Math146 - PS3 due 2025-02-07

George McNinch

2025-02-07

In these exercises, you may use without proof that the real number \sqrt{p} – a root of $T^2 - p$ – is not in **Q** for a prime number p.

Also, we are going to write \mathbf{F}_p for the field $\mathbf{Z}/p\mathbf{Z}$ of order p.

- 1. Let R be a principal ideal domain (PID) and let $p \in R$ be irreducible. Let $I = \langle p^2 \rangle$ be the principal ideal generated by p^2 .
 - (a) Show that there is a surjective ring homomorphism $R/I \to R/\langle p \rangle$.
 - (b) Show that the element $u = 1 + p + I \in R/I$ is a unit in R/I. Can you give an expression for the inverse u^{-1} ?
- 2. Let R be a PID and let a₁, a₂, · · · , a_n ∈ R be elements which are not all 0 for some n ∈ Z_{>0}. A greatest common divisor for the elements a₁, a₂, · · · , a_n is an element d ∈ R with the properties: (i) d | a_i for each 1 ≤ i ≤ n, and (2) if e ∈ R and e | a_i for 1 ≤ i ≤ n, then e | d.
 - (a) Prove that a greatest common divisor d of the a_i exists and show that

$$d = \sum_{i=1}^{n} x_i a_i$$

for some elements $x_i \in R$ $(1 \le i \le n)$.

- (b) If d and d' are two gcds of the a_i , show that d and d' are associates.
- (c) Suppose that $a, b, c \in R$ and that $(a, b) \neq (0, 0)$. Prove that gcd(gcd(a, b), c) = gcd(a, b, c).

Hint: To prove (a) and (b), imitate the proof given in the notes for the case n = 2.

3. Let F be a field and let $a, b \in F$ with $a \neq b$. Prove that

$$F[T]/\langle (T-a)(T-b)\rangle \simeq F \times F.$$

Hint: Define a mapping $\phi : F[T] \to F \times F$ by the rule

$$\phi(f) = (f(a), f(b)).$$

Show that ϕ is onto and find ker ϕ .

- 4. Give an example of a *reducible* polynomial $f \in \mathbf{Q}[T]$ of degree 4 that has no roots in \mathbf{Q} .
- 5. Decide whether each of the following polynomials is irreducible. If the polynomial is irreducible, provide confirmation. If the polynomial is not irreducible, exhibit a factorization as a product of irreducible polynomials.
 - (a) $T^2 3 \in \mathbf{F}_7[T]$.
 - (b) $T^3 + T + 1 \in \mathbf{F}_2[T]$.
 - (c) $T^3 + T + 1 \in \mathbf{F}_3[T]$.
- 6. Let $f \in F[T]$ and consider the quotient ring $R = F[T]/\langle f \rangle$. For a polynomial $g \in F[T]$ prove that the element $g + \langle f \rangle \in R$ is a unit if and only if gcd(f,g) = 1.