PS6 - Splitting fields

Math146 - George McNinch

2025-03-09

The symbol F denotes a field.

- 1. Let F(X) be the field of rational functions over F; thus E = F(X) is the field of fractions of the polynomial ring F[X].
 - a. For $n \in \mathbb{Z}_{\geq 2}$, show that the polynomial $f(T) = T^n + XT + X$ is irreducible in E[T] = F(X)[T].
 - b. For distinct elements $a, b \in F$, find the degree $[E(\sqrt{X-a}, \sqrt{X-b}) : E]$.
- 2. Let E be a splitting field over **Q** of the polynomial $T^5 2$. Find $[E : \mathbf{Q}]$.
- 3. Let $F = \mathbf{F}_7 = \mathbf{Z}/7\mathbf{Z}$ be the finite field with 7 elements.
 - a. Show that F^{\times} is a cyclic group of order 6.
 - b. Let E be a splitting field over F of the polynomial $T^3 2$. Compute [E:F].

Hint: If $\alpha = \sqrt[3]{2}$ is a chosen root of $T^3 - 2$, and if ω is a root of $T^2 + T + 1 = \frac{T^3 - 1}{T - 1}$ then $\alpha, \omega \alpha, \omega^2 \alpha$ are the roots of $T^3 - 2$ i.e. $T^3 - 2 = (T - \alpha)(T - \omega \alpha)(T - \omega^2 \alpha)$ in $F(\alpha, \omega)[T]$.

4. Let c₁, c₂, ..., c_n ∈ F be distinct elements. Show that 1/(X - c₁), 1/(X - c₂), ..., 1/(X - c_n) are linearly independent over F in the field F(X) of rational functions.
i.e. show that if α₁, ..., α_n ∈ F and if

$$0 = \sum_{i=1}^{n} \frac{\alpha_i}{X - c_i}$$

then $\alpha_i = 0$ for every *i*.