
ProblemSet 5 – Solutions of equations and cyclic codes – solutions

George McNinch

due 2024-03-29

1. Let 𝑞 be a power of a prime 𝑝 > 3 and let 𝑘 = 𝔽𝑞.
For a homogeneous polynomial 𝐹 ∈ 𝑘[𝑋, 𝑌 , 𝑍, 𝑊], let us write

𝑉 (𝐹) = {𝑃 = (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤) ∈ ℙ3
𝑘 ∣ 𝐹 (𝑥, 𝑦, 𝑧, 𝑤) = 0}

for the set of solutions of the equation 𝐹 = 0 in ℙ3
𝑘.

For 𝑎 ∈ 𝑘×, consider the polynomial

𝐹𝑎 = 𝑋𝑌 + 𝑍2 − 𝑎𝑊 2 ∈ 𝑘[𝑋, 𝑌 , 𝑍, 𝑊].

a. If 4 ∣ 𝑞 − 1 show that
|𝑉 (𝐹𝑎)| = |𝑉 (𝑋2 + 𝑌 2 + 𝑍2 − 𝑎𝑊 2)|

Hint: First show that 𝑋2 + 𝑌 2 + 𝑍2 − 𝑎𝑊 2 is obtained from 𝐹𝑎 by a linear change of variables.

SOLUTION:
Recall that 𝔽×

𝑞 is a cyclic group of order 𝑞 − 1. This cyclic group contains an element 𝑖 ∈ 𝔽×
𝑞 of order 4 if and only

if 4 ∣ 𝑞 − 1.
If this is the case, then 𝑖2 = −1 since −1 is the unique element of 𝔽×

𝑞 of order 2.
Now, we have 𝑋2 + 𝑌 2 = (𝑋 + 𝑖𝑌 )(𝑋 − 𝑖𝑌 ).
Thus

𝑋2 + 𝑌 2 + 𝑍2 − 𝑎𝑊 2 = (𝑋 + 𝑖𝑌 )(𝑋 − 𝑖𝑌 ) + 𝑍2 − 𝑎𝑊 2 = 𝑋′𝑌 ′ + 𝑍2 − 𝑎𝑊 2 = 𝐹𝑎(𝑋′, 𝑌 ′, 𝑍, 𝑊).

Thus using the linear change of variables 𝑋′ = 𝑋 + 𝑖𝑌 and 𝑌 ′ = 𝑋 − 𝑖𝑌 , we find a bijection between the sets
𝑉 (𝐹𝑎) and 𝑉 (𝑋′2 + 𝑌 ′2 − 𝑍𝑊) = 𝑉 (𝑋2 + 𝑌 2 − 𝑍𝑊).
In particular, we thus have

|𝑉 (𝐹𝑎)| = |𝑉 (𝑋2 + 𝑌 2 − 𝑍𝑊)|.

b. If 𝑎 = 1, show that |𝑉 (𝐹1)| = 𝑞2 + 2𝑞 + 1.
Hint: Making a linear change of variables, first show that |𝑉 (𝐹1)| = |𝑉 (𝐺)| where 𝐺 = 𝑋𝑌 + 𝑍𝑊 .
To count the points (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤) in 𝑉 (𝐺), first count the points with 𝑥𝑦 = 0 (and hence also 𝑧𝑤 = 0), and then
the points with 𝑥𝑦 ≠ 0.

SOLUTION:
Arguing as in (a), we see that after a linear change of variables, wemay replace𝐹1 = 𝑋𝑌 +𝑍2−𝑊 2 by𝑋𝑌 +𝑍𝑊 ;
in particular, there is a bijection between 𝑉 (𝑋𝑌 + 𝑍2 − 𝑊 2) and 𝑉 (𝑋𝑌 + 𝑍𝑊).
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We now compute |𝑉 | where 𝑉 = 𝑉 (𝑋𝑌 + 𝑍𝑊).
A point (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤) ∈ ℙ3 is in 𝑉 if and only if 𝑥𝑦 = −𝑧𝑤.
• We first count the points with 𝑥𝑦 = 0 = 𝑧𝑤.
One possibility is that exactly one of {𝑥, 𝑦, 𝑧, 𝑤} is non-zero. There are 4 such points, namely:

(1 ∶ 0 ∶ 0 ∶ 0), (0 ∶ 1 ∶ 0 ∶ 0), (0 ∶ 0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 0 ∶ 1).

If more than one of {𝑥, 𝑦, 𝑧, 𝑤} is non-zero, then at exactly one of {𝑥, 𝑦} is zero, and since we work in projective
space we may consider points where exactly one of {𝑥, 𝑦} is equal to 1.
There are exactly 𝑞 − 1 points of the form (1 ∶ 0 ∶ 𝑎 ∶ 0) for 𝑎 ∈ 𝔽𝑞; more generally, it is easy to see that there
are 4(𝑞 − 1) points with 𝑥𝑦 = 0 = 𝑧𝑤 for which exactly one of {𝑥, 𝑦} is zero.
In particular, we now see that there are 4(𝑞 − 1) + 4 = 4𝑞 points (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤) in 𝑉 with 𝑥𝑦 = 0.

• Now we count the points in 𝑉 with 𝑥𝑦 ≠ 0. After observing that (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤) by (1 ∶ 𝑥/𝑦 ∶ 𝑧/𝑥 ∶ 𝑤/𝑥),
we see that we need to count the number of points (1 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤) with 𝑧𝑤 = −𝑦 and 𝑦 ≠ 0.
There are 𝑞 − 1 possibilities for 𝑦 ∈ 𝔽×

𝑞 , and for each such 𝑦, there are 𝑞 − 1 pairs (𝑧, 𝑤) ∈ 𝔽2
𝑞 for which

𝑧𝑤 = −𝑦.
Thus there are (𝑞 − 1)2 points (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤) ∈ 𝑉 with 𝑥𝑦 ≠ 0.

We now see that the total number of points in 𝑉 is given by

|𝑉 | = 4𝑞 + (𝑞 − 1)2 = 𝑞2 + 2𝑞 + 1 = (𝑞 + 1)2.

Remark In fact, one can show that 𝑉 ≃ ℙ1 × ℙ1, which explains that |𝑉 | = |ℙ1|2 = (𝑞 + 1)2.

Let 𝑆 = {𝑎2 ∣ 𝑎 ∈ 𝑘}.

c. Show that |𝑆| = 𝑞 + 1
2 . Conclude that there are 𝑞 − 𝑞 + 1

2 = 𝑞 − 1
2 non-squares in 𝑘.

SOLUTION:
Consider the group homomorphism 𝜙 ∶ 𝔽×

𝑞 → 𝔽×
𝑞 given by 𝜙(𝑥) = 𝑥2.

The kernel of 𝜙 is the set of elements of 𝔽×
𝑞 whose order divides 2; since 𝔽×

𝑞 is cyclic and since 𝑝 is odd, ker𝜙 has
order 2 (in fact, ker𝜙 = {±1}).
By the first isomorphism theorem, we see that the image of 𝜙 has order

| image(𝜙)| = |𝔽×
𝑞 |/| ker𝜙| = (𝑞 − 1)/2

.
Thus there are (𝑞 − 1)/2 non-zero squares in 𝔽𝑞; since 0 is also a square, we see that

|𝑆| = (𝑞 − 1)/2 + 1 = (𝑞 + 1)/2.

In particular, there are 𝑞 − |𝑆| = 𝑞 − (𝑞 + 1)/2 = (𝑞 − 1)/2 non-squares in 𝔽𝑞.
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d. If 𝑎 ∈ 𝑆, show that |𝑉 (𝐹𝑎)| = |𝑉 (𝐹1)| = 𝑞2 + 2𝑞 + 1.
I should have stipulated that the assumption 𝑞 ≡ 1 (mod 4) is still in effect

SOLUTION:
For 𝑎 ∈ 𝑆, we know that 𝐹1 is obtained by a linear change-of-variables from 𝐹𝑎. Indeed, writing 𝑎 = 𝑡2 we see that

𝐹𝑎 = 𝑋𝑌 + 𝑍2 − 𝑎𝑊 2 = 𝑋𝑌 + (𝑍 − 𝑡𝑊)(𝑍 + 𝑡𝑊) = 𝑋𝑌 + 𝑍′𝑊 ′

where 𝑍′ = 𝑍 − 𝑡𝑊 and 𝑊 ′ = 𝑍 + 𝑡𝑊 .
In other words, we can obtain 𝑋𝑌 + 𝑍𝑊 from 𝐹𝑎 through a linear change of variables.
Since 𝑞 ≡ 1 (mod 4), we’ve already seen (above) that 𝑋𝑌 + 𝑍2 + 𝑊 2 = 𝐹1 can be obtained by a linear change
of variables from 𝑋𝑌 + 𝑍𝑊 .
Thus, 𝐹1 can be obtained by a linear change of variables from 𝐹𝑎.
Now, this linear change-of-variables defines a bijection between 𝑉 (𝐹𝑎) and 𝑉 (𝐹1). In particular, we have

|𝑉 (𝐹𝑎)| = |𝑉 (𝐹1)| = (𝑞 + 1)2.

e. If 𝑎 ∈ 𝑘, 𝑎 ∉ 𝑆, show for any 𝛼 ∈ 𝑘× that there are exactly 𝑞 + 1 pairs (𝑐, 𝑑) ∈ 𝑘 × 𝑘 with 𝑐2 − 𝑎𝑑2 = 𝛼.
Hint: We may identify ℓ = 𝔽𝑞2 = 𝔽𝑞[√𝑎]. Under this identification, the norm homomorphism 𝑁 = 𝑁ℓ/𝑘 ∶ ℓ× →
𝑘× is given by the formula

𝑁(𝑐 + 𝑑√𝑎) = (𝑐 + 𝑑√𝑎)(𝑐 − 𝑑√𝑎) = 𝑐2 − 𝑎𝑑2.

On the other hand, by Galois Theory, we have 𝑁(𝑥) = 𝑥 ⋅ 𝑥𝑞 = 𝑥1+𝑞 for any 𝑥 ∈ ℓ. Thus 𝑁(ℓ×) = 𝑘× and
| ker𝑁| = 𝑞 + 1.

SOLUTION:
On the one hand, the image of the norm homomorphism ℓ× → 𝑘× is given by

{𝑐2 − 𝑎𝑑2 ∣ (0, 0) ≠ (𝑐, 𝑑) ∈ 𝑘2}.

On the other hand, ℓ× is cyclic of order 𝑞2 − 1 and 𝑘× is cyclic of order 𝑞 − 1. The norm mapping is given by
𝑥 ↦ 𝑥1+𝑞. Thus the norm mapping is onto and ker𝑁 is cyclic of order 𝑞 + 1.
In particular, it follows that the norm mapping 𝑁 ∶ ℓ× → 𝑘× is onto, and for each 𝛼 ∈ 𝐾× there are exactly 𝑞 + 1
elements 𝑦 = 𝑐 + 𝑑√𝑎 ∈ ℓ for which 𝛼 = 𝑁(𝑦) = 𝑐2 − 𝑎𝑑2.

f. If 𝑎 ∈ 𝑘, 𝑎 ∉ 𝑆 show that |𝑉 (𝐹𝑎)| = 𝑞2 + 1
Hint: Notice that the equation 𝑍2 − 𝑎𝑊 2 = 0 has no solutions (𝑧 ∶ 𝑤) ∈ ℙ1

𝑘, and use (e) to help count.

SOLUTION:
We count the number of points (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤) ∈ ℙ3 for which 𝑥𝑦 − 𝑎𝑧2 + 𝑤2.
Note that if 𝑥𝑦 = 0 there are exactly two solutions. Indeed, since 𝑎 is not a square, we have

−𝑎𝑧2 + 𝑤2 = 𝑁(𝑤 + 𝑧√𝑎) = 0 if and only if 𝑤 + 𝑧√𝑎 = 0 in ℓ
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so the only solutions in this case are
(1 ∶ 0 ∶ 0 ∶ 0), (0 ∶ 1 ∶ 0 ∶ 0).

Now suppose that 𝑥𝑦 ≠ 0. After division by 𝑥, we must count all points (1 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤) for which −𝑦 =
𝑁(𝑤 + 𝑧√𝑎). There are 𝑞 − 1 possibilities for 𝑦 and – according to the preceding part e. – for each 𝑦 there are
exactly 𝑞 + 1 possibilities for (𝑧, 𝑤). Thus there are (𝑞 − 1)(𝑞 + 1) solutions with 𝑥𝑦 ≠ 0.
Finally, we see that the total number of solutions is given by

2 + (𝑞 − 1)(𝑞 + 1) = 2 + 𝑞2 − 1 = 𝑞2 + 1.

2. Let 𝑓 = 𝑇 11 − 1 ∈ 𝔽4[𝑇 ].
a. Show that 𝑇 11 − 1 has a root in 𝔽45 .

SOLUTION:
Note that

45 = 4 ⋅ 162 ≡ 4 ⋅ 52 ≡ 4 ⋅ 3 ≡ 1 (mod 11).

Since 𝔽×
45 is a cyclic group whose order 45 − 1 is divisible by 11, it follows that 𝔽×

45 has an element 𝑎 of order 11.
This element 𝑎 ∈ 𝔽45 is then a root of 𝑇 11 − 1.

b. If 𝛼 ∈ 𝐹45 is a primitive element – i.e. an element of order 45 − 1, find an element 𝑎 = 𝛼𝑖 ∈ 𝔽45 of order 11, for
a suitable 𝑖.

SOLUTION:
If 𝔽×

45 = ⟨𝛽⟩ then 𝛽 has order 45 − 1, so that 𝑎 = 𝛽(45−1)/11 is an element of order 11.

c. Show that the minimal polynomial 𝑔 of 𝑎 over 𝔽4 has degree 5, and that the roots of 𝑔 are powers of 𝑎. Which
powers?

SOLUTION:
We know that the Galois group of the extension 𝔽4 ⊂ 𝔽45 is cyclic of order 5, and is generated by the Frobenius
automorphism 𝜎 ∶ 𝑥 ↦ 𝑥4.
Since 𝔽4 ⊂ 𝔽45 is a Galois extension (all extensions of finite fields are galois!) we know for 𝑦 ∈ 𝔽45 that 𝑦 ∈ 𝔽4 if
and only if 𝜎(𝑦) = 𝑦 i.e. if and only if 𝑦 = 𝑦4.
Similarly, we know that a polynomial 𝑔 ∈ 𝔽45 [𝑇 ] satisfies 𝑔 ∈ 𝔽4[𝑇 ] if and only if 𝑔 = 𝜎(𝑔) 1

Now, define a polynomial 𝑔 ∈ 𝔽45 [𝑇 ] by the rule

𝑔 =
4

∏
𝑖=0

(𝑇 − 𝑎4𝑖).

1For a polynomial 𝑔 ∈ 𝔽45 [𝑇 ], the application 𝜎(𝑓) applies 𝜎 to the coefficients of 𝑔, and 𝜎(𝑇 ) = 𝑇 . If 𝑔 = ∑𝑁
𝑖=0 𝑎𝑖𝑇 𝑖 then 𝜎(𝑔) = ∑𝑁

𝑖=0 𝜎(𝑎𝑖)𝑇 𝑖.
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Note that 𝑎 is a root of 𝑔, and that

𝜎(𝑔) =
4

∏
𝑖=0

(𝑇 − 𝜎(𝑎4𝑖)) =
4

∏
𝑖=0

(𝑇 − 𝑎4𝑖+1) = 𝑔

since 𝑎45 = 𝑎.
It follows that 𝑔 ∈ 𝔽4[𝑇 ]. Since the Galois group acts transitively on the roots of 𝑔, it follows that 𝑔 is irreducible
over 𝔽4; 𝑔 is thus the minimal polynomial of 𝑎 over 𝔽4.
It is clear that 𝑔 has degree 5; moreover its roots are 𝑎𝑖 for 𝑖 in the list [1,4,4^2,4^3,4^4]; since 𝑎 has order 11,
these roots are the elements 𝑎𝑖 for 𝑖 in the list [1,4,5,9,3] obtained by reducing the power 4𝑗 modulo 11.

d. Show that 𝑓 = 𝑔 ⋅ ℎ ⋅ (𝑇 − 1) for another irreducible polynomial ℎ ∈ 𝔽4[𝑇 ] of degree 5. The roots of ℎ are again
powers of 𝑎. Which powers?

SOLUTION:
We define ℎ ∈ 𝔽45 [𝑇 ] by the rule

ℎ =
4

∏
𝑖=0

(𝑇 − 𝑎2⋅4𝑖).

Then once again 𝜎(ℎ) = ℎ so that ℎ ∈ 𝔽4[𝑇 ], and again ℎ is irreducible over degree 5. Moreover, 𝑔 is the minimal
polynomial of 𝑎2 over 𝔽4.
Since 1, 𝑎 and 𝑎2 are roots of 𝑓 = 𝑇 11 − 1, it follows that the minimal polynomials of these three elements divide
𝑓 . These minimal polynomials are 𝑇 − 1, 𝑔, ℎ respectively. Since these three polynomials are relatively prime, we
find that their productd (𝑇 − 1) ⋅ 𝑔 ⋅ ℎ divides 𝑓 , and then for degree reasons we see that

𝑓 = (𝑇 − 1) ⋅ 𝑔 ⋅ ℎ

(note that 𝑓 , 𝑔, ℎ are all monic!)

e. Show that ⟨𝑓⟩ is a [11, 6, 𝑑]4 code for which 𝑑 ≥ 4.
Typo: that should have been ⟨𝑔⟩ rather than ⟨𝑓⟩.

SOLUTION:
We need to compute the minimal degree of the code , so we use SageMath.
We first get the degree 5 irreducible factors of f = T^11 - 1 over GF(4):
k = GF(4)
R.<T> = PolynomialRing(k)

f = T^11 - 1

ff = f.factor()

g,_ = ff[1]
h,_ = ff[2]

(g,h)
=>
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(T^5 + z2*T^4 + T^3 + T^2 + (z2 + 1)*T + 1,
T^5 + (z2 + 1)*T^4 + T^3 + T^2 + z2*T + 1)

Now we include the (previously used) code for computing minimal distance of a cyclic code:
V = VectorSpace(k,11)

def pad(ll,n):
# pad the list ll with 0's to make it have length n
x = len(ll)
if x < n:

return ll + (n-x)*[0]
else:

return ll[0:n]

def vectorize(p,n):
# make a vector of length n out of a polynomial
coeffs = p.coefficients(sparse=False)
return V(pad(coeffs,n))

def mkCode(p):
# vectorize the polynomial T^i * p and use the vectors as a basis for the code C
# I'm assuming deg p = 5...
return V.subspace([ vectorize( T^i * p, 11) for i in range(6) ])

C1 = mkCode(g)
C2 = mkCode(h)

def weight(v):
r = [x for x in v if x != 0]
return len(r)

def min_distance(D):
# brute-force computation of minimal distance of D
return min([ weight(v) for v in D if v != 0])

[ min_distance(c) for c in [C1,C2]]
=>
[5, 5]

This shows that the minimal distance of the code ⟨𝑔⟩ (and of the code ⟨ℎ⟩) is 5.

3. Consider the following variant of a Reed-Solomon code: let𝒫 ⊂ 𝔽𝑞 be a subset with𝑛 = |𝒫| and write𝒫 = {𝑎1, ⋯ , 𝑎𝑛}.
Let 1 ≤ 𝑘 ≤ 𝑛 and write 𝔽𝑞[𝑇 ]<𝑘 for the space of polynomial of degree < 𝑘, and let
𝐶 ⊂ 𝔽𝑛

𝑞 be given by
𝐶 = {(𝑝(𝑎1), ⋯ , 𝑝(𝑎𝑛)) ∣ 𝑝 ∈ 𝔽𝑞[𝑇 ]<𝑘.

a. If 𝑛 ≥ 𝑘, prove that 𝐶 is a [𝑛, 𝑘, 𝑛 − 𝑘 + 1]𝑞-code.

SOLUTION:
It is clear from the construction that 𝐶 ⊂ 𝔽𝑛

𝑞 . Moreover, dim𝐶 = 𝑘 since that mapping

𝜙 ∶ 𝔽𝑞[𝑇 ]<𝑘 → 𝐶 via 𝜙(𝑓) = (𝑓(𝑎1), ⋯ , 𝑓(𝑎𝑛))
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is injective and dim𝔽𝑞[𝑇 ]<𝑘 = 𝑘.
Finally, the minimal distance 𝑑 of the (linear) code𝐶 is the minimal weight of a non-zero vector in𝐶. If 𝑥 = 𝜙(𝑓) ∈
𝐶 , we have 𝑛 +weight(𝑥) = #{ roots of 𝑓 }. Since 𝑓 has degree < 𝑘, 𝑓 has no more than 𝑘 − 1 roots; this shows
that weight(𝑥) ≥ 𝑛 − 𝑘 + 1. This shows that 𝑑 ≥ 𝑛 − 𝑘 + 1.
To see that 𝑑 = 𝑛 − 𝑘 + 1, note that 𝑘 ≤ 𝑛 ≤ |𝔽𝑞| so that we may find 𝑘 distinct elements 𝛼1, ⋯ , 𝛼𝑘−1 of 𝒫. Now
let 𝑓 be a monic polynomial of degree 𝑘 − 1 with these 𝑘 − 1 roots; thus

𝑓(𝑇 ) =
𝑛

∏
𝑖=1

(𝑇 − 𝛼𝑖).

Then weight(𝑓) = 𝑛 − 𝑘 + 1, so indeed 𝑑 = 𝑛 − 𝑘 + 1.
We have now shown that 𝐶 is a [𝑛, 𝑘, 𝑛 − 𝑘 + 1]𝑞-code.

b. If 𝑃 = 𝔽×
𝑞 , prove that 𝐶 is a cyclic code.

SOLUTION:
We show that for a suitable ordering of 𝒫, the code 𝐶 is cyclic.
We fix a generator 𝛼 for the (cyclic) multiplicative group 𝔽×

𝑞 . Thus

𝒫 = ⟨𝛼⟩ = {1, 𝛼, 𝛼2, ⋯ , 𝛼𝑞−2}.
Now, for 𝑓 ∈ 𝔽𝑞[𝑇 ]<𝑘, the corresponding code-word is

(𝑓(1), 𝑓(𝛼), 𝑓(𝛼2), ⋯ , 𝑓(𝛼𝑞−2)) ∈ 𝐶.

To see that 𝐶 is cyclic, we must argue that

(♡) (𝑓(𝛼𝑞−2), 𝑓(1), 𝑓(𝛼), ⋯ , 𝑓(𝛼𝑞−3)) ∈ 𝐶.

Well, let 𝑔(𝑇 ) = 𝑓(𝛼−1𝑇 ) ∈ 𝔽𝑞[𝑇 ]. Then deg 𝑔 = deg 𝑓 < 𝑘 so that 𝑔 ∈ 𝔽𝑞[𝑇 ]<𝑘. Thus 𝑥 = 𝜙(𝑔) ∈ 𝐶 . We
now note that

𝑥 = (𝑔(1), 𝑔(𝛼), 𝑔(𝛼2), ⋯ , 𝑔(𝛼𝑞−2)) = (𝑓(𝛼−1), 𝑓(𝛼−1𝛼), 𝑓(𝛼−1𝛼2), ⋯ , 𝑓(𝛼−1𝛼𝑞−2))
= (𝑓(𝛼−1), 𝑓(1), 𝑓(𝛼), ⋯ , 𝑓(𝛼𝑞−3))

so indeed (♡) holds. This proves that 𝒫 is cyclic.

c. If 𝑞 = 𝑝 is prime and if 𝑃 = 𝔽𝑝, prove that 𝐶 is a cyclic code.

SOLUTION:
Again, we show for a suitable ordering of 𝒫 that 𝐶 is cyclic*.
Note that 𝒫 = 𝔽𝑝 may be written

𝒫 = {0, 1, 2, ⋯ , 𝑝 − 1}.

For an arbitrary 𝑓 ∈ 𝔽𝑞[𝑇 ]<𝑘, the corresponding codeword 𝜙(𝑓) is given by
(𝑓(0), 𝑓(1), 𝑓(2), ⋯ , 𝑓(𝑝 − 1)).
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To see that 𝐶 is cyclic, we must argue that

(♢) (𝑓(𝑝 − 1), 𝑓(0), 𝑓(1), ⋯ , 𝑓(𝑝 − 2)) ∈ 𝐶.

We set 𝑔(𝑇 ) = 𝑓(𝑇 − 1) ∈ 𝔽[𝑇 ], and we note that deg 𝑔 = deg 𝑓 so that 𝑔 ∈ 𝔽𝑞[𝑇 ]<𝑘. Thus 𝑥 = 𝜙(𝑔) ∈ 𝐶 .
Now we calculcate

𝑥 = (𝑔(0), 𝑔(1), 𝑔(2), ⋯ , 𝑔(𝑝 − 1)) = (𝑓(0 − 1), 𝑓(1 − 1), 𝑓(2 − 1), ⋯ , 𝑓(𝑝 − 1 − 1))
= (𝑓(𝑝 − 1), 𝑓(0), 𝑓(1), ⋯ , 𝑓(𝑝 − 2))

so indeed (♢) holds. This proves that 𝒫 is cyclic.
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