ProblemSet 1 – Commutative rings & polynomials

George McNinch

2025-01-24

1. Let $p, q \in \mathbb{Z}$ be integers and consider the assignment

$$
\phi: \mathbb{Z} \to \mathbb{Z}/\langle p \rangle \times \mathbb{Z}/\langle q \rangle
$$

given for $a \in \mathbb{Z}$ by the rule $\phi(a) = ([a], [a]) = (a + \langle p \rangle, a + \langle q \rangle).$

- a. Show that ϕ is a ring homomorphism. ^{[1](#page-0-0)}
- b. Assume that $gcd(p, q) = 1$. We will later show that there are integers $u, v \in \mathbb{Z}$ for which $up + vq = 1$. Use this to show that ϕ is *surjective* in this case.
- c. Show that ϕ is not surjective when $p = q$.
- 2. Consider the set $R = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}.$
	- a. Show that R is a ring by showing that R is a *subring* of R. ^{[2](#page-0-1)}

Consider the polynomial $f(T) = T^2 - 5 \in \mathbb{Q}[T]$. It is a fact that

$$
(\clubsuit) \quad f(\alpha) = \alpha^2 - 5 \neq 0 \quad \text{for every } \alpha \in \mathbb{Q}.
$$

(We'll have efficient arguments for this later on).

b. Use the result (\clubsuit) to show for $a, b \in \mathbb{Q}$ that $a + b\sqrt{5} = 0 \implies a = b = 0$.

- c. Use the result (\clubsuit) to show that if $0 \neq \alpha \in R$ then $\alpha^{-1} = \frac{1}{\alpha}$ $\frac{1}{\alpha} \in R$.
- 3. A commutative ring R is called a *field* if every non-zero element of R has a multiplicative inverse.

A non-zero element x of a commutative ring R is called a zero-divisor if there is a non-zero element $y \in R$ for which $xy = 0.$

- a. If F is a field, show that F contains no zero divisors.
- b. A commutative ring with no zero divisors is called an *integral domain*. Show that any subring of a field is an integral A commutative ring with no zero divisors is called an *integral de* domains.
domain. Conclude that $\mathbb{Z}, \mathbb{Z}[i], \mathbb{Z}[\sqrt{5}]$ are all integral domains.
- c. If R is any commutative ring (with identity), show that the cartesian product $R \times R$ is a commutative ring which is never an integral domain.
- d. Show for any integer $n > 1$ that the ring $\mathbb{Z}/\langle n^2 \rangle$ is not an integral domain.
- 4. Let F be a field and let $F[T]$ be the polynomial ring in the variable T with coefficients in F.

Then $F[T]$ is a *vector space* over F (in the sense of linear algebra), and the set of monomials $\{1, T, T^2, \dots, T^n, \dots\}$ is a *basis* for this vector space.

Let $\phi : F \to F$ be a ring isomorphism ^{[3](#page-0-2)}, and define a mapping $\Phi : F[T] \to F[T]$ by the rule

$$
\Phi\left(\sum_{i=0}^N a_i T^i\right) = \sum_{i=0}^N \phi(a_i) T^i.
$$

¹If R and S are rings, a function $\phi: R \to S$ is a ring homomorphism if ϕ is a homomorphism of additive groups and if $\phi(ab) = \phi(a)\phi(b)$ for every $a, b \in R$

²If T is a ring, a subset S of T is a subring provided that S is an additive subgroup of T and that S is closed under the multiplication obtained from T. Notice that if S is a subring, then S is itself a ring (under the operations of T).

 $3A$ ring homomorphism is called an isomorphism if it is invertible (as a function). The inverse function is always a ring homomorphism as well.

- a. Show that Φ is a ring homomorphism.
- b. Show that ker(Φ) = {0}^{[4](#page-1-0)} and conclude that Φ is injective.
- c. Show that Φ is surjective as well. Thus Φ is an isomorphism of rings (i.e. Φ is an *automorphism* of the ring $F[T]$).

(**Hint** You can argue the surjectivity directly. Or you can argue that the image of Φ is a vector subspace of $F[T]$ containing the basis $\{T^i\}$).

⁴Here ker just means the kernel of Φ viewed as a homomorphism of additive groups.