Problem Set week 11 due: 2025-11-17

Problem Set week 11

<u>Stars and Bars</u> is a method for deriving various combinatorial formulas. For example, it can be used to answer the question: if $k \le m$, given m (indistinguishable) objects, how many ways can they be placed in k (distinguishable) bins?

Let's suppose for example that m=4 and k=3. Then we can separate the 4 objects into 3 bins by placing boundaries between them. Thus, we count all arrangements of m=4 (indistinguishable) stars, and k-1=2 bars. For example here are 4 such arrangements:

$$\star\star\star\star|\, , \qquad \star\star\star|\star| \qquad , \qquad \star|\star\star|\star \qquad , \qquad |\star\star\star|\star$$

which correspond respectively to:

all in 1st bin ; 3 in 1st bin, 1 in 2nd ; 1 in 1st, 2 in 2nd, 1 in 3rd ; 3 in 2nd, 1 in 3rd

The number of such lists is given by the formula $\binom{n+k-1}{k-1}$. To see why, note that any such list is a string of n+k-1 characters, and is completely determined by the positions of the bars; these positions are determined by choosing k-1 numbers from the list $\{1,2,...,n+k-1\}$. For example, the 4 lists above are determined by the following subsets of $\{1,2,3,4,5,6\}$:

$$\{5,6\}$$
 , $\{4,6\}$, $\{2,5\}$, $\{1,5\}$

Thus there are $\binom{4+3-1}{3-1}=\binom{6}{2}=15$ ways of placing 4 objects into 3 bins.

Problem 1: Suppose that there are four donuts available at a certain bakery: Boston cream, pumpkin spice, glazed, and chocolate.

Boxes containing 6 donuts are sold.

An industrious group of bakers has packed boxes will all possible assortments and created a stack of boxes for each possible assortment. Thus there is stack for "6 Boston creams", another stack for "4 Boston cream, 1 glazed, 1 chocolate", etc.

- a. Imagine choosing a box of donuts from a random stack.
 - Do you expect the events "the box contains at least 2 chocolate donuts" and "the box contains at most 1 pumpkin spice donut" are independent?
 - Don't make any calculations yet, just consider the problem (or discuss with colleagues in the class!) We are going to calculate in the remainder of the problem!
- b. Use the method of stars-and-bars to determine the number of stacks of donut boxes. (Think of donut style Boston cream, glazed, etc. as the bins.)
- c. Use the method of stars-and-bars to determine the number of stacks for which each box contains at least two chocolate donuts.
- d. What is the probability that a box from a randomly chosen stack contains at least two chocolate donuts?
- e. What is the probability that a box from a randomly chosen stack contains at most one pumpkin spice donut?
- f. What is the probability that a box from a randomly chosen stack contains at least two chocolate donuts and at most one pumkin spice donut?
- g. If a box from a randomly chosen stack has at least two chocolate donuts, what is the probability that it has at most 1 pumpkin spice donut. (This is the *conditional probability*).
- h. After these calculations, answer the question: are the events "at least 2 are chocolate" and "at most 1 is pumpkin spice" independent?

Problem 2: Two events in a finite probability space are said to be *independent* if P(A|B) = P(A). Prove or disprove:

- a. If A and B are independent, then A and $B^c = S \setminus B$ are independent.
- b. If $P(A \mid B) = P(B \mid A)$, then A and B are independent.
- c. If A and B are independent, then $P(A \mid B) = P(B \mid A)$.

Problem 3: In the contract bridge card game, a player is dealt a 13-card hand from a 52-card deck. There are 13 kinds of cards: Ace, King, Queen, Jack, 10, 9, ... 2, and 4 suits: clubs (\clubsuit), diamons (\spadesuit), hearts (\P), spades (\P). Each suit contains exactly one card of each kind.

- a. What is the probability of being dealt a hand with no Jack, Queen, or King?
- b. What is the probability of being dealt a hand with all 4 kings and exactly 3 queens.

Problem 4: You hold a bag of ten coins. Nine of them are fair, but one is loaded - it shows heads with probability 9/10. You draw out a coin at random and begin flipping it. The first five tosses are HHHTH.

Let's write A for the event: "the chosen coin is fair" and B for the event "the outcomes of five consecutive coin tosses are HHHTH."

- a. What is the probability P(A)? (This probability is only concerned with selecting a coin from the bag; it is unrelated to the outcome of the coin tosses.)
- b. What is the probability $P(B \mid A)$?
 - (Notice for this computation that you don't have to view this as a conditional probability; this is just the probability of getting "HHHTH" from a fair coin!)
- c. Find $P(A \mid B)$. What is the probability that you are flipping a fair coin?