PS7 - finite fields

Math146 - George McNinch

2025-03-23

In these exercises, p > 0 denotes a prime number, and $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$ the finite field of p elements. More generally, if $q = p^m$ then $\mathbf{F}_q = \mathbf{F}_{p^m}$ denotes the finite field of q elements.

- 1. Show that if $g(T) \in \mathbf{F}_p[T]$ is irreducible and if $g \mid T^{p^m} T$, then deg g(T) is a divisor of m.
- 2. If E and F are subfields of \mathbf{F}_{p^n} with p^e and p^f elements respectively, how many elements does $E \cap F$ contain? Prove your claim.
- 3. For $a \in \mathbf{F}_p$ let $f_a = T^p T + a \in \mathbf{F}_p[T]$.
 - a. If α is a root of f_a in some extension field of \mathbf{F}_p , show that $\alpha + 1$ is also a root of f_a .
 - b. Let α be a root of f_a in some extension field. Prove that $E = \mathbf{F}_p(\alpha)$ is a splitting field for f_a . (*Hint:* use the result established in a.)
 - c. Show that the mapping $x \mapsto x^p$ defines an automorphism $\sigma : E \to E$ which is the identity on \mathbf{F}_p and satisfies $\sigma(\alpha) = \alpha + r$ for some $r \in \mathbf{F}_p$ with $r \neq 0$. *Hint:* Show that $\sigma(\alpha)$ must be a root of f_a .
 - d. Show that f_a is irreducible over \mathbf{F}_p i.e. that f_p is irreducible in $\mathbf{F}_p[T]$. *Hint:* if $q \in \mathbf{F}_p[T]$ is an irreducible factor of f_a explain why $\sigma(q) = q$. If α is a root of q, show that $\alpha + i$ is a root of q for each $i \in \mathbf{F}_p$ and deduce that $f_a = q$.
 - e. Let $a \neq b \in \mathbf{F}_p$ and let α, β be roots $f_a(T)$ and $f_b(T)$ respectively. Explain why $\mathbf{F}_p(\alpha) \simeq \mathbf{F}_p(\beta)$.
- 4. Let p > 2 be a prime and let $n \in \mathbb{Z}_{>0}$.
 - a. Let S be the set of squares in \mathbf{F}_{p^n} ; i.e.

$$S = \{x^2 \mid x \in \mathbf{F}_{p^n}\}$$

Show that S contains exactly $(p^n + 1)/2$ elements.

Hint: Note that $x \mapsto x^2$ defines a group homomorphism $\phi : \mathbf{F}_{p^n}^{\times} \to \mathbf{F}_{p^n}^{\times}$. What is ker ϕ ? What is the image of ϕ ?

- b. Given $a \in \mathbf{F}_{p^n}$ let $T = \{a x \mid x \in S\}$. Show that $T \cap S \neq \emptyset$.
- c. Show that every element of \mathbf{F}_{p^m} may be written as a sum of two squares.