
Proof assistants, dependent types, and
modeling…?

George McNinch

2025-04-27 16:22:31 EDT (george@valhalla)

Outline

Types

Dependent types

Another example of dependent type

Proofs

Modeling?

Python

▶ I want to try to quickly something called dependent types
which enable proofs in the context of computer code.

▶ The language we have used in this course – python – is
dynamically typed:
Python is called a dynamically typed language because
you do not need to declare the type of a variable when you
create it; the type is determined automatically based on
the value assigned to it.

A python example

▶ So for example we can write

import numpy as np

def f(a):
return a + np.array([1,1,1])

without first declaring that a is an np.array of length 3.
We just get a runtime error if a isn’t of the correct form.

▶ we get

f([1,0,-1])

array([2, 1, 0])

continued

import numpy as np

def f(a):
return a + np.array([1,1,1])

try:
f([1,0,-1,0])

except:
print("runtime error...")

runtime error...

Statically typed language

▶ In contrast, in a statically typed language you have to be
more explicit about things.

▶ Because my plan for this talk is ultimately to describe a little
bit about the Lean language/proof-assistant, I’m going to
discuss typing for Lean, but until I discuss dependent types,
my remarks mostly describe typing for any language in the ML
family (Haskell, OCaml, …).

An add function

▶ Let’s define a function add that that adds 2 lists of natural
numbers: we view the arguments as “vectors” and we want
the function to add these vectors.

▶ The intent is that add [1, 1, 1] [1, -2, 1] should
return something like [2, -1, 2]. In this case, the type
system will only permit you to call the function add with two
arguments, both required to be lists of natural numbers.

▶ So e.g. add ["a"] [1] should fail, but not with a runtime
error – the language “knows” this invocation is prohibited
because it can infer the type of ["a"] as List String
instead of List ℕ.

Error handling via Option

▶ But we have to worry about add [1,1] [1,1,1].
▶ One way to deal with this is to have a type for error handling.

Here if a is a type, then Option a is the type which can
have values either none or some a.

▶ Our function can return a Option value.
The signature of our function will be

def add (a: List ℕ) (b: List ℕ)
: Option (List ℕ)

So an invocation of add can either return none or it can
return some [...].

The add function

def add (a: List ℕ) (b: List ℕ) :
Option (List ℕ) :=
if a.length == b.length then
match a,b with
| [],_ => some []
| _,[] => some []
| (c::cs), (d::ds) => do

let rest ← add cs ds
pure $ (c+d)::rest -- this returns

-- a `some`-value.
else
none

add function results

▶ So for example

add [1,2] [3,4]

evaluates to some [4,6] while
▶ while

add [1,2,3] [4,5]

evaluates to none.
▶ The main drawback with this approach is that after using it,

one is then committed to carrying around values of the
Option type

A dependent type

▶ But Lean – and other dependently typed languages such as
Idris, Agda, … – offers us something more.

▶ We can encode the statement “a and b have the same length”
using a piece of data. We view this data as a proof, or as
evidence of the equality.

▶ If x y : ℕ then x = y is a type; more precisely, x = y is
a Proposition in Lean.

▶ In contrast, x == y is really a boolean valued procedure,
with signature something like

def (==) {a : Type} (x y : a) : Boolean

equality types, continued

▶ For example, Lean knows statements like

theorem eq_succ { x y : ℕ } :
x = y → (x+1) = (y+1)

which we read as “if x and y are equal, then so are x+1 and
y+1”.
(more precisely: it is easy to prove such statements using
Lean)

Type-safe add

▶ One way to use this equality type is to require such evidence
as an argument to a function

▶ For example, we can require the user provide an equality proof
to invoke our addition function.

▶ Here is possible type-signature for such a function

def add_safe (a:List ℕ) (b:List ℕ)
(p:a.length = b.length) : List ℕ

▶ Thus, one can make a call

add_safe l1 l2 p

where l1 l2 : List ℕ are lists of natural numbers, and
where p : l1.length = l2.length is a proof that the
lists have the same length.

Type-safe add (implemented)

▶ here is the code

def add_safe (a:List ℕ) (b:List ℕ)
(p:a.length = b.length) : List ℕ :=

match a,b with
| [],[] => []
| z::zs, w::ws => by
have h : zs.length = ws.length := by

repeat rw [List.length_cons] at p
linarith

exact (z+w)::add_safe zs ws h

▶ note that we needed to construct the proof h from the
hypothesis p in order to be able to recursively invoke the
function add_safe on the shorter lists zs and ws.

Type-safe add, continued

▶ Now

add_safe [1,2,3] [1,2,4] rfl

evaluates to [2,4,7]. Here rfl is a proof that
[1,2,3].length = [1,2,4].length – this proof
amounts to the “reflexive law of equality”.

▶ in contrast

add_safe [1,2,3] [1,2,4,5] rfl

doesn’t type-check in Lean.

Vectors

▶ a basic example of a dependent type is that of a vector
▶ the idea is that the type itself indicates how many entries the

vector has. This is like saying that ℝ3 is a type
▶ of course, you can make a type for “3-tuples of floats” in

more-or-less any typed language. But dependently typed
languages let you make a type for “n-tuples of floats” where n
is a variable natural number.

vectors continued
▶ here is a definition of a vector (this isn’t actually the

definition used in Lean, which is more complicated for
reasons that aren’t really relevant to our discussion).

inductive vect : Type → ℕ → Type where
| vnil : vect a 0
| vcons (x:a) (v:vect a n)

: vect a (Nat.succ n)

▶ vect is an inductive type. There are two constructors: vnil
is the “empty vector” (of length 0) and vcons constructs a
vector of length n from an element and a vector of length n-1

▶ thus we can create a vector of length two of natural numbers

vect.vcons 1 (vect.vcons 2 vect.vnil)

which “is” the vector [1,2]

Vectors (notation)

▶ we can simplify notation a bit using

infixr:67 " ::: " => vect.vcons

▶ now our vector representing [1,2] above can be entered as

1 ::: 2 ::: vnil

vectors as dependent type

▶ vect a n is a dependent type
▶ the type vect a n has a type parameter - in this case, a,

which is an arbitrary type. But this doesn’t make it a
dependent type. E.g. this is essentially the same as the
Option or List type constructors we have seen before, and
which many non-dependently typed languages have.
e.g. the definition of Option is as follows. The type doesn’t
depend on a value

inductive Option (α:Type) where
| none : Option α -- no value
| some (val:α) : Option α

▶ what makes vect a n dependent is the value parameter n,
a natural number

code for adding our vectors

▶ rather than giving our add_safe function a proof that its
arguments are equal-length lists, we can instead define an
add_vect function with signature

def add_vect {n :ℕ} (av : vect ℕ n)
(bv : vect ℕ n)

: vect ℕ n

▶ thus add_vect will only accept as arguments vectors of the
same length

code for adding our vectors

The code is actually simpler than that of our earlier add_safe:

def add_vect {n :ℕ} (av : vect ℕ n)
(bv : vect ℕ n)

: vect ℕ n :=
match av,bv with
| vect.vnil,vect.vnil => vect.vnil
| a ::: ar, b ::: br =>

(a+b) ::: add_vect ar br

adding some vectors

add_vect (1 ::: 2 ::: 3 ::: vect.vnil)
(1 ::: 1 ::: 1 ::: vect.vnil)

evaluates to 2 ::: 3 ::: 4 ::: vect.vnil

Proving statements about constructions

▶ List in lean is another type constructor

inductive List (α:Type) where
| nil : List α -- empty list
| cons (x:α) (xs:List α) : List α

where we define notation [] for nil and x :: xs for cons
x xs.

▶ thus e.g.

1 :: 2 :: 3 :: nil

is the list [1,2,3]
▶ the main difference between List and Vector of course is

that Vector s have a fixed length, while List s don’t

appending lists

▶ Here is some Lean code that appends two lists.

def append {a:Type} (xs ys : List a)
: List a :=
match xs with
| [] => ys
| z :: zs => z :: append zs ys

▶ e.g.

append ["a", "b", "c"] ["d", "e"]

evaluates to ["a", "b", "c", "d", "e"]

▶ Now, we are going to prove a property about this append
function: namely, that the length of the appended lists is the
sum of their lengths.

the proof

▶ here is the proof in Lean

theorem append_length {a:Type}
(xs ys : List a)
: (append xs ys).length =
xs.length + ys.length := by

induction xs with
| nil => simp [append]
| cons z zs ih =>

simp [append, ih]
linarith

▶ you can view this theorem append_length as a function of
xs and ys, whose value is the indicated equality
Proposition.

the proof continued
▶ here is the proof in Lean

theorem append_length {a:Type}
(xs ys : List a)
: (append xs ys).length =
xs.length + ys.length := by

induction xs with
| nil => simp [append]
| cons z zs ih =>

simp [append, ih]
linarith

▶ The proof is by induction on the length of the first list.
▶ In the base case where the first list is empty, the proof boils

down to the observation that append [] ys is equal to ys.
We are able to produce the pf using the simplifier tactic
simp.

proof continued 2
▶ here is the proof in Lean

theorem append_length {a:Type}
(xs ys : List a)
: (append xs ys).length =
xs.length + ys.length := by

induction xs with
| nil => simp [append]
| cons z zs ih =>

simp [append, ih]
linarith

▶ when the first list is non-empty, it must the form z::zs and
we then have the inductive hypotheses that append zs ys
has length equal to zs.length + ys.length. Using this,
the required result is again provided by simp.

Relevance to modeling?

Some thoughts, remarks, and questions:
▶ would more type-safe linear algebra functions be useful in the

setting of math modeling?
▶ advantages: types help prevent certain types of errors, and

proofs provide assurance of correctness
▶ disadvantages: more complex to create code

▶ one can imagine proofs of properties of results obtained from
modeling software; how useful would this be?

▶ I’m aware of a fair amount of recent formalization activity in
pure mathematics, but I know less about its adoption in math
modeling settings

▶ having a machine-usable language for mathematical proofs is
a pre-requisite for doing machine-learning about mathematical
statements

	Types
	Dependent types
	Another example of dependent type
	Proofs
	Modeling?

