## **Problem Set week 13**

**Problem 1**: Let A be a local ring with unique maximal ideal  $\mathfrak{m}$ , and write  $k = A/\mathfrak{m}$  for the residue field of A.

Suppose that M is a free A-module of finite rank n. Let  $\alpha_1,...,\alpha_n\in M/\mathfrak{m}M$  be a  $k=A/\mathfrak{m}$ -basis for  $M/\mathfrak{m}M$ , and let  $x_1,...,x_n\in M$  be elements for which  $\alpha_i=x_i+\mathfrak{m}M$  for i=1,...n. Prove that  $x_1,...,x_n$  forms an A-basis for M.

**Problem 2**: Let A be a commutative ring and  $P \subset A$  a prime ideal. Denote by  $A_P$  the *localization* of A at P; thus  $A_P$  is a local ring with unique maximal ideal  $\mathfrak{m} = P^e = P \cdot A_P$ .

- a. Prove that  $A_P/P \cdot A_P$  is isomorphic to the field of fractions of the integral domain A/P.
- b. If P is a maximal ideal of A conclude that the fields A/P and  $A_P/P \cdot A_P$  are isomorphic.

**Problem 3**: Let A be a PID,  $n \in \mathbb{N}$ , let F be a free A-module of finite rank and let  $\Phi \in \operatorname{End}_A(F)$  be an A-linear endomorphism.

For a prime  $p \in A$ , write  $A_{pA}$  for the localization of A at pA. Note that  $\Phi$  determines an  $A_{pA}$ -homomorphism

$$\operatorname{id} \otimes \Phi : A_{pA} \otimes_A F \to A_{pA} \otimes_A F.$$

a. Fix an A-basis  $\mathcal{B}$  for F. For  $v \in M$ , we write

$$v = \sum_{b \in \mathcal{B}} \alpha_b b$$
 for a function  $\alpha: \mathcal{B} \to A$ 

and we write  $[v]_{\mathcal{B}} = \alpha \in A^{\mathcal{B}}$ , where  $A^{\mathcal{B}}$  is the module of all functions  $\mathcal{B} \to A$  (recall that  $|\mathcal{B}| = n < \infty$ !)

Thus  $v\mapsto [v]_{\mathcal{B}}:F\to A^{\mathcal{B}}$  is an isomorphism of A-modules where  $A^{\mathcal{B}}$  is the module of

Show that there is a matrix  $M \in \operatorname{Mat}_{\mathcal{B} \times \mathcal{B}}(A)$  for which

$$[\Phi v]_{\mathcal{B}} = M \cdot [v]_{\mathcal{B}} \text{ for } v \in F.$$

b. Let  $d=\det(\Phi)$ . Prove that  $\mathrm{id}\otimes\Phi$  is an isomorphism – i.e. is an *automorphism* of  $A_{pA}\otimes_AF$  – if and only if  $\gcd(d,p)=1$ .

In particular if  $d \neq 0$ , then id  $\otimes \Phi$  is an automorphism for all but finitely many primes  $p \in A$ .

Problem Set week 13 due: 2025-12-03

**Problem 4**: Let A be a commutative ring and let M, N, P be A-modules. Prove that there is an isomorphism

$$M \otimes_A (N \oplus P) \simeq (M \otimes_A N) \oplus (M \otimes_A P).$$

**Problem 5**: Let A be a PID and let  $p, q \in A$ . Write  $d = \gcd(p, q) \in A$  for a greatest common divisor.

Prove that:

$$(A/pA) \otimes_A (A/q) \simeq A/dA$$
.

**Problem 6**: Let F be a field and let V, W be a finite dimensional vector spaces over F.

Recall that the dual space  $V^*$  is the vector space  $\operatorname{Hom}_F(V,F)$ .

- a. Show that  $\dim_F V = \dim_F V^*$ . **Hint:** exhibit a basis for  $V^*$ .
- b. Show that there is an isomorphism

$$V^* \otimes_A W \xrightarrow{\sim} \operatorname{Hom}_F(V, W).$$

**Hint:** Use the mapping property of  $\otimes$  to define the indicated map. Basis considerations show that this map is surjective. Now compare the dimension of the domain and co-domain.

Let A be a commutative ring. let M, M', N, N' be A-modules and let  $\varphi : M \to N$  and  $\varphi' : M \to N'$  be A-module homomorphisms. There is a unique homomorphism of A-modules

$$\varphi \otimes \varphi' : M \otimes_A N \to M' \otimes_A N'$$

such that

$$(\varphi \otimes \varphi')(m \otimes n) = \varphi(m) \otimes \varphi'(n).$$

**Problem 7**: Let F be a field and let  $\varphi: V \to W$  be a homomorphism of F-vector spaces (a "linear transformation") and let X be an F-vector space.

If  $\varphi$  is injective, prove that  $\mathrm{id}_X \otimes \varphi : X \otimes_F V \to X \otimes_F W$  is injective.

**Remark:** This shows that the functor  $X \otimes_F -$  is *exact* for a field F; indeed, combine the preceding observation with the result proved in class that the functor  $Y \otimes_A -$  is always right exact. In general, an A-module Y is said to be flat if  $Y \otimes_A -$  is exact.

**Problem 8**: Let A be a commutative ring and let M be an A-module. If F is a free A-module on  $\beta: \mathcal{B} \to F$ , prove that  $F \otimes_A M$  is isomorphic to  $\bigoplus_{b \in \mathcal{B}} M$ , a direct sum of copies of M index by  $\mathcal{B}$ .