ProblemSet 5 — Solutions of equations and cyclic codes — solutions

George McNinch

due 2024-03-29

1. Let g be a power of a prime p > 3andletk = [ .

For a homogeneous polynomial F' € k[X,Y, Z W], let us write
VIF)={P=(z:y:2z:w) €P}| F(z,y,z,w) =0}

for the set of solutions of the equation F' = 0 in [Pi.

For a € k>, consider the polynomial

F,=XY + 22— aW? € k[X,Y,Z,W].

a. If 4 | ¢ — 1 show that
V(F,)|=|V(X?2+Y?%+ 2% —aW?)]

Hint: First show that X2 + Y2 + Z2 — aW? is obtained from F, by a linear change of variables.

SoLuTION:

Recall that [Fg is a cyclic group of order ¢ — 1. This cyclic group contains an element ¢ € [F; of order 4 if and only

ifd]|qg—1.

If this is the case, then i2 = —1 since —1 is the unique element of [F; of order 2.
Now, we have X2 +Y? = (X +iY)(X —iY).

Thus

X24 Y2422 —aW? = (X +iV) (X —iY)+ 22 —aW2 = X'Y' + 22 —aW? = F,(X',Y', Z,W).

Thus using the linear change of variables X’ = X + Y and Y’ = X — Y, we find a bijection between the sets

V(F,)and V(X2 4+ Y2 — ZW) = V(X2 4+ Y2 — ZW).

In particular, we thus have

[V(F)|=|V(X?+Y2—-ZW)|.

b. If a = 1, show that |V (F})| = ¢® + 2¢ + 1.
Hint: Making a linear change of variables, first show that |V (F})| = |V (G)| where G = XY + ZW.

To count the points (x : 3 : z : w) in V(Q), first count the points with 2y = 0 (and hence also zw = 0), and then

the points with zy # 0.

SoLuTION:

Arguing as in (a), we see that after a linear change of variables, we may replace F;, = XY +Z2—W?2by XY +2ZW

in particular, there is a bijection between V(XY + Z2 — W?2) and V(XY + ZW).



We now compute |V | where V = V(XY + ZW).
Apoint (z : y: 2 : w) € P?isin V if and only if 2y = —2w.
e We first count the points with zy = 0 = zw.

One possibility is that exactly one of {x,y, z, w} is non-zero. There are 4 such points, namely:

(1:0:0:0),(0:1:0:0),(0:0:1:0),(0:0:0:1).
If more than one of {z, y, z, w} is non-zero, then at exactly one of {x, y } is zero, and since we work in projective
space we may consider points where exactly one of {z, y} is equal to 1.

There are exactly ¢ — 1 points of the form (1:0: a : 0) fora € [ ,; more generally, it is easy to see that there
are 4(q¢ — 1) points with 2y = 0 = zw for which exactly one of {, y} is zero.

In particular, we now see that there are 4(¢ — 1) + 4 = 4q points (z : y : z : w) in V with zy = 0.

 Now we count the points in V' with 2y # 0. After observing that (z : y : z : w) by (1 : x/y : z/x : w/x),
we see that we need to count the number of points (1 : y : 2 : w) with zw = —y and y # 0.

There are ¢ — 1 possibilities for y € F, and for each such g, there are ¢ — 1 pairs (z,w) € [Fg for which
W = —Y.

Thus there are (¢ — 1)? points (z : y : 2 : w) € V with xy # 0.

We now see that the total number of points in V' is given by

VI=4g+(q—1)2=¢+2¢+1=(¢+1)%

Remark In fact, one can show that V' ~ P! x P1, which explains that |V| = |P!|? = (¢ + 1)°.

Let S = {a® | a € k}.

1 1 —1
c. Show that S| = % Conclude that there are ¢ — a+t2_4

non-squares in k.

2 2

SoLuTION:

Consider the group homomorphism ¢ : F* — F* given by ¢(x) = 2%,

The kernel of ¢ is the set of elements of [ ) whose order divides 2; since [} is cyclic and since p is odd, ker ¢ has
order 2 (in fact, ker ¢ = {£1}).

By the first isomorphism theorem, we see that the image of ¢ has order

| image()| = [F g [/[ker¢| = (¢ —1)/2

Thus there are (¢ — 1),/2 non-zero squares in [ ,; since O is also a square, we see that

IS|=(¢—=1/2+1=(q+1)/2

In particular, there are ¢ — |S| = ¢ — (¢ +1)/2 = (¢ — 1)/2 non-squares in [ .




d. If a € S, show that |V (F,)| = |[V(F})| = ¢* + 2¢ + 1.
I should have stipulated that the assumption ¢ = 1 (mod 4) is still in effect

SoLuTION:

For a € S, we know that F is obtained by a linear change-of-variables from F,. Indeed, writing a = t2 we see that
F,=XY+7?—aW? = XY +(Z—tW)(Z+tW) = XY +Z'W'

where 72/ = Z —tW and W' = Z + tWW.
In other words, we can obtain XY + ZW from F|, through a linear change of variables.

Since ¢ = 1 (mod 4), we've already seen (above) that XY + Z2 + W?2 = F| can be obtained by a linear change
of variables from XY + ZW.

Thus, F can be obtained by a linear change of variables from F,.

Now, this linear change-of-variables defines a bijection between V' (F,) and V' (F}). In particular, we have

V(E,)| = V(F)] = (q+1)%

e. Ifa € k,a ¢ S, show for any o € k* that there are exactly ¢ + 1 pairs (c,d) € k x k with ¢? — ad? = a.

Hint: We may identify £ = [ » = I [\/a]. Under this identification, the norm homomorphism N = N, : £* —
k> is given by the formula

N(c+ dvy/a) = (¢ + dy/a)(c —dv/a) = ¢* — ad?.

On the other hand, by Galois Theory, we have N (z) = - 29 = 2! for any x € £. Thus N(¢*) = k* and
|ker N| =q+ 1.

SoLuUTION:

On the one hand, the image of the norm homomorphism £* — k* is given by

{c® —ad? ] (0,0) # (c,d) € k*}.

On the other hand, £* is cyclic of order ¢> — 1 and k* is cyclic of order ¢ — 1. The norm mapping is given by
x = 2179, Thus the norm mapping is onto and ker N is cyclic of order ¢ + 1.

In particular, it follows that the norm mapping IV : £* — k* is onto, and for each o € K * there are exactly ¢ + 1
elements y = ¢ + d+/a € { for which @ = N(y) = c¢? — ad?.

f. Ifa €k, a¢ Sshowthat |[V(F,)|=¢*>+1

Hint: Notice that the equation Z? — aW? = 0 has no solutions (z : w) € P4, and use (e) to help count.

SOLUTION:
We count the number of points (x : i : z : w) € P for which zy — az? + w?.

Note that if zy = 0 there are exactly two solutions. Indeed, since a is not a square, we have

—az’ +w? = N(w+ zya) =0 ifandonlyif w4+ 2y/a=0 in/



so the only solutions in this case are
(1:0:0:0),(0:1:0:0).

Now suppose that xy # 0. After division by x, we must count all points (1 : y : z : w) for which —y =
N(w + z+/a). There are ¢ — 1 possibilities for y and — according to the preceding part e. — for each y there are
exactly ¢ + 1 possibilities for (z,w). Thus there are (¢ — 1)(q + 1) solutions with zy # 0.

Finally, we see that the total number of solutions is given by

24 (g—1)(g+1) =24+ —-1=¢+1.

2. Let f=T" —1¢F,[T].

a. Show that 1! — 1 has a root in [ ;5.

SOLUTION:
Note that
4°=4-16=4-52=4-3=1 (mod 11).

Since [ J; is a cyclic group whose order 45 — 1 is divisible by 11, it follows that [ ;5 has an element a of order 11.
This element a € [ 45 is then a root of 711 — 1.

b. If o € F5 is a primitive element — i.e. an element of order 45 — 1, find an element @ = o € [ 45 of order 11, for
a suitable 7.

SoLuUTION:

IfFy

% = (B) then 5 has order 4% — 1, 5o that a = B*’~1/11 is an element of order 11.

c. Show that the minimal polynomial g of a over [, has degree 5, and that the roots of g are powers of a. Which
powers?

SOLUTION:

We know that the Galois group of the extension [, C [ s is cyclic of order 5, and is generated by the Frobenius
automorphism o : = > 2.

Since [, C [ 45 is a Galois extension (all extensions of finite fields are galois!) we know for y € s thaty € [, if
and only if o'(y) = y i.e. if and only if y = y*.

Similarly, we know that a polynomial g € F s [T'| satisfies g € F4[T] if and only if g = o(g)
Now, define a polynomial g € F 45[T] by the rule

!For a polynomial g € [ 45 [T7], the application o ( f) applies o to the coefficients of g, and o(T') = T'. If g = Zﬁ\io a;T? then o(g) = Zz‘]\;o o(a;)T".



Note that a is a root of g, and that

since a*’ = a.

It follows that g € F,[T’]. Since the Galois group acts transitively on the roots of g, it follows that g is irreducible
over [ ,; g is thus the minimal polynomial of a over [ 4.

It is clear that g has degree 5; moreover its roots are a* for 7 in the list [1,4,472,4°3,474]; s_ince a has order 11,
these roots are the elements a* for ¢ in the list [1,4,5,9,3] obtained by reducing the power 47 modulo 11.

. Show that f = g - h - (T' — 1) for another irreducible polynomial i € F 4[T"] of degree 5. The roots of / are again
powers of a. Which powers?

SoLuTION:
We define h € [ 45[T] by the rule
4
h=][(T-a*).
i=0

Then once again o(h) = h so that h € F,[T], and again h is irreducible over degree 5. Moreover, g is the minimal
polynomial of a? over F,.

Since 1, a and a? are roots of f= T — 1, it follows that the minimal polynomials of these three elements divide
f. These minimal polynomials are 7" — 1, g, h respectively. Since these three polynomials are relatively prime, we
find that their productd (7' — 1) - g - h divides f, and then for degree reasons we see that

f=(T-1)-g-h

(note that f, g, h are all monic!)

. Show that (f) isa [11, 6, d], code for which d > 4.
Typo: that should have been (g) rather than (f).

SoLUTION:

We need to compute the minimal degree of the code , so we use SageMath.

We first get the degree 5 irreducible factors of £ = T~11 - 1 over GF(4):

k = GF(4)
R.<T> = PolynomialRing (k)

=T711 - 1

ff = f.factor()

f££[1]
f£ff[2]




(T75 + z2*xT"4 + T°3 + T72 + (z2 + 1)*T + 1,

T°5 + (22 + 1)*T"4 + T3 + T2 + z2+T + 1)
Now we include the (previously used) code for computing minimal distance of a cyclic code:
V = VectorSpace(k,11)

def pad(1l,n):

x = len(11)
if x < n:

return 11 + (n-x)*[0]
else:

return 11[0:n]

def vectorize(p,n):
coeffs = p.coefficients(sparse=False)

return V(pad(coeffs,n))

def mkCode (p):

return V.subspace([ vectorize( T"i * p, 11) for i in range(6) 1)

Cl1 = mkCode(g)
C2 = mkCode (h)

def weight(v):

r = [x for x in v if x != 0]

return len(r)
def min_distance(D):

return min([ weight(v) for v in D if v != 0])
[ min distance(c) for c¢ in [C1,C2]]

=>
[5, 5]

This shows that the minimal distance of the code (g) (and of the code (h)) is 5.

3. Consider the following variant of a Reed-Solomon code: let 7 C [ be asubset withn = || and write P = {a,, -, a,, }.
Let1 < k < nand write [, [T];, for the space of polynomial of degree < k, and let

C C I be given by
C ={(p(ay),,pla,)) | p € F [T] 4.
a. If n > k, prove that C'is a [n, k,n — k + 1] -code.

SoLuTION:

It is clear from the construction that C' C [ - Moreover, dim C' = k since that mapping

¢ : [Fq[T]<k — C' via ¢(f> = (f(al)v Ty .f(a’rz))



is injective and dim [ [T']_;, = k.

Finally, the minimal distance d of the (linear) code C' is the minimal weight of a non-zero vector in C. If x = ¢(f) €
C', we have n + weight(z) = #{ roots of f }. Since f has degree < k, f has no more than k — 1 roots; this shows
that weight(x) > n — k + 1. This shows thatd > n — k + 1.

To see that d = n — k + 1, note that k < n < || so that we may find & distinct elements cvy, -+, a1 of P. Now
let f be a monic polynomial of degree k& — 1 with these £ — 1 roots; thus

n

Fr) =TI~ ).

i=1

Then weight(f) =n —k + 1,soindeedd = n — k + 1.

We have now shown that C'is a [n, k, n — k + 1] -code.

IEP = [F;, prove that C' is a cyclic code.

SOLUTION:
We show that for a suitable ordering of P, the code C'is cyclic.

We fix a generator o for the (cyclic) multiplicative group [ ;. Thus
P={a)={l,a,a? - a? 2}
Now, for f € F[T]_}, the corresponding code-word is
(f(1), f(@), f(a?), -, f(a?72)) € C.
To see that C' is cyclic, we must argue that
Q) (f(@?2), f(1), fla), -, fa®?)) € C.

Well, let g(T') = f(o'T) € F[T]. Then degg = deg f < ksothatg € F [T]_;. Thus z = ¢(g) € C. We
now note that

x = (g9(1),9(a), g(@?), -, g(a®?)) = (fla ), fla ), fla"ta?),, fla~ a??))
= <f<a71)7f(1>a f(a>a Ty f(Oﬂig))

so indeed () holds. This proves that 2 is cyclic.

. If ¢ = pis prime and if P = [, prove that C'is a cyclic code.

SOLUTION:
Again, we show for a suitable ordering of P that C'is cyclic*.
Note that 7 = [, may be written
P = {07 1727“'7p_ 1}

For an arbitrary f € [, [T] ., the corresponding codeword ¢( f) is given by

(f(O), f(l)v f(2>7 T f(p - 1))



To see that C' is cyclic, we must argue that
(©) (flp—=1),£(0), (1), f(p—2)) € C.

Weset g(T') = f(T'— 1) € F|T7, and we note that deg g = deg f so that g € [ [T'] ;.. Thus z = ¢(g) € C.

Now we calculcate

r = (9(0),9(1),9(2),,9(p—1)) = (f(0—-1)
=(flp—1)

so indeed (<) holds. This proves that 2 is cyclic.
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