Math146 - PS4 due 2025-02-23

George McNinch

2025-02-16

updated on [2025-02-13 Thu]

1. Find the minimal polynomial over **Q** of the element $\omega = \exp(2\pi i/6) \in \mathbf{C}$.

Hint: First note that ω is a root of $\frac{T^6 - 1}{T - 1} = T^5 + T^4 + T^3 + T^2 + T + 1$. Does $T^3 - 1$ divide $T^6 - 1$?

- 2. Consider the field extension $E = \mathbf{Q}(\alpha)$ of \mathbf{Q} where the minimal polynomial of α is equal to $f(T) = T^2 3T 3 \in \mathbf{Q}[T].$
 - a. Show that f is irreducible over \mathbf{Q} .
 - b. Viewing *E* as a vector space over \mathbf{Q} , we know that $\{1, \alpha\}$ is a *basis* of *E* as a \mathbf{Q} -vector space. Let's write $\Phi: E \to \mathbf{Q}^2$ for the vector space isomorphism

$$s + t\alpha \mapsto \begin{bmatrix} s \\ t \end{bmatrix}.$$

Fix $\beta = a + b\alpha \in \mathbf{Q}(\alpha)$ for $a, b \in \mathbf{Q}$ and consider the **Q**-linear transformation $\lambda_{\beta} : E \to E$ given by "multiplication by β ". Thus

$$\lambda_{\beta}(\gamma) = \beta \cdot \gamma \quad \text{for} \quad \gamma \in E = \mathbf{Q}(\alpha).$$

Find the 2×2 matrix $M = M_{\beta} \in \operatorname{Mat}_{2 \times 2}(\mathbf{Q})$ with the property that

$$M \cdot \Phi(\gamma) = \Phi(\lambda_{\beta}(\gamma)).$$

Otherwise stated, the matrix M is determined by the condition

$$M \cdot \begin{bmatrix} s \\ t \end{bmatrix} = \Phi((a + b\alpha)(s + t\alpha)) \text{ for every } s, t \in \mathbf{Q}.$$

c. Show that the assignment $\beta \mapsto M_{\beta}$ determines a homomorphism of rings

$$E \to \operatorname{Mat}_{2 \times 2}(\mathbf{Q})$$

(For this, you need to show that $M_{\beta_1+\beta_2} = M_{\beta_1} + M_{\beta_2}$ and that $M_{\beta_1\cdot\beta_2} = M_{\beta_1} \cdot M_{\beta_2}$ for $\beta_i \in E$). d. Using the quadratic formula, we see that the roots of f have the form

$$\frac{3 \pm \sqrt{21}}{2}.$$
Choosing $\alpha = \frac{3 + \sqrt{21}}{2}$ let us write $\overline{\alpha} = \frac{3 - \sqrt{21}}{2} = 3 - \alpha.$
For $\beta = s + t\alpha \in E$ with $s, t \in \mathbf{Q}$ put $\overline{\beta} = s + t\overline{\alpha} = (s + 3t) - t\alpha.$
Show that the assignment $\beta \mapsto \overline{\beta}$ determines an isomorphism of rings $E \to E$.
e. Show that $\beta \cdot \overline{\beta} \in \mathbf{Q}$ for every $\beta \in E$.
f. Verify that

$$\det M_{\beta} = \beta \cdot \overline{\beta}.$$

for every $\beta \in E$. g. Write $\frac{1}{2+\alpha} \in E$ in the form $\frac{1}{2+\alpha} = s + t\alpha$ for $s, t \in \mathbf{Q}$.