ BT — ) = (T — wa)(T — w’(wa))(T — w'(wa))

since
{wa, W (wa),w(wa)} = {wa, wda,w’al = {wa, a,w?a}.

The thing to take home from all this is that there are some choices to be made in describing
the roots of f. In this case, you could pin things down more precisely e.g. by taking for a the
“real” cube root of P and for w the complex root of T2 + T + 1 which is in “quadrant 2”. But
a more systematic way of keeping track of choices is through study of automorphisms of the
splitting field E.

Notice that a and 3 = wa are roots of the irreducible polynomial 7% —p € Q[T]. Thus, there
is an isomorphism of fields

0: Qo) = Q(P)

such that € is the identity on Q and 6(a) = 5 = wa.
Notice that §(T? + T + 1) = T? + T + 1 is irreducible over Q(a) and over Q(3).
Now, Lemma [T=3T tells us that there is an isomorphism

©: Q(o,w) = Q(6,¢)

such that ©|q(q) = 0 — i.e. for which ©(a) = 3 — and for which ©(w) = ¢.
This © is an isomorphism between splitting fields of f. Since we took 8 = wa and ¢ = w?,
we have

E=Q(a,w) = Q(pB;¢)
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so in fact © : E — FE is an automorphism of E.
Note that © is not the identity mapping on the roots of f:

(6(a), B(wa), B(w?a)) = (wa, Cwa, Cuwa) = (wa, a,wPa).
Also note that upon restriction to Q(w), ©|q(w) is complex conjugation, since

Ow) =w?=w.
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12 Finite fields

12.1 The prime subfield of a field

First let’s recall for any field F' that there is always a ring homomorphism Z — F for which
n—n.lpg.

Proposition 12.1.1. Let F' be a field.

a. If the homomorphism Z — F' is one-to-one, then F contains a copy of the field Q of rational
numbers.

b. If the homomorphism Z — F is not one-to-one, then F contains a copy of the field Z/pZ for
some prime number p.

Remark 12.1.2. In case a., we say that F' has characteristic 0. Note in that case that the additive
order of any non-zero element of F' is oo.

In case b., we say that F' has characteristic p. In that case, the additive order of any non-zero
element of F' is p.

Definition 12.1.3. The prime subfield of F' is the smallest subfield containing the image of the
homomorphism Z — F'; thus when F' has characteristic 0, the prime subfield identifies with Q,
and when F' has characteristic p > 0, the prime subfield identifies with Z/pZ.

Proof of the Proposition. If the homomorphism ¢ : Z — F'is injective, it maps non-zero elements
of Z to invertible elements of F'. Thus by the defining property of the field of fractions Q = Q(Z),
the homomorphism ¢ extends to a homomorphism ¢ : Q — F'; see Proposition 614. Thus F
indeed contains a copy of Q.

Suppose on the other hand that the homomorphism ¢ is not one-to-one; thus ker ¢ = nZ for
some n # 0. The First Isomorphism Theorem Theorem P22 now implies that the image of ¢ is
a subring of F' isomorphic to the finite ring Z/nZ. Since F is a field, this subring must be an
integral domain — see Example B2 (c); thus by Example B2 (d) we see that n = p must be
a prime number. O

12.2 Some properties of finite fields

We’ve met some finite fields already, namely Z/pZ for a prime number p.
We'’ve can construct finite extensions of Z/pZ to get fields F' for which |F| is not prime. Let’s
first make an observation about |F|, as follows:

Proposition 12.2.1. Let F be a finite field. Then F has characteristic p > 0 for some prime
number p. The number of elements of F' is p™ for some whole number m > 1.

Proof. Since Q is not finite, the previous proposition shows that F must have characteristic
p > 0 for a prime number p.

Write Fy C F where Fj is the prime subfield; thus Fy ~ Z/pZ.

Now, F' may be viewed as an Fy-vector space. A basic theorem in linear algebra says that
F must have a basis B as an Fjy-vector space; see Proposition B3A. Since F is finite, this basis
must be finite; say |%| = m.

Write B = {b1,ba,...,bn}. Then an element = of F' may be written uniquely in the form

x =1t1b1 +1tobs + - + tybm
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for t; € Fy; see e.g. Section B3. Since Fy ~ Z/pZ, there are p choices for each t;; this shows that

the number of elements of F' is
m

as required. O

12.3 Finite fields as splitting fields over the prime field

Proposition 12.3.1. Let F be a finite field with p™ elements for some prime number p. Then
F is the splitting field over the prime subfield Fy ~ Z/pZ of the polynomial

" —T € Fy[T).

Proof. Since F' has p™ elements, the multiplicative group F'* has p™ — 1 elements. This means
that every element x € F'* satisfies the condition

m_1

P =1.

It is then immediate that every element x € F' satifies
V=
Put another way, every element of F' is a root of the polynomial
f=T"" —T e Fy[T).

Since f can have no more than p™ roots in an extension field, it follows that F' contains all roots
of f. Since F' is generated by these roots, F' is a splitting field for f over Fy. O

Remark 12.3.2. The proof shows that the identity

f=1"-T=][(T-a

acl
holds in F[T].
Corollary 12.3.3. Two finite fields F' and E are isomorphic if and only if |F| = |E|.

Proof. If F and E are isomorphic, there is a one-to-one onto function ¢ : FF — E and thus
IF| = |E].

On the other hand, if |F| = |E|, we know that |F| = p™ and |E| = ¢" for some primes p, q
and some m,n > 1. By unique factorization of integers — see Theorem b2 —, p = ¢ and m = n.
Now the Proposition shows that E, F are splitting fields of TP — T over Z/pZ.

Now the existence of an isomorphism F' ~ FE is a consequence of the uniqueness of splitting
fields. O

54



12.4 Existence of a finite field of any prime-power order

Let p be a prime number. One might see the following Lemma in a class in elementary number
theory:

Lemma 12.4.1. For x,y € Z, we have:
a. 2P =z (mod p)

b. (x+ylP=aP+y?P=x+y (mod p).

We are going to prove a slightly more general version of this result that is valid for elements
of any field of characteristic p > 0, as follows:

Lemma 12.4.2. Let F' be a field of char. p > 0, let x,y € F', and let n € Z~y. Then:
a. (x+y)P" =aP" +yP".
b. {x € F|aP" ==z} is a subfield of F.

|
Proof. For 0 < i < p, the binomial coefficients (p) - satisfy the congruence
i

il (p—1)!

<?> =0 (mod p).

1

Indeed, p dvides the numerator p! but p does not divide the denominator ¢! - (p — i)! and the
result follows since the quotient is integral.

Since (p) = (p) =1, it follows that
0 P

P
(z 4y = <p) W =at oy (12.1)
; i
=0
for elements x,y € F. To prove a., proceed by induction on n > 1. The case n = 1 is just ().
Assuming the result is valid for n — 1, we see that

' n— p n— 77— p ' "3
(z+y)” = ((w+y)” 1) = (93” Y 1) =’ +yP
we used the induction hypothesis for the second equality, and we used (I2Z) applied to zP" !
and ypn_l\) for the final equality. This proves a.
For b., write
Fy={zeF|2P =2z}

To see that F; is an additive subgroup of F', first note that 0 € F;. Now, the result from a.
shows that if z,y € F} then x —y € F}.
Next we argue that Fj is closed under multiplication. This follows since if x,y € F} then
(zy)?" = 2"y = y.
Finally, if € F} is non-zero, then

1=17" = (z -2 YW =P 2" = ga~

'3

which shows that (z7!)P" = 27" = 27! hence z~! € F}. O
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Lemma 12.4.3. Let F be a field of characteristic p > 0 and let F : F' — F be the mapping
F(x) = xP. Then F is a ring homomorphism.

Proof. Part a. of Lemma 2472 shows that & is a homomorphism of additive group. If z,y € F
then & (zy) = (zy)P = aPy? = F(x)F (y) which completes the proof. O
Lemma 12.4.4. Let m,n be positive integers for which n = qgm.

a. T™ —1|T"™ — 1 in the polynomial ring Z[T).

b. For any commutative ring R (with identity) and any y € R we have y™ — 1| y™ — 1.

Proof. For a., first note that for a polynomial variable u, we have the identity
u? —1
u—1
in the field of fractions of Z[u]. Substituting u = T™ in ([Z2) gives

™ -1 (T™)7-1
f(T):Tm—lz(Tm)—l

= (T (T2 4o T 4
=7mla=D) a2 4T ] e Z[T)

Y DY e T | (12.2)

Now b. follows from a. Indeed, if T — 1 = g(T) - (T™ — 1) for g(T) € Z[T], then for y € R
we see that y” — 1 = g(y) - (y™ — 1) since evaluation at y determines a ring homomorphism
Z|T] - R. 0

Proposition 12.4.5. Let F' be a field with p™ elements. Fach subfield of F' has p™ elements
for some divisor m of n. Conversely, for each divisor m | n, there exists a unique subfield of F
having p™ elements.

Proof. Let Fy be the prime subfield of F'. Any subfield E of F' must contain Fj and must have
p™ elements, where m = [E : Fy]. Since

n=I[F:F|=[F:E|[E:F)=|[F:E]-m

we conclude that m must be a divisor of n.

Conversely, let m be a divisor of n. Then p™ — 1 is a divisor of p™ — 1 by Lemma 224,
Applying Lemma [ZZA a second time, we see that the polynomial g(T) = T®"~D — 1 is a
divisor of h(T) = T®"=Y — 1 in the polynomial ring Fp[T].

Since F' is the splitting field of T' - h(T) over Fp, it must contain all p™ distinct roots of
T-g(T). N

Now, part b. of Lemma 2272 implies that the roots of T - g(T)) = TP — T form a subfield
E of F. Any other subfield having order p™ must be a splitting field of T"- g(T") and so it must
coincide with E. This completes the proof. ]

Lemma 12.4.6. Let F be a field of char. p > 0. If n € Zo and n # 0 (mod p) then T" — 1
has no repeated roots in any extension field of F'. Put another way, if E denotes a splitting field
of T™ — 1 over F', then

n

T —1=][(T - )
i=1
for n distinct elements o; € E.
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Proof. Let ¢ be a root of T™ — 1 in a splitting field £. The remainder theorem — Corollary B2
— shows that 7" — 1 = (T' — ¢)g(T") for some polynomial

n—1
g(T) = Z a; T"
i=0

with ag, a1, - ,an,—1 € F(c). Now, we have

n—1 n—1 n—1
T" —1= (T —¢)g(T) = (T —c) (Z am') = (Z aiT”l) — (Z caiTZ)
i =0 =0

n n—1
= <Z ailTi> — <Z caiTi>
i=1 i=0
n—1 n—1
=qap_1T" + (Z a;_1T" — Z caiT’) — cag
i=1 i=1
Comparing coefficients, we find that a,_1 = 1 and that a;_1 = ca; for 1 <i < n —1. Thus we

find that a; = ¢ 17 for 1 <i <n — 1 and that ag = ¢* ! since then cag = ¢® = 1. Thus

g(T) =T 4+ I 24 2T 3 4o 2 !

To prove the Lemma, we must show that g = ¢g(T") is not divisible by T'—¢. By the remainder
theorem, it is sufficient to prove that g(c) # 0. But we have:

gle)=c" e+ A e =
and the result follows since nlg # 0 and ¢ # 0. O

Theorem 12.4.7. For every prime p and every positive integer n, there is a field F; with ¢ = p"
elements, and any field of order q is isomorphic to F.

Proof. The uniqueness has already been proved; it remains to argue the existence of F, for
q=p"

Let F be the splitting field of the polynomial TP" — T over Z/pZ. The previous Lemma
shows that TP" — T has p" distinct roots. By an earlier Lemma, these roots form a subfield of
F,| so we conclude that F' consists exactly in these roots. Thus |F| = p™ as required. O

Remark 12.4.8. For a prime power ¢, some texts write GF(g) for the field we have denoted F.
The symbol GF stands for “Galois Field”.

12.5 Some examples of finite fields

We have seen in Theorem 2277 that for each prime power ¢ = p”, there is a field of that order.
The computer algebra system sagemath knows how to to do some computations with finite fields.
We are next going to demonstrate this facility with some calculations.

12.5.1 Extensions of Fqg

For example, we can ask to to represent the field of 192 = 361 elements.
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H.<a>=FiniteField(1972)
a.minpoly ()

x"2 + 18*x + 2
The output here tells us that
H = Fo[T]/(T? + 18T + 2).
We can construct larger finite fields and ask about subfields:

G.<z>=FiniteField(1976)
z.minpoly ()

X6 + 17*x"3 + 17*x"2 + 6%x + 2
G.subfields()

[(Finite Field of size 19,
Ring morphism:
From: Finite Field of size 19
To: Finite Field in z of size 1976
Defn: 1 |-—> 1),
(Finite Field in z2 of size 1972,
Ring morphism:
From: Finite Field in z2 of size 1972
To: Finite Field in z of size 1976
Defn: z2 |-—> 18%z"5 + 9%z74 + 5%xz~3 + 2%z"2 + 12%z + 7),
(Finite Field in z3 of size 1973,
Ring morphism:
From: Finite Field in z3 of size 1973
To: Finite Field in z of size 1976
Defn: z3 |--> 13%z"5 + 10%z"4 + 2%z~3 + 15%z"2 + 7xz + 18),
(Finite Field in z of size 1976,
Identity endomorphism of Finite Field in z of size 1976)]

Th output here tells us that the field G of order 195 = 47045881 — roughly forty seven million
elements — has exactly 4 subfields: G = F19(z), a subfield F19(23) of order 193, a subfield F1g(22)
of order 192 and a subfield of order 19.

Here sage has found an element z for which

G =Fi9(2) = Fro[T] /(T +17- T3 +17-T* + 6 - T +2),
The subfield
Fig(23) =F19(13-2° +10- 21 +2- 23 +15 - 22 +7- 2+ 18)

has order 19% = 68509.
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The subfield
Fio(22) =F19(18 - 25 +9 -2 +5. 22 +2.22+12. 2+ 7)

has order 192 = 361.
Let’s pause and ask sagemath to compute the non-squares in Fig:

F.<a>=FiniteField(19)
squares = [ x72 for x in F]

nonSquares = [x for x in F if not(x in squares)]
len(nonSquares)
9

This output tells us that there are 9 elements a € Fqg for which 72 — a is irreducible.
Those elements are:

nonSquares

[2, 3, 8, 10, 12, 13, 14, 15, 18]

According to Corollary [23-3, up to isomorphism there is a unique field of order 192. It
follows that

Fi9(V/2)

must contain a square root of each of these nonSquares. We can ask sagemath to describe these
roots in terms of a = v/2 as follows:
We first describe solutions to T2 — 2:

F= FiniteField(19)
R.<T>=PolynomialRing(F)
E.<a> = F.extension(T 2 - 2)
[x for x in E if x"2==2]

[a, 18%*a]

And here are solutions to T2 — 13:

[x for x in E if x"2==13]

[4%a, 15%a]
Similarly we can find solutions to 7% — 8:

[x for x in E if x~2==8]

[2%a, 17*a]
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This makes clear for example that
F19(V13) = F19(4V2) = F19(V2).
In fact, we can get a full list of irreducible polynomials:
irred = [T"2 + a*T + b for a in F for b in F if (T 2+a*T+b).is_irreducible()]
len(irred)
171

The output tells us that there are 171 monic irreducible quadratic polynomials in Fi9[T].
Let’s look at a few:

irred[0:11]

[T”2 + 1,
T2 + 4,
T2 + 5,
T2 + 6,
T2 + 7,
T2 + 9,
T2 + 11,
T"2 + 16,
T2 + 17,
T2 + T + 2,
T°2 + T + 3]

We can use the sage command polroots to find roots of a polynomial:

def polroots(p):

return [x for x in E if p(x)==0]
[irred[10],
polroots(irred[10])]

[T72 + T+ 3, [a+9, 18%a + 9]]
The output shows that the two roots of T2 + T + 3 in Fi9(1/2) are

9++v2 and 9+ 18V2=9— 2.

(Of course, we have obtained those roots using the quadratic formula!)
This makes clear that F19(1/2) is a splitting field for T2 + T + 3.
In fact, we know that F1g(1v/2) is a splitting field for all 171 polynomials p in the list irred.
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12.5.2 Fields of order 4 and 8

There are 4 monic polynomials of degree 2 over the field Fy of two elements. Of these, only one

is irreducible, namely
T? +T +1.

Thus
F, ~ Fy(a)

where dega = 2 and a? = « + 1. Notice that
T*+T+1=(T+a)(T+a+1).
There are 8 monic polynomials of degree 3 over Fo. Of these, only two are irreducible:

H = FiniteField(2)
R.<T>=PolynomialRing (H)

[T"3 + a*T"2 + b*T + ¢

for a in H

for b in H

for ¢ in H

if (T"3+a*T " 2+b*T + c).is_irreducible()]

[T"3+ T+ 1, T°3 + T"2 + 1]

Thus Fg = Fy(8) where deg 3 = 3 and 3% = 8+ 1. And indeed we may confirm that Fa(3)
is a splitting field for both the irreducible polynomials of degree 3:

HH.<b>=FiniteField(8)

RR.<T>=PolynomialRing(HH)
[RR(T"3+T+1) .factor (),
RR(T"3+T"2+1) .factor ()]

[(T+Db) * (T+Db2) *x (T+Db"2+b),
(T+Db+1) * (T+b2+1) % (T+b2+b+ 1)]

12.6 The multiplicative group of a finite field

Let F' = F, be a finite field, where ¢ = p". Then of course the multiplicative group F'* = F'\ {0}
is a finite abelian group having ¢ — 1 elements.
In this section we are going to argue that the group F* is cyclic, so that

F*~7Z/(qg—1)Z.
We begin with a Lemma from group theory:

Lemma 12.6.1. Let G be a finite abelian group (written multiplicatively). If a € G is an element
of mazimal order in G, then the order of every element of G is a divisor of the order o(a) of a.

61



Proof. Let x € G be any element different from 1. If o(x) { o(a) then in the prime factorizations
of o(z) and o(a) we can find a prime p that occurs to a higher power in o(z) than in o(a).
Write o(a) = p®n and o(z) = p®m where o < 8 and p{n, ptm.
Now o(a?”) = n and o(z™) = p?, so the orders of a?* and 2™ are relatively prime. It follows
that the order of the product aP” - 2™ is equal to the product of the orders of the elements, i.e.
to np®. But this exceeds o(a) contrary to the hypothesis. O

Theorem 12.6.2. Let F' be any field. Any finite subgroup of the multiplicative group F* is
cyclic.

Proof. Let H be a finite subgroup of F* and let a € H be an element with maximal order.

Write N = o(a). Now Lemma 261 shows that o(z) | N for all x € H. Thus, every element of

H is a root of the polynomial TV — 1. Now, this polynomial has no more than N roots — see

Corollary B23. It follows that |H| < N. Since the cyclic group (a) has order N, conclude that

H = (a). O
2

Corollary 12.6.3. F,* is a cyclic group of order ¢ — 1 for any prime power ¢ = p™.

Corollary 12.6.4. For any prime power q = p", there is o € F for which ¥y, = Fp(a). In
words: each finite field is a primitive extension of its prime subfield.

Proof. Let /3 be a generator for the cyclic group F,*. Then
(B) CF(B) CFy = q—1<[Fp(B) <q.

Since |Fy,(8)| must be a power of p — see Proposition IZ20 — it follows that F,(3) = Fy,. O
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13 Perfect fields and separable polynomials

Let F be a field.

13.1 Common roots and root multiplicity

If f € F[T] is a non-zero polynomials, recall that according to Theorem 5271 we may write

,
f=u]]wf
=1

where u € F*, where the p; € F[T] are pairwise non-associate irreducible polynomials, and
where e; > 0. observe that a splitting field for f over F' is the same as a splitting field for

r
9= sz'.
i=1

Lemma 13.1.1. Suppose that f,g € F|[T].
a. If ged(f,g9) =1 then f and g have no common root in any extension of F.

b. If f,g are irreducible and not associate, they have no common root in any extension of F.

Proof. Assertion b. is of course an immediate consequence of assertion a.

As to a., note that ged(f,g) = 1 = that 1 = uf + vg for polynomials u,v € F[T]
Proposition B=34.

Let F be an extension field of F' and suppose that a € E is a root of both f and g. Then
0 = u(a)f(a) + v(a)g(a) = 1 which is impossible. Thus there can be no such common root
Q. 0

Let f € F[T] be monic and let E be a splitting field for f over F. Write
f=(T—-a1)® (T —a).

for distinct elements o; € E and exponents e; € Z>1. Since the linear polynomials 7' — «;
are irreducible and pairwise relatively prime in E[T], it follows from Theorem B2 that this
representation is unique (up to re-ordering, of course).

Definition 13.1.2. We say that the root «; of f has multiplicity e;. If e; = 1, we say that a; is a
simple root of f. If e; > 1, we say that «; is a *multiple root of f.

Proposition 13.1.3. The polynomial f € F[T| has no multiple roots if and only if ged(f, f') =1
where f' is the formal derivative of f.

Proof. We are actually going to prove the (equivalent) assertion: f has a multiple root if and
only if ged(f, f') # 1.

=: We show that if f has a multiple root, then ged(f, f') # 1. Suppose that f has a multiple
root « in some extension field F.

In E[T] we may write

f=(T-a)? g forsomegec E[T].
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One must check that the product rule holds for formal differentiation; using that rule, one then
notes that

f=(T-a)}g +2(T - a)g.

It is evident that a is a root of both f and f’ and thus Lemma 371 implies that ged(f, f/) # 1.
<: We suppose that ged(f, f’) # 1 and we must prove that f has a multiple root.

Our assumption implies that there is a polynomial g € F[T] of positive degree which divides
both f and f’. Let a be a root of g in some extension field of F'. Thus « is a root of both f and
f'. We now claim that « is a multiple root of f.

Since « is a root of f, we may write

f=(T—-a)-h forsomeh e F[T].

In order to show that « is a multiple root of f, we must argue that « is a root of h.
Well, we find using the product rule that

ff=h+-(T—a)-N.
Since « is a root of f’ we find that
0= f'(a) = h(a) + (a — )W (a) = h(a).
We have now argued that h(a) = 0; as already observed, this proves that « is a multiple root of
f. O
13.2 Multiple roots and the characteristic

Lemma 13.2.1. Suppose that the field F' has characteristic 0, and let g € F[T] be a polynomial
with deg g > 1. Then the formal derivative ¢ € F[T] is non-zero.

Proof. Let d =degg > 1 and write

d
g= ZaiTi € F[T]
=0
with ag # 0. Then
d
g = Zz ca Tt
1=0

so that the coefficient of 79! in ¢ is equal to d-aq. Since F has characteristic 0, d1z # 0. Since
aq # 0 by assumption, we conclude that the coefficient of 79! in ¢ is non-zero, hence ¢’ itself
is indeed non-zero. O

Proposition 13.2.2. Let f € F[T] be an irreducible polynomial.

a. If F' has characteristic 0, then f has no multiple roots.

b. If F' has characteristic p > 0 then f has no multiple roots unless f has the form
J(T) = g(T")

for some polynomial g € F[T).

64



Proof. Suppose that f has a multiple root. It follows from Proposition 313 that ged(f, ) # 1.
But deg(f’) < deg(f). Thus if f # 0, the irreducibility of f guarantees that f and f’ have no
common factor. Hence, the assumption that f has a multiple root implies that (&) f' = 0.
Now a. follows since if F' has characteristic 0, Lemma 321 shows that the polynomial f’ is
non-zero, contradicting (ds).
Now suppose that the characteristic of F' is p > 0 and write

N
f= ZaiTi for a; € F.
=0

Suppose that f/ = 0. Then
n
f/ = Zai ST
i=1

So f'=0 = a;-i for all i. This equation show that a; = 0 whenever ¢ Z 0 (mod p).
Thus the polynomial f has the form

M .
[ = Z ajpT]p = g(T")

§=0

where

M .
g= Z a;pT?.
j=0

13.3 Perfect fields

Definition 13.3.1. A polynomial f € F[T] is said to be separable if each irreducible factor of f
has only simple roots.

Definition 13.3.2. A field F' is said to be perfect if each irreducible polynomial is separable.

Remark 13.3.3. a. Proposition 322 implies that any field of characteristic 0 is perfect.

b. Let F' = F,(X) be the field of rational functions over F, in the variable X. Then F is not
perfect.

Indeed, the polynomial 7P — X € F[T] is irreducible by Eisenstein’s criterion Theorem 1.

But this polynomial has only one root « (with multiplicity p) in a splitting field since
TP — X = (T — «)P by (=2).

On the other hand, some fields of characteristic p are perfect. Here is a useful characterization:

Proposition 13.3.4. Let F be a field of characteristic p > 0. Then F is perfect if and only if

F=Ff={aP |z e F}.
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Proof. <: Suppose that F' = FP and let f € F[T] be an irreducible polynomial. We must argue
that f is separable.
If f has a multiple root, we argued above that f = g(T?) for some polynomial

g= Zr: aiTi.
=0

For each i, choose b; € F with b = a;. Then

T T r p
=) =Y arr = ST - (Z biTZ) |
=0 =0 =0

But this equation contradicts the assumption that f is irreducible in F[T].
=: Suppose that F' is perfect and let € F. Consider the polynomial

=17 -2z

and let g denote a monic irreducible factor of f in F[T]. Find a root a of g in some extension

field of F.
Then « is also a root of f, so that a? = . In F(«)[T] we have the identity

f=TP —x=TP —of = (T — a)’.

By unique factorization in E[T] — see Theorem 621 —, we find that ¢ = (T" — «)™ for some
1 < m < p. But g is irreducible, so the assumption that F is perfect means g has no repeated
roots in the extension field E. Thus m = 1 so that ¢ = (T — «). This implies that o € F so
indeed x has a p-th root in F. ]

We can now prove the following important fact:
Proposition 13.3.5. A finite field is perfect.

Proof. Let F be a finite field, and recall that the Frobenius mapping F(xz) = 2P is a ring
homomorphism F' — F — see Lemma IZZ473. Moreover, ker & = {0} since 27 = 0 = z = 0;
this shows that & is injective.

Since F' is finite and F is injective, one knows that F is also surjective. This proves that
F = FP; thus the field F' is perfect by Proposition 3234, O

Remark 13.3.6. Observe that the proof shows that & is always injective for a field of characteristic
p. Moreover, the image & (F') coincides with FP, which is therefore a subfield of F.
We see that the following are equivalent:

i) F is perfect,
ii) the Frobenius mapping % is onto,

iii) the Frobenius mapping & is bijective, i.e. an automorphism of F'.
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14 Automorphisms of algebraic objects

Consider an algebraic object & — e.g. a group, or a ring, or a field, or a field extension, or a
vector space over a field.

Within the family of algebraic objects of the same type, there is a notion if isomorphism.

For the above list, probably the only case that raises eyebrows is the question: “what is an
isomorphism of a field extension?”

Though a related question is: what is the right notion for isomorphism of “vector spaces over
fields”? We’ll have more to say on this in the examples, below.

Once one has agreed on a notion of isomorphism, then for a fixed object & one can consider

the collection of all isomorphisms
X=X

This collection is a group
Aut(Z),

the group of automorphisms of &.

14.1 Automorphism examples
e Vector spaces
For a field F' and an n-dimensional vector space V over F, the automorphism group
Aut(V) = GL(V) ~ GL,,(F)
identifies with the group of invertible n X n matrices with coefficients in F'.

e Automorphisms of some finite abelian groups

Let m > 1 and consider the group

A =Ty X Loy,
a group with |A| = m?.
Let’s represent elements x of A as column vectors:

m:[Z] for a,b € Zp.

Any matrix

_|a B
]\4—[7 5] for a, 8,6, € Z,

determines a group homomorphism

¢n 0 A — A given by the rule

o Bl la] |« I5}
ow =[5 [ = 5]+ ]
and ¢pr is an automorphism if and only if the determinant of M is a unit in Z,, — i.e.

det M € (Zy,)™.

Thus
Aut(A) ~ GLy(Zy,).
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So, for example the matrix
1 2
veli
has determinant —2 = m — 2 (mod m), and so it defines an automorphism of A whenever
ged(m,m —2) =1

i.e. whenever m is odd.

14.2 Automorphisms of field extensions

Our real interest in this course is in automorphisms of a field extension F© C E. Here, an
automorphism of the field extension is an automorphism ¢ : E — E such that ¢(a) = a for all
acF.

To remind ourself of the “bottom field” of the field extension F' C E (F is sometimes called
the “ground field” or “base field”) we write

Autp(E) or Aut(E/F)
for the automorphism group of this field extension.

o Example: quadratic extensions when the characteristic is not 2
Suppose that [E : F] = 2 and that the charateristic of F is not 2.
Then E = F(B) for some element 3 € E, 3¢ F, 3% € F.

Indeed, we may choose a basis of F as an F vector space of the form 1,~. Then linear
independence implies that v € F'. Let

f(T)=T?+aT + b€ F[T)

be the monic minimal polynomial of v over F.

For any s € F, we claim that the minimal polynomial of the element v — s € E has the
form

f(T+s)=(T+s)?+a(T+s)+b
=T? 4+ (a+25)T+ s> +as+b

Taking s = _7&, we find that ¢(T") = f(T + s) has the form
g(T)=T%*—-c¢
for some ¢ € F, so that 3 = v — s satisfies 52 = ¢. Now it just remains to observe that
F(y)=F(+s)=F(p).
Now, notice that every element of E has the form

a+ b8 for a,bePF.
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Now, the roots of T? — ¢ in E are +3. Since T? — ¢ is irreducible over F, it follows that
there is an isomorphism

6:E=F(B)— E=F(p)
for which ¢(8) = —f and ¢(s) = s for all s € F.

Thus
¢(a+bp8)=a—b5 fora,beF.

Proposition 14.2.1. Suppose that the characteristic of F not equal 2. For E = F(v) =
F(B) a quadratic extension as above, Autp(E) = (¢) and in particular | Autp(E)| = 2.

Example: quadratic extensions in characteristic 2.

Suppose that the characteristic of F is 2, and consider a polynomial of the form T2 — ¢ €
F[T]. If B is a root of this polynomial then

T? —c=T%-p%= (T - B)*

since the characteristic is 2.

Just for emphasis, let’s double check this:
(T—B)2=T?-28T+ (-B)*=T*+c=T%—-c.
Thus the polynomial 72 — ¢ has a single root 3 which is repeated twice. It is irreducible

over F if and only if 8 & F.

However, in general at least, there are irreducible quadratic polynomials with distinct roots
in characteristic 2.

Consider a polynomial of the form
f=T?>+T+a foracF
and suppose that 3 is a root of f; thus
B2+ B+a=0.
We claim that also 8 + 1 is a root of f. Indeed,

fFB+1)=(B+1)°+(B+1)+a

=B+1+B+1+a

=B +B+a+2

=p>+B+a

= f(B)=0.
It follows that

f=T*+T+a=(T+p)(T+B+1)

i.e. B and B+ 1 are the distinct roots of f. Recall that Fy = Fy(3) where 8% + 3 = 1.

Note that the for any F of char. 2, the polynomial f = T? + T + a is irreducible if and
only if 5 &€ F — this follows from Proposition [14.
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Suppose f is irreducible and let E = F(3). Recall that an element of E has the form
a+bp8 fora,beF.
Since § and 8 + 1 are the roots of f, there is a automorphism
¢:E=F(p)=E=F(p+1)=F(@p)

for which ¢(8) = f+ 1 and ¢(s) = s for s € F.

Thus
pla+b8)=a+b+bp.

Remark 14.2.2. When F = Fy and 3% + 3 = 1, notice that

(a+b8)* = ¢pla+bB) =a+b+bB.
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15 The Fundamental Theorem of Galois Theory

Let F be a field and let E be the splitting field over F' of some separable polynomial g € F[T].
Loosely speaking, the fundamental theorem of Galois Theory relates two things:

e intermediate fields L, where FF C L C E, and

o subgroups H, where H C Gal(E/F).

15.1 Subfields from subgroups

Proposition 15.1.1. Let K be any field and let H be any subgroup of the group Aut(K) of
automorphisms of K. Then

K{:={reK|h-z=x VYheH}
s a subfield of K.

Proof. If z,y € KH with  # 0, we must argue that * —y € K, that = -y € K and that

1
Z e KH. But for each h € H we have:
x

hz—y)=hx)—hy)=z—y = z—yec K
Wa-y)=h(z)-hly) =z-y = x-ye K"

Y E PR R )

and

15.2 Splitting fields and Galois groups
The following result follows the proof of Lemma I0=3

Proposition 15.2.1. Let g € F[T] be a separable polynomial and let E be a splitting for g over
F. Suppose that ¢ : F — Fy is a field isomorphism and write g1 = ¢(g) € Fi[T] and write E;
for a splitting field for g1 over Fy. Then there are exactly [E : F] isomorphisms 0 : E — E; such
that Op = ¢.

Proof. We are going to essentially repeat the proof of Lemma IIT231 with a little more book-
keeping.

Proceed by induction on degg. If g has degree 0 or 1 then F' = F and F} = E; and there is
nothing to prove.

So suppose that d = deg g > 1 and that the result is known for all fields F' and all polynomials
of degree less than d. Let p be an irreducible factor of g of degree e < d and write p1 = ¢(p)
which is thus an irreducible factor of g;. Of course, p splits over E and we choose a root a € F
of p.

Since g has no repeated roots, the same is true for g; and p;. Thus there are e roots of p; in
E;, and for any root § € Ey of p; Lemma I3 gives an isomorphism ¢' : F(«) — Fi(8) such
that ¢’ = ¢ and such that ¢'(a) = . Thus, there are exactly d = [F(«) : F| isomorphisms
F(a) — F1(B) whose restriction to F' is ¢.
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Now, we may write ¢ = (T' — «a)s for s € F(a)[T], and g1 = (T — B)s; for s; € Fi(B)[T].
Since g1 = ¢(g) we have s; = ¢/(s). It is clear that E is a splitting field for s over F' and that
FE is a splitting field for s; over F}.

Since degs = d — 1, for any isomorphism 6’ as in the preceding paragraph, the induction
hypothesis guarantees that there are precisely [E : F(«)] isomorphisms 6 : E — E’ for which

Or@) = ¢
It therefore follows that there are [E : F(a)] - [F(«) : F] = [E : F] isomorphisms 0 : E — E}
with 0 = ¢, as required. O

As an immediate consequence of Proposition -2 we obtain the following:

Corollary 15.2.2. Let g € F[T] be a separable polynomial, and let E denote a splitting field of
g over F'. Then |Gal(E/F)| = [E : F].

Proposition 15.2.3. Suppose that E is the splitting field over F of a separable polynomial
g€ F[T). LetT = Gal(E/F). Then F = E".

Proof. Let L = E', so that L is an intermediate field:
FcL=E"CE.

Viewing ¢ as a polynomial in L[T], it is clear that F is a splitting field of g over L.
Now Corollary guarantees that

[E:L]=|Gal(E/L)] and [E:F|=|Gal(E/F)|.

Since F' C L, we have Gal(E/L) C I' = Gal(E/F). The assumption L = E' shows that any
automorphism of E which is the identity on F' is the identity on L; this shows that

I = Gal(E/F) = Gal(E/L).

It now follows that [E : L] = [E : F'] and hence that L = F'. O

15.3 Fixed fields and some linear algebra

The correspondence between subgroups H C Gal(E/F) and intermediate fields F' C L C E will

be given by the assignment
Hw— Bf

(we’ll formulate the statement more precisely later on).

We are ultimately going to argue that this assignment determines a one-to-one correspondence
between the subgroups and the intermediate fields. For this, we require some numerical estimates
relating the degrees [E : Ef] and the orders |H|. These estimates are obtained using a result of
E. Artin:

## Proposition (Artin).

Proposition 15.3.1. Let G be a finite group of automorphisms of a field K and let L = K©.
Then [K : L] < |G.

Proof. If |G| = n, let us write
G = {61,605, ...,00)

where 0; = 1.
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We must argue that [K : L] < n. Suppose the contrary, and choose n + 1 elements

U1, U2, ..., Up+1 € K which are linearly independent over L.
Now form the following n x (n 4 1) matrix with entries in K:
Or(u1)  Or(uz) -+ Or(unt1)
IV 02 (Ul) 0 (Uz) .' 92(u:n+1) & Maty i) (K).
Oum) Oa(us) -+ Onluinyn)

Since M has n rows, we know that the rank of M satifies
rk(M) < n.
On the other hand, linear algebra tells us that
dimpg Null(M) + rk(M) = n+ 1 = # of columns of M.

Thus
dimg NulllM)=n+1—-1k(M)>n+1-n=1

and we conclude that there is a non-zero solution x = a € K™ to the matrix equation
(d) M-x=0.
Among all possible non-zero solutions

O%a:(al ag - an+1)T

to (&), choose one with the smallest number of non-zero coefficients a; € K.
After renumbering the indices on the u; and the x;, we may suppose that a; # 0. Since the

1
vector ( - a, remains a solution to (&), we may and will suppose that a; = 1.
ai

Recall that 8, = 1g = idg. The first coefficient in the vector equation
0=M:-a

gives
n+1 n+1

0= Z aiel(ui) == Zazuz
=1 =1

Since the u; are linearly independent over L by assumption, some a; must be in K and not in
L=K¢

Renumbering again, we may and will suppose that as € K, as ¢ L = K©.

Of course, ap ¢ K¢ = gas # as for some ¢ € G, and in turn we recall that g = 6; for
some ¢ > 1 hence we have

0;(az) # as.
Consider the matrix 0;(M) € Mat,, (,4+1)(K) given b y
0; - 01(u1) 0;-01(u2) -+ 60;-01(ups1)
6,(01) — 0; - 0?(u1) ;- 9.2(1@) - 0;- HQFuHJFl)
0; - 0n(u1) 0; - H;I(UQ) .. 0; - Qn&um_l)
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Since G is group, the rows of 0;(M) are the same as those of M, but in a different order. In
particular,
Null(M) = Null(6;(M)).

On the other hand, it is clear that
0= 61(0) = HZ(M : a) = QZ(M) . Gz(a)

This proves that both a and 6;(a) are solutions to (&), hence v = a — 6;(a) is a solution to
(), as well.
Now

a= (1 az - an+1)T
and T
Oi(a) = (1 6i(as) - OGi(ans1))

Since ag # 0;(az), v = a—0;(a) is non-zero. On the other hand, the first coefficient of v = a—#6;(a)
is 0, hence v has more non-zero terms than does a. This contradicts the choice of a, and completes
the proof. O

15.4 Normal extensions

Let E be an algebraic extension of the field F'. We will say that E is a normal extension of F if
every polynomial that contains a root in F actually splits over F.

In order to check that E' is a normal extension of F, it is enough to verify that each irreducible
polynomial with a root in E actually splits over E.

Proposition 15.4.1. Let E be an extension field of F', and let I' = Gal(E/F).
a. If F = EV, then E is a normal, separable extension of F.

b. ::Let E be the splitting field over F of some separable polynomial g € F[T|. Then E is a
normal (and separable) extension of F

Proof. According to the [Proposition on splitting fields and fixed fields](#splitting-fields-and-
fixed-fields), the field extension F D F' in b. satisfies the condition in a. So b. is an immediate
consequence of a.

To prove a., let h € F[T] be an irreducible polynomial, and suppose that o € E is a root of
h. We must argue that h is separable and actually splits over E

Consider the orbit O of the root a under the action of I':

0 ={galgecG/H}

where H = Stabr(«).
If g1,...,9m is a system of coset representatives for H in I', there are m = [I' : H| distinct
elements of O:

6= {gla792a7 e agma}'

Form the polynomial

m=Tl@-8= [] @-ga) e Elm.

BeO gel’/H
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Note that by construction h; has m distinct roots in E. We first claim that in fact h; € F[T].
Of course, for any polynomial ¢ € E[T], we know that

(e FT|=F"[T] <= af={( forallzel.

Thus, we must argue for each = € I that zhy = h;.
Well, for x € I, we have

xh; = x. H (T —ga) | = H (T —zga) = ().

gel/H gel/H

Now using the substitution h = xg, note that

(©)= JI (T—ha)=h.

hel'/H

This proves that hy € F[T].

Since h is the minimal polynomial of o over F', since hy € F[T], and since h; has « as a root
by construction, we conclude that h | hi. Since hy splits over E, unique factorization in E[T]
shows that h splits over E. Since hp is separable, also h is separable. This completes the proof
that FE is a normal, separable extension of F'. ]

Proposition 15.4.2. Let E be a finite, normal, separable extension of F'. Then E is the splitting
field over F' of a separable polynomial g € F[T].

Proof. Let ai,...,a, € E be elements such that £ = F(ai,...,ay). For 1 < i < n, write
fi € F[T] for the minimal polynomial over F' of the element «;.

Since f; has the root «; in F and since F is normal over F', the polynomial f; splits over E.
Since E is generated over F' by the roots of the f;, it follows that E is a splitting field of the
separable polynomial

f=11#eFm
=1
0

Remark 15.4.3. 1t is actually true that any finite separable extension F' C F is primitive; namely,
there is an element o € E such that £ = F(«) — this result is known as the Primitive Element
Theorem. We don’t require this fact, and so I haven’t given a proof. The proof of the previous
Proposition would be slightly more streamlined using the Primitive Element Theorem.

15.5 The Fundamental Theorem

Before stating the main theorem of Galois theory, observe that results so far enable us to recognize
Galois groups in some useful situations:

Proposition 15.5.1. Suppose that F' C E is an extension field, that G C Aut(E) is a finite
group of automorphisms, and that F = ES. Then

G = Gal(B/F).
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Proof. According to the [Proposition](#normal-as-fixed-field}) above, F is a separable and nor-
mal extension of F', and [E : F| = | Gal(E/F)|.
Since F = EY, note that G C Gal(E/F). Artin’s Proposition implies that [E : F] < |G|, and
we see that
[E:F]<|G|<|Gal(E/F)=[E: F].
Thus equality holds everywhere, and we conclude that G = Gal(E/F') as required. O

Theorem 15.5.2. Let E be a splitting field over F of a separable polynomial g € F[T], and let
I'=Gal(E/F).

a. There is a one-to-one correspondence between subgroups of I' and intermediate fields of the
extension F C E given by H — EH.

i. If H is a subgroup of I', we have
H = Gal(E/E™).

i. If F C K C E is an intermediate field, the corresponding subgroup is Gal(E/K) C T,

and we have
K — pGal(E/K)

b. For any subgroup H C T,

[E:E¥)=|H| and [E¥:F]=1:H].

c. ::Under the correspondence of a., the subgroup H is normal in I' if and only if the subfield
K = Ef is a normal extension of F. If this is the case, then

Gal(E/F) =T/H ~ Gal(E/F)/ Gal(E/K).

Proof. For (a), write & for the set of subgroups of I' and write .# for the set of intermediate
fields K (so F C K C E).
We consider the mapping
€ — 7 given by H — Ef

and the mapping
J — & given by K — Gal(E/K).

Let us pause to observe that if H;, Hy C G are subgroups with H; C Ho, then EH2 ¢ 1 -
so the assignment H — EH is inclusion reversing.

Similarly, if K; C Ky are intermediate fields, then Gal(E/K2) C Gal(E/K}), so the assign-
ment K — Gal(E/K) is inclusion reversing.

We observe that the statements of i. and ii. precisely confirm that these mappings are inverse
to one another. So to prove a., we need to confirm that

i. Gal(E/E")=H,

and that
ii. K = gGalE/K)

76



Now, i. is an immediate consequence of [Proposition (Recognition of Galois Groups)|(#recognition-

of-galois-groups).

On the other hand, suppose that K is an intermediate field: ¥ C K C E. Since FE is the

splitting field of a separable polynomial over F', then also F is the splitting field over K. Thus
the [Proposition on splitting fields and fixed fields|(#splitting-fields-and-fixed-fields) implies that

FGal(E/K)

= K as required.
This completes the proof of a. As to b., let H be a subgroup of I'. Since F is a splitting

field over E¥ of a separable polynomial, and since we’ve already seen that H = Gal(E/Ef), [an
earlier Theorem|(10a—galois-first-steps.html##automorphisms-and-splitting-fields) shows that

[E: Ef] = |H]|.
Now, the same reasoning shows that F = E' and
B:F| = [B: B = |T].
The remaining statement of b. now follows from a calculation:

wHJﬂzg?;%:El:w:m.

This completes the proof b.

Finally, consider c¢. Let F' C K C E be an intermediate extension, and let H = Gal(E/K) C

I'. We must argue that K is a normal extension of F' if and only if H is a normal subgroup of
I', and in case H is normal, we will argue that I'/H is isomorphic to Gal(K/F).

=: Suppose that K is a normal extension of F. To show that H is a normal subgroup of T,

let ¢ be an arbitrary element of I', and let § € H = Gal(E/K).

We must argue that ¢! oo ¢ € H. For this, we must argue that ¢~! 0§ o ¢ is the identity

on K.

Let u € K and let p € F[T] be the minimal polynomial of u over F'. Since ¢ € I' = Gal(E/F),

the element ¢(u) is again a root of p. Since K is a normal extension, it follows that ¢(u) € K.
Now, 0, is the identity on K, so that

0(p(u)) = d(u) = ¢ ' ofop(u) = u.

This proves that indeed H is normal in K.
<: Suppose that H is a normal subgroup of I'. We must argue that K is a normal extension

of F.

We are first going to argue that I'/H ~ Gal(K/F). To carry out this argument, we first

contend that for any automorphism ¢ in I', the restriction of ¢ to K takes values in K. Let
ue K.

To argue that ¢(u) € K = E¥ let § € H. Since H is normal in ', §; = ¢ L ofo ¢ € H.

Thus

fop=q¢ob.

Now notice that

0(d(u)) = ¢(01(u)) = ¢(u)

since ] is the identity on K. This shows that indeed ¢(u) € E¥ = K.
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It now follows that the restriction of ¢ to K takes values in K. Since ker¢ = {0}, ¢ is a
one-to-one mapping. Since ¢ is an F-linear mapping and K is a finite dimensional vector space
over F', conclude that ¢ is onto and thus determines an automorphism of K.

We have thus defined a group homomorphism

() ¢ ¢k : Gal(E/F) — Gal(K/F).

The kernel of the group homomorphism (<) consists in the automorphisms ¢ whose restriction
to K is the identity — i.e. the kernel is Gal(E/K) = H.

On the other hand, we claim that the homomorphism () is onto. Indeed, since F is a split-
ting field over K of a (separable) polynomial, an earlier [Proposition on uniqueness of splitting
fields] (O4CfSplitting—ﬁelds.html#uniqueness;of—splitting—ﬁeldﬁ) shows that for any automorphism
¢ : K — K, we may find an automorphism 6 : £ — E with 6| = 0.

It now follows that I'/H ~ Gal(K/F).

To complete the proof that K is normal, note first that [I': H] = [K : F] by b. This proves
that |Gal(K/F)| = [K : F|. Since Gal(K/F) is a finite group, the [Proposition on normal
extensions as fixed fields](#normal-as-fixed-field) implies that K is a normal separable extension
of KGal(K/F)‘

But then

[K : KGIK/)) = | Gal(K/F)| = [K : F]

which implies that F = KGal(K/F) and we conclude that K is a normal separable extension of
F'. This completes the proof of ¢, and of the Theorem. O
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