Assignment 1

Question 1: Let F be a field, let I be a set, and let $V = V_I$ the set of finitely supported F-valued functions on I.

- a. Explain why V is an F-vector space.
- b. For $i \in I$, let δ_i be the function $\delta_i : I \to F$ given by the rule

$$\delta_i(j) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ else} \end{cases}$$

Prove that $\mathcal{B} = \{\delta_i \mid i \in I\}$ is a basis for V_I as F-vector space. You need to prove that \mathcal{B} spans V and that \mathcal{B} is linearly independent.

c. If $f:I\to J$ is a bijective function, prove that there is a linear mapping $\Phi_f:V_I\to V_J$ for which $\Phi_f(\delta_i)=\delta_{f(i)}$ for each $i\in I$, and that Φ_f determines an isomorphism of F-vector space $V_I\to V_J$.

Question 2: Let F be a field and let V and W be F-vector space. Suppose that $\varphi:V\to W$ is an invertible F-linear map. Using φ , define a group isomorphism $\mathrm{GL}(V)\to\mathrm{GL}(W)$.