GEORGE MCNINCH

- 1. Consider the ring homomorphism $\phi : \mathbf{Q}[T] \to \mathbf{C}$ given by $\phi(f) = f(1+i)$.
 - (a) Prove that ker ϕ is the principal ideal $\langle T^2 2T + 2 \rangle$.
 - (b) $\mathbf{Q}(1+i)$ is the subring $\{a+b(1+i)|a,b\in\mathbf{Q}\}\subset\mathbf{C}$. Conclude that $\mathbf{Q}(1+i)$ is isomorphic to $Q[T]/\langle T^2-2T+2\rangle$.
 - (c) Explain why $\mathbf{Q}(1+i)$ is a *field*.
- 2. Let R be a PID and let $p \in R$ be irreducible. Let $I = \langle p^2 \rangle$ be the principal ideal generated by p^2 .
 - (a) Show that there is a surjective ring homomorphism $R/I \to R/\langle p \rangle$.
 - (b) Show that the element $1 + p + I \in R/I$ is a unit in R/I.
- 3. Find $gcd(T^3 1, 2T^2 3T + 1)$ in $\mathbf{Q}[T]$.
- 4. Consider the polynomial ring $\mathbf{Q}[T, S]$ in two indeterminants. By definition, this ring is just the iterated polynomial ring $\mathbf{Q}[T][S]$.
 - (a) Explain why $\mathbf{Q}[T, S]$ is an integral domain.
 - (b) Explain why the monomials $T^i S^j$ for $i, j \ge 0$ form a basis for $\mathbf{Q}[T, S]$ as a **Q**-vector space.
 - (c) Define the total degree of a monomial $T^i S^j$ to be $totdeg(T^i S^j) = i + j$ and for a non-zero polynomial $f = \sum_{i,j\geq 0} a_{i,j} T^i S^j \in \mathbf{Q}[T,S]$ let the total degree of f be defined by

$$\operatorname{totdeg}(f) = \max\{i + j \mid a_{i,j} \neq 0\}$$

Prove for $f, g \in \mathbf{Q}[T, S]$ that totdeg(fg) = totdeg(f) + totdeg(g).

(d) Show that $\mathbf{Q}[T, S]$ is *not* a PID by showing that the ideal $\langle T, S \rangle$ is not principal. **Hint**: Use (c) to prove that there is polynomial $f \in \mathbf{Q}[T, S]$ for which $f \mid T$ and $f \mid S$.

Date: 2025-01-29 14:01:30 EST (george@calliope).