ProblemSet 5 – Solutions of equations and cyclic codes

George McNinch

due 2024-03-29

1. Let q be a power of a prime p > 3 and let $k = \mathbb{F}_q$.

For a homogeneous polynomial $F \in k[X, Y, Z, W]$, let us write

$$V(F) = \{ P = (x : y : z : w) \in \mathbb{P}_k^3 \mid F(x, y, z, w) = 0 \}$$

for the set of solutions of the equation F = 0 in \mathbb{P}^3_k .

For $a \in k^{\times}$, consider the polynomial

$$F_a = XY + Z^2 - aW^2 \in k[X, Y, Z, W].$$

a. If $4 \mid q - 1$ show that

$$|V(F_a)| = |V(X^2 + Y^2 + Z^2 - aW^2)|$$

Hint: First show that $X^2 + Y^2 + Z^2 - aW^2$ is obtained from F_a by a linear change of variables.

b. If a = 1, show that $|V(F_1)| = q^2 + 2q + 1$.

Hint: Making a linear change of variables, first show that $|V(F_1)| = |V(G)|$ where G = XY + ZW.

To count the points (x : y : z : w) in V(G), first count the points with xy = 0 (and hence also zw = 0), and then the points with $xy \neq 0$.

Let $S = \{a^2 \mid a \in k\}.$

- c. Show that $|S| = \frac{q+1}{2}$. Conclude that there are $q \frac{q+1}{2} = \frac{q-1}{2}$ non-squares in k.
- d. If $a\in S,$ show that $|V(F_a)|=|V(F_1)|=q^2+2q+1.$
- e. If $a \in k, a \notin S$, show for any $\alpha \in k^{\times}$ that there are exactly q + 1 pairs $(c, d) \in k \times k$ with $c^2 ad^2 = \alpha$.

Hint: We may identify $\ell = \mathbb{F}_{q^2} = \mathbb{F}_q[\sqrt{a}]$. Under this identification, the norm homomorphism $N = N_{\ell/k} : \ell^{\times} \to k^{\times}$ is given by the formula

$$N(c+d\sqrt{a})=(c+d\sqrt{a})(c-d\sqrt{a})=c^2-ad^2.$$

On the other hand, by Galois Theory, we have $N(x) = x \cdot x^q = x^{1+q}$ for any $x \in \ell$. Thus $N(\ell^{\times}) = k^{\times}$ and $|\ker N| = q + 1$.

f. If $a \in k, a \notin S$ show that $|V(F_a)| = q^2 + 1$

Hint: Notice that the equation $Z^2 - aW^2 = 0$ has no solutions $(z : w) \in \mathbb{P}^1_k$, and use (e) to help count.

2. Let
$$f = T^{11} - 1 \in \mathbb{F}_4[T]$$
.

- a. Show that $T^{11} 1$ has a root in \mathbb{F}_{4^5} .
- b. If $\alpha \in F_{4^5}$ is a primitive element i.e. an element of order $4^5 1$, find an element $a = \alpha^i \in \mathbb{F}_{4^5}$ of order 11, for a suitable *i*.
- c. Show that the minimal polynomial g of a over \mathbb{F}_4 has degree 5, and that the roots of g are powers of a. Which powers?

- d. Show that $f = g \cdot h \cdot (T 1)$ for another irreducible polynomial $h \in \mathbb{F}_4[T]$ of degree 5. The roots of h are again powers of a. Which powers?
- e. Show that $\langle f \rangle$ is a $[11, 6, d]_4$ code for which $d \ge 4$.
- 3. Consider the following variant of a Reed-Solomon code: let $\mathcal{P} \subset \mathbb{F}_q$ be a subset with $n = |\mathcal{P}|$ and write $\mathcal{P} = \{a_1, \cdots, a_n\}$. Let $1 \le k \le n$ and write $\mathbb{F}_q[T]_{< k}$ for the space of polynomial of degree < k, and let
 - $C \subset \mathbb{F}_q^n$ be given by

$$C = \{(p(a_1), \cdots, p(a_n)) \mid p \in \mathbb{F}_q[T]_{< k}$$

- a. If $n \ge k$, prove that C is a $[n, k, n k + 1]_q$ -code.
- b. If $P = \mathbb{F}_q^{\times}$, prove that C is a cyclic code.
- c. If q = p is *prime* and if $P = \mathbb{F}_p$, prove that C is a *cyclic code*.

Bibliography