ProblemSet 1 – Commutative rings & polynomials

George McNinch

2025-01-24

1. Let $p, q \in \mathbb{Z}$ be integers and consider the assignment

$$\phi:\mathbb{Z}\to\mathbb{Z}/\langle p
angle imes\mathbb{Z}/\langle q
angle$$

given for $a \in \mathbb{Z}$ by the rule $\phi(a) = ([a], [a]) = (a + \langle p \rangle, a + \langle q \rangle).$

- a. Show that ϕ is a ring homomorphism. ¹
- b. Assume that gcd(p,q) = 1. We will later show that there are integers $u, v \in \mathbb{Z}$ for which up + vq = 1. Use this to show that ϕ is *surjective* in this case.
- c. Show that ϕ is not surjective when p = q.
- 2. Consider the set $R = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}.$
 - a. Show that R is a ring by showing that R is a *subring* of \mathbb{R} .²

Consider the polynomial $f(T) = T^2 - 5 \in \mathbb{Q}[T]$. It is a fact that

(A)
$$f(\alpha) = \alpha^2 - 5 \neq 0$$
 for every $\alpha \in \mathbb{Q}$.

(We'll have efficient arguments for this later on).

- b. Use the result (♣) to show for $a, b \in \mathbb{Q}$ that $a + b\sqrt{5} = 0 \implies a = b = 0$.
- c. Use the result (\clubsuit) to show that if $0 \neq \alpha \in R$ then $\alpha^{-1} = \frac{1}{\alpha} \in R$.
- 3. A commutative ring R is called a *field* if every non-zero element of R has a multiplicative inverse.

A non-zero element x of a commutative ring R is called a zero-divisor if there is a non-zero element $y \in R$ for which xy = 0.

- a. If F is a field, show that F contains no zero divisors.
- b. A commutative ring with no zero divisors is called an *integral domain*. Show that any subring of a field is an integral domain. Conclude that \mathbb{Z} , $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{5}]$ are all integral domains.
- c. If R is any commutative ring (with identity), show that the cartesian product $R \times R$ is a commutative ring which is never an integral domain.
- d. Show for any integer n > 1 that the ring $\mathbb{Z}/\langle n^2 \rangle$ is not an integral domain.
- 4. Let F be a field and let F[T] be the polynomial ring in the variable T with coefficients in F.

Then F[T] is a vector space over F (in the sense of linear algebra), and the set of monomials $\{1, T, T^2, \dots, T^n, \dots\}$ is a basis for this vector space.

Let $\phi: F \to F$ be a ring isomorphism ³, and define a mapping $\Phi: F[T] \to F[T]$ by the rule

$$\Phi\left(\sum_{i=0}^{N} a_i T^i\right) = \sum_{i=0}^{N} \phi(a_i) T^i.$$

¹If R and S are rings, a function $\phi : R \to S$ is a ring homomorphism if ϕ is a homomorphism of additive groups and if $\phi(ab) = \phi(a)\phi(b)$ for every $a, b \in R$.

²If T is a ring, a subset S of T is a subring provided that S is an additive subgroup of T and that S is closed under the multiplication obtained from T. Notice that if S is a subring, then S is itself a ring (under the operations of T).

 $^{^{3}}$ A ring homomorphism is called an isomorphism if it is invertible (as a function). The inverse function is always a ring homomorphism as well.

- a. Show that Φ is a ring homomorphism.
- b. Show that $\ker(\Phi)=\{0\}$ 4 and conclude that Φ is injective.
- c. Show that Φ is surjective as well. Thus Φ is an isomorphism of rings (i.e. Φ is an *automorphism* of the ring F[T]).

(Hint You can argue the surjectivity directly. Or you can argue that the image of Φ is a vector subspace of F[T] containing the basis $\{T^i\}$).

 $^{^{4}\}text{Here}$ ker just means the kernel of Φ viewed as a homomorphism of additive groups.