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1. Find the irreducible factors of the polynomial 𝑇 9 − 1 in 𝔽7[𝑇 ].
(You should include proofs that the factors you describe are irreducible).

SOLUTION:
Note that the multiplicative group 𝔽×

7 has order 6 and hence contains an element of order 3; in fact, 2 has order 3 since
23 = 8 ≡ 1 (mod 7).
Now, 𝔽×

72 has order 49 − 1 = 48 which is not divisible by 9. And 𝔽×
73 has order 73 − 1 ≡ (−2)3 − 1 ≡ −9 ≡ 0

(mod 9). So 𝔽×
73 has an element of order 9.

Consider the polynomial 𝑇 3 − 2. Any root 𝛼 of this polynomial satisfies 𝛼3 = 2 and 𝛼9 = 1; this shows that the
multiplicative order of 𝛼 is 9.
In particular, 𝔽7 contains no roots of 𝑓(𝑇 ) = 𝑇 3 − 2; since 𝑓(𝑇 ) has degree 3, it is irreducible over 𝔽7.

If 𝛼 is a root of 𝑓(𝑇 ), then 𝛼7 and 𝛼72 = 𝛼4 are also roots (note that 72 ≡ (−2)2 = 4 (mod 9)). Thus

𝑓(𝑇 ) = (𝑇 − 𝛼)(𝑇 − 𝛼7)(𝑇 − 𝛼4)

and
𝑓(𝑇 ) ∣ 𝑇 9 − 1.

Notice that 𝔽73 is a splitting field for 𝑓(𝑇 ) over 𝔽7.
Note that 22 = 4 is also an element of 𝔽×

7 of order 3. Arguing as before, any root of 𝑇 3 −4 is an element of multiplicative
order 9.
On the other hand, since gcd(2, 9) = 1, 𝛼2 ∈ 𝔽73 is also an element of order 9.

Moreover, the roots of its minimal polynomial 𝑔(𝑇 ) have the form 𝛼2, 𝛼2⋅7 = 𝛼5 (since 14 ≡ 5 (mod 9)), and 𝛼2⋅72 =
𝛼5⋅7 = 𝛼3 (since 2 ⋅ 72 ≡ 8 (mod 9).
Thus

𝑔(𝑇 ) = (𝑇 − 𝛼2)(𝑇 − 𝛼5)(𝑇 − 𝛼8).

Now, notice that (𝛼2)3 = (𝛼3)2 = 22 = 4 ∈ 𝔽7. Thus the minimal polynomial 𝑔(𝑇 ) of 𝛼2 divides 𝑇 3 − 4. It follows
that

𝑔(𝑇 ) = 𝑇 3 − 4 = (𝑇 − 𝛼2)(𝑇 − 𝛼5)(𝑇 − 𝛼8).

Now, 𝑔(𝑇 ) ∣ 𝑇 9 − 1 and since gcd(𝑓(𝑇 ), 𝑔(𝑇 )) = 1 we see that 𝑓(𝑇 )𝑔(𝑇 ) ∣ 𝑇 9 − 1. Thus

𝑇 9 − 1 = 𝑓(𝑇 ) ⋅ 𝑔(𝑇 ) ⋅ (𝑇 − 1) ⋅ (𝑇 − 2) ⋅ (𝑇 − 4).
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2. Let 0 < 𝑘, 𝑚 ∈ ℕ, put 𝑛 = 𝑚𝑘, and consider the subspace 𝐶 ⊂ 𝔽𝑛
𝑞 defined by

𝐶 = {(𝑣, 𝑣, ⋯ , 𝑣) ∣ 𝑣 ∈ 𝔽𝑘
𝑞} ⊂ 𝔽𝑛

𝑞 .

Find the minimal distance 𝑑 of this code.
For example, if 𝑛 = 6, 𝑘 = 3 and 𝑚 = 2 then

𝐶 = {(𝑎1, 𝑎2, 𝑎3, 𝑎1, 𝑎2, 𝑎3) ∣ 𝑎𝑖 ∈ 𝔽𝑞} ⊂ 𝔽6
𝑞.

(Corrected)

SOLUTION:
If v = (𝑣, 𝑣, ⋯ , 𝑣) ∈ 𝐶 for 𝑣 ∈ 𝔽𝑛

𝑞 , note that weight(v) = 𝑚 ⋅ weight(𝑣).
In particular, for a non-zero vector we see that weight(v) ≥ 𝑚.
On the other hand, a standard basis vector 𝑣 = e𝑖 ∈ 𝔽𝑛

𝑞 has weight 1, so if w = (e𝑖, e𝑖, ⋯ , e𝑖), then weight(w) = 𝑚.
Thus

min{weight(v) ∣ 0 ≠ v ∈ 𝐶} = 𝑚.

For a linear code, the minimal distance is simply the minimal weight of a non-zero vector; thus the minimal distance of 𝐶
is 𝑚.

3. By an [𝑛, 𝑘, 𝑑]𝑞-system we mean a pair (𝑉 , 𝒫), where 𝑉 is a finite dimensional vector space over 𝔽𝑞 and 𝒫 is an ordered
finite family

𝒫 = (𝑃1, 𝑃2, ⋯ , 𝑃𝑛)
of points in 𝑉 (in general, points of 𝒫 need not be distinct – you should view 𝒫 as a list of points which may contain
repetitions) such that 𝒫 spans 𝑉 as a vector space. Evidently |𝒫| ≥ dim𝑉 .
The parameters [𝑛, 𝑘, 𝑑] are defined by

𝑛 = |𝒫|, 𝑘 = dim𝑉 , 𝑑 = 𝑛 − max
𝐻

|𝒫 ∩ 𝐻|.

where the maximum defining 𝑑 is taken over all linear hyperplanes 𝐻 ⊂ 𝑉 and where points are counted with their
multiplicity – i.e. |𝒫 ∩ 𝐻| = |{𝑖 ∣ 𝑃𝑖 ∈ 𝐻}|.
Gjven a [𝑛, 𝑘, 𝑑]𝑞-system (𝑉 , 𝒫), let 𝑉 ∗ denote the dual space to 𝑉 and consider the linear mapping

Φ ∶ 𝑉 ∗ → 𝔽𝑛
𝑞

defined by
Φ(𝜓) = (𝜓(𝑃1), ⋯ , 𝜓(𝑃𝑛)).

a. Show that Φ is injective.

SOLUTION:
Φ is a linear mapping, so we just need to show that kerΦ = {0}.
Suppose that 𝜓 ∈ 𝑉 ∗ and Φ(𝜓) = 0. This means that 𝜓(𝑃𝑗) = 0 for 1 ≤ 𝑗 ≤ 𝑛. Since 𝜓 is linear, it follows that
𝜓 vanishes at any linear combination of the vectors {𝑃𝑗}.
Since 𝒫 spans 𝑉 by assumption, it follows that 𝜓 = 0. This proves that Φ is injective.
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b. Write 𝐶 = Φ(𝑉 ∗) for the image of Φ, so that 𝐶 is an [𝑛, 𝑘]𝑞-code. Show that the minimal distance of the code 𝐶
is given by 𝑑.

SOLUTION:
Write 𝑑′ for the minimal weight of 𝐶 ; we must argue that

𝑑′ = 𝑑 = 𝑛 − max
𝐻

|𝒫 ∩ 𝐻|.

Let v = Φ(𝜓) ∈ 𝐶 be a non-zero vector. We have

weight(v) = |{𝑗 ∣ 𝜓(𝑃𝑗) ≠ 0}|.

Write 𝐻 = ker𝜓 and note that
|𝒫 ∩ 𝐻| = |{𝑗 ∣ 𝜓(𝑃𝑗) = 0}|.

Thus
(∗) weight(v) = 𝑛 − |𝒫 ∩ 𝐻|.

In max𝐻 |𝒫 ∩ 𝐻| the hyperplanes 𝐻 are precisely the kernels 𝐻 = ker𝜓 of functionals 0 ≠ 𝜓 ∈ 𝑉 ∗. Thus (∗)
shows that

min
v=Φ(𝜓)≠0

weight(v) = 𝑛 − max
𝐻=ker𝜓,𝜓≠0

|𝒫 ∩ 𝐻|;

it follows that 𝑑′ = 𝑑.

c. Conversely, let 𝐶 ⊂ 𝔽𝑛
𝑞 be an [𝑛, 𝑘, 𝑑]𝑞-code, and put 𝑉 = 𝐶∗. Let 𝑒1, ⋯ , 𝑒𝑛 ∈ (𝔽𝑛

𝑞 )∗ be the dual basis to
the standard basis. The restriction of 𝑒𝑖 to the subspace 𝐶 determines an element 𝑃𝑖 of 𝐶∗ = 𝑉 . Write 𝒫 =
(𝑃1, 𝑃2, ⋯ , 𝑃𝑛) for the resulting list of vectors in 𝑉 ..
Prove that the minimum distance 𝑑 of the code 𝐶 satisfies

𝑑 = 𝑛 − max
𝐻

|𝒫 ∩ 𝐻|.

SOLUTION:
We have 𝑉 ∗ = (𝐶∗)∗ = 𝐶 ; the mapping Φ ∶ 𝑉 ∗ = 𝐶 → 𝔽𝑛

𝑞 is just the given inclusion. Indeed, let 𝑥 =
(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ∈ 𝐶 ⊂ 𝔽𝑛

𝑞 . The mapping Φ ∶ 𝑉 ∗ → 𝔽𝑛
𝑞 is given by Φ(𝑥) = (𝑒1(𝑥), ⋯ , 𝑒𝑛(𝑥)) = (𝑥1, … , 𝑥𝑛).

Now the equality
𝑑 = 𝑛 − max

𝐻
|𝒫 ∩ 𝐻|

follows from the result of part (b).

4. Let 𝐶 be the linear code over 𝔽5 generated by the matrix

𝐺 = ⎛⎜
⎝

1 0 0 1 1 2
0 1 0 1 2 1
0 0 1 2 1 1

⎞⎟
⎠

.

a. Find a check matrix 𝐻 for 𝐶 .

SOLUTION:
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k = GF(5)
V = VectorSpace(k,6)

C =V.subspace([ V([1,0,0,1,1,2]),
V([0,1,0,1,2,1]),
V([0,0,1,2,1,1])])

# generator matrix, in standard form
G = MatrixSpace(k,3,6).matrix(C.basis())
G
=>
[1 0 0 1 1 2]
[0 1 0 1 2 1]
[0 0 1 2 1 1]

A = MatrixSpace(k,3,3).matrix([b[3:6] for b in G])

# construct the check matrix, as a block matrix
H = block_matrix([[-A.transpose(),

MatrixSpace(k,3,3).one()]],
subdivide=False)

H
=>
[4 4 3 1 0 0]
[4 3 4 0 1 0]
[3 4 4 0 0 1]

## verification:
H * G.T
=>
[0 0 0]
[0 0 0]
[0 0 0]

b. Find the minimum distance of 𝐶 .

SOLUTION:
The minimal distance of 𝐶 is 4.
We check the weight of a vector using the following function:
def weight(v):

r = [x for x in v if x != 0]
return len(r)

Now, we can just find the minimal weight of the non-zero vectors of 𝑉 , as follows:
min([ weight(v) for v in C if v != 0])
=>
4

Alternatively, you can investigate the columns of the check matrix 𝐻 .
W = VectorSpace(k,3) # column space

4



# return the ith column of the 3xm matrix M
def col(M,i):

return W([ b[i] for b in M ])

# check whether the columns of the 3xm matrix M
# specified by the list ll of indices are lin indep
def cols_lin_indep(M,ll):

vecs = [ col(M,i) for i in ll ]

# the method `linear_dependence` returns a list
# of *linear relations*

# so we return True if `W.linear_dependence(vecs)` is
# the empty list

return W.linear_dependence(vecs) == []

# check whether all collections of r columns of the
# 3xm matrix M are linearly independent
def check(M,r):

# get the number of columns of M.
l = len(list(M.T))

# get all lists of r-element subses of the numbers 0,...,l-1
al = map(list,Subsets(range(l),r))

# return True iff `cols_lin_indep(M,ll)` is true for every
# r-element subset ll of range(l)
return all([ cols_lin_indep(M,ll) for ll in al])

check(H,3)
=>
True

check(H,4)
=>
False

This shows that every collection of 3 columns of H is linearly independent, while there is some collection of 4 columns
of H that is linearly dependent; thus 𝑑 = 4.

c. Decode the received vectors (0, 2, 3, 4, 3, 2) and (0, 1, 2, 0, 4, 0) using syndrome decoding.

SOLUTION:
The minimal distance of the code 𝐶 is 4, so we should expect to correct ⌊(4 − 1)/2⌋ = ⌊3/2⌋ = 1 error.
We first make the lookup table
lookup = { tuple(H*v):v for v in V if weight(v) <= 1 }
lookup
=>
{(0, 0, 0): (0, 0, 0, 0, 0, 0),
(4, 4, 3): (1, 0, 0, 0, 0, 0),
(3, 3, 1): (2, 0, 0, 0, 0, 0),
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(2, 2, 4): (3, 0, 0, 0, 0, 0),
(1, 1, 2): (4, 0, 0, 0, 0, 0),
(4, 3, 4): (0, 1, 0, 0, 0, 0),
(3, 1, 3): (0, 2, 0, 0, 0, 0),
(2, 4, 2): (0, 3, 0, 0, 0, 0),
(1, 2, 1): (0, 4, 0, 0, 0, 0),
(3, 4, 4): (0, 0, 1, 0, 0, 0),
(1, 3, 3): (0, 0, 2, 0, 0, 0),
(4, 2, 2): (0, 0, 3, 0, 0, 0),
(2, 1, 1): (0, 0, 4, 0, 0, 0),
(1, 0, 0): (0, 0, 0, 1, 0, 0),
(2, 0, 0): (0, 0, 0, 2, 0, 0),
(3, 0, 0): (0, 0, 0, 3, 0, 0),
(4, 0, 0): (0, 0, 0, 4, 0, 0),
(0, 1, 0): (0, 0, 0, 0, 1, 0),
(0, 2, 0): (0, 0, 0, 0, 2, 0),
(0, 3, 0): (0, 0, 0, 0, 3, 0),
(0, 4, 0): (0, 0, 0, 0, 4, 0),
(0, 0, 1): (0, 0, 0, 0, 0, 1),
(0, 0, 2): (0, 0, 0, 0, 0, 2),
(0, 0, 3): (0, 0, 0, 0, 0, 3),
(0, 0, 4): (0, 0, 0, 0, 0, 4)}

Now we can decode using the lookup table
def decode(v):
return v-lookup[tuple(H*v)]

[ (decode(v), decode(v) in C) for v in [ V([0,2,3,4,3,2]),
V([0,1,2,0,4,0])]]

=>
[((1, 2, 3, 4, 3, 2), True), ((0, 1, 2, 0, 4, 3), True)]
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