Problem Set 1

due: 2025-09-08

Question 1: (*Warm up*; this question will not be graded.)

Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5\}$. Determine the following sets:

- a. $A \cup B$.
- b. $A \cap B$.
- c. A B.
- d. B-A.
- e. $A \times B$.

Question 2: For a natural number n > 0, consider the following intervals in the real line:

$$I_n = \left(-\frac{1}{n}, \frac{1}{n} \right) = \left\{ x \in \mathbb{R} \mid -\frac{1}{n} < x < \frac{1}{n} \right\}$$

Problem Set 1

and

$$J_n = \left(n - \frac{1}{2}, n + \frac{1}{2}\right] = \left\{x \in \mathbb{R} \ | \ n - \frac{1}{2} < x \le n + \frac{1}{2}\right\}.$$

a. Find
$$\bigcap_{n=1}^{\infty} I_n = \bigcap_{n \in \mathbb{N} \cup \{0\}} I_n$$

a. Find
$$\bigcap_{n=1}^\infty I_n=\bigcap_{n\in\mathbb{N}-\{0\}}I_n.$$
 b. Find $\bigcup_{n=1}^\infty J_n=\bigcup_{n\in\mathbb{N}-\{0\}}J_n.$

Question 3: Prove or disprove: if *U* is a set with subsets $A, B \subseteq U$, then $A \cup B = A \cap B$ if and only if A = B.

Note: To disprove the statement, you need to provide explicitly two subsets A, B such that $A \cup$ $B = A \cap B$ and $A \neq B$.

To prove the statement, you need to show two things: first, you must argue that

if
$$A = B$$
, then $A \cup B = A \cap B$;

second, you must argue that

if
$$A \cup B = A \cap B$$
 then $A = B$.

Problem Set 1 due: 2025-09-08

Question 4: Let

$$A = \left\{ x \in \mathbb{R} \ | \ x^3 + 2x^2 - 3x \geq 0 \right\} \text{ and } B = \left\{ x \in \mathbb{R} \ | \ 2 - |x| < 0 \right\}.$$

- a. Describe A as a union of intervals on the real line.
- b. Describe B as a union of intervals on the real line.
- c. Determine $A \cap B$. Write it as a union of disjoint intervals in the real line.
- d. Determine $A \cup B$. Write it as a union of disjoint intervals in the real line.