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In these exercises, 𝐺 always denotes a finite group. Unless indicated otherwise, all vector spaces are assumed to be finite dimen-
sional over the field 𝐹 = ℂ. The representation space 𝑉 of a representation of 𝐺 is always assumed to be finite dimensional over
ℂ.

1. Let 𝜙 ∶ 𝐺 → 𝐹 × be a group homomorphism; since 𝐹 × = GL1(𝐹), we can think of 𝜙 as a 1-dimensional representation
(𝜙, 𝐹) of 𝐺.
If𝑉 is any representation of𝐺, we can form a new representation𝜙⊗𝑉 . The underlying vector space for this representation
is just 𝑉 , and the “new” action of an element 𝑔 ∈ 𝐺 on a vector 𝑣 is given by the rule

𝑔 ⋆ 𝑣 = 𝜙(𝑔)𝑔𝑣.

a. Prove that if 𝑉 is irreducible, then 𝜙 ⊗ 𝑉 is also irreducible.

SOLUTION:
We prove the following statement: (∗) if 𝑊 ⊂ 𝑉 is a subspace, then 𝑊 is invariant for the original action of 𝐺 if
and only if it is invariant for the ⋆ action of 𝐺.
First note that (∗) immediately implies the assertion of (a).
To test invariance, let 𝑤 ∈ 𝑊 and let 𝑔 ∈ 𝐺. Since 𝑊 is a linear subspace and since 𝜙(𝑔) is a non-zero scalar, it is
immediate that

𝑔𝑤 ∈ 𝑊 ⟺ 𝑔 ⋆ 𝑤 = 𝜙(𝑔)𝑔𝑤 ∈ 𝑊
Since this holds for all 𝑤 and all 𝑔, (∗) follows.

b. Prove that if 𝜒 denotes the character of 𝑉 , then the character of 𝜙 ⊗ 𝑉 is given by 𝜙 ⋅ 𝜒; in other words, the trace
of the action of 𝑔 ∈ 𝐺 on 𝜙 ⊗ 𝑉 is given by

𝜒𝜙⊗𝑉 (𝑔) = tr(𝑣 ↦ 𝑔 ⋆ 𝑣) = 𝜙(𝑔)𝜒(𝑔).

SOLUTION:
We just need to compute the trace of the linear mapping 𝑉 → 𝑉 given by 𝑣 ↦ 𝑔 ⋆ 𝑣.
If the action of 𝑔 on 𝑉 is given by the linear mapping 𝜌(𝑔), then

𝜒𝑉 (𝑔) = tr(𝜌(𝑔)).

Now, the ⋆-action of 𝑔 is given by the linear mapping 𝑣 ↦ 𝑔 ⋆ 𝑣 = 𝜙(𝑔)𝜌(𝑔)𝑣.
So 𝜒𝜙⊗𝑉 (𝑔) = tr(𝜙(𝑔)𝜌(𝑔)). For any scalar 𝑠 ∈ 𝑘, trace of the linear mapping 𝑠𝜌(𝑔) is given by

tr(𝑠𝜌(𝑔)) = 𝑠 tr(𝜌(𝑔)) = 𝑠𝜒𝑉 (𝑔)
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(“linearity of the trace”).
Thus

𝜒𝜙⊗𝑉 (𝑔) = tr(𝜙(𝑔)𝜌(𝑔)) = 𝜙(𝑔)𝜒𝑉 (𝑔).

c. Recall that in class we saw that 𝑆3 has an irreducible representation 𝑉2 of dimension 2 whose character 𝜓2 is given
by

𝑔 1 (12) (123)
𝜓2 2 0 −1

Observe that sgn𝜓 = 𝜓 and conclude that 𝑉2 ≃ sgn⊗𝑉2, where sgn ∶ 𝑆𝑛 → {±1} ⊂ ℂ× is the sign homomor-
phism.

On the other hand, 𝑆4 has an irreducible representation 𝑉3 of dimension 3 whose character 𝜓3 is given by

𝑔 1 (12) (123) (1234) (12)(34)
𝜓3 3 1 0 −1 −1

(I’m not asking you to confirm that 𝜓3 is irreducible, though it would be straightforward to check that ⟨𝜓3, 𝜓3⟩ = 1).
Prove that 𝑉3 ≄ sgn⊗𝑉3 as 𝑆4-representations.
(In particular, 𝑆4 has at least two irreducible representations of dimension 3.)

SOLUTION:
We first consider the representation 𝑉2 of 𝑆3. Write 𝜒2 of the character of this irreducible representation. The
character of sgn𝜒2 is then given by the product sgn𝜒2.

𝑔 1 (12) (123)
𝜓2 2 0 −1
sgn 1 −1 1
sgn𝜓2 2 0 −1

Inspecting the table we see that 𝜓2 = sgn𝜓2. This shows that 𝑉2 is isomorphic to sgn⊗𝑉2 as representations for
𝑆3.

2. Let 𝑉 be a representation of 𝐺.
For an irreducible representation 𝐿, consider the set

𝒮 = {𝑆 ⊆ 𝑉 ∣ 𝑆 ≃ 𝐿}

of all invariant subspaces that are isomorphic to 𝐿 as 𝐺-representations.
Put

𝑉(𝐿) = ∑
𝑆∈𝒮

𝑆.

a. Prove that 𝑉(𝐿) is an invariant subspace, and show that 𝑉(𝐿) is isomorphic to a direct sum

𝑉(𝐿) ≃ 𝐿 ⊕ ⋯ ⊕ 𝐿

as 𝐺-representations.
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SOLUTION:
First of all, we note more generally that if 𝐼 is an index set and if 𝑊𝑖 ⊂ 𝑉 is a 𝐺-invariant subspace for each 𝑖 ∈ 𝐼 ,
then ∑

𝑖∈𝐼
𝑊𝑖 is again an invariant subspace. (The proof is straightforward from the definitions). This confirms that

𝑉(𝐿) is an invariant subspace.
To prove the remaining assertion, we proceed as follows.
Let us say that a 𝐺-representation 𝑊 is 𝐿-isotypic if every irreducible invariant subspace of 𝑊 is isomorphic to 𝐿.
It is immediate that 𝑉(𝐿) is 𝐿-isotypic. We are going to prove:
If 𝑊 is an 𝐿-isotypic 𝐺-representation, then 𝑊 is isomorphic to a direct sum

𝑊 ≃ 𝐿 ⊕ ⋯ ⊕ 𝐿.

Proceed by induction on dim𝑊 . If dim𝑊 = 0 then 𝑊 = {0} and the result is immediate (𝑊 is the direct sum of
zero copies of 𝐿).
Now observe that if dim𝑊 > 0 then 𝑊 contains an invariant subspace isomorphic to 𝐿, so that dim𝑊 ≥ dim𝐿.
Now if dim𝑊 = dim𝐿, then 𝑊 ≃ 𝐿 and the result holds in this case.
Finally, suppose that dim𝑊 > dim𝐿 and let 𝑆 ⊂ 𝑊 be an invariant subspace with 𝑆 ≃ 𝐿.
By complete reducibility we may find an invariant subspace 𝑈 ⊂ 𝑊 such that 𝑊 is the internal direct sum

𝑊 = 𝑆 ⊕ 𝑈.

Since dim𝑊 = dim𝑆 + dim𝑈 , we have dim𝑈 < dim𝑊 . Moreover, 𝑈 is also 𝐿-isotypic. So by induction on
dimension, we know that

𝑈 ≃ 𝐿 ⊕ ⋯ ⊕ 𝐿,
(say, a direct sum of 𝑑 copies of 𝐿).
But then

𝑊 = 𝑆 ⊕ 𝑈 ≃ 𝐿 ⊕ (𝐿 ⊕ ⋯ ⊕ 𝐿) = 𝐿 ⊕ 𝐿 ⊕ ⋯ ⊕ 𝐿
is isomorphic to a direct sum of 𝑑 + 1 copies of 𝐿.

b. Prove that the quotient representation 𝑉 /𝑉(𝐿) has no invariant subspaces isomorphic to 𝐿 as 𝐺-representations.

SOLUTION:
Write 𝜋 ∶ 𝑉 → 𝑉 /𝑉(𝐿) for the quotient map 𝑣 ↦ 𝑣 + 𝑉(𝐿); thus 𝜋 is a surjective homomorphism of 𝐺-
representations.
Suppose by way of contradiction that 𝑆 ⊂ 𝑉 /𝑉(𝐿) is an invariant subspace isomorphic to 𝐿, and let 𝑆′ ⊂ 𝑉 be the
inverse image under 𝜋 of 𝑆:

𝑆′ = 𝜋−1(𝑆).

Then 𝑆′ is an invariant subspace of 𝑉 containing 𝑉(𝐿), and the restriction of 𝜋 to 𝑆′ defines a surjective mapping

𝜋∣𝑆′ ∶ 𝑆′ → 𝑆 ≃ 𝐿.

If 𝐾 denotes the kernel of 𝜋∣𝑆′ , then complete reducibility implies that there is an invariant subspace 𝑀 of 𝑉 such
that 𝑆′ is the internal direct sum

(∗) 𝑆′ = 𝐾 ⊕ 𝑀.
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In particular, the invariant subspace 𝑀 is isomorphic to 𝐿 as 𝐺-representations. But then by definition we have
𝑀 ⊂ 𝑉(𝐿) contradicting the condition 𝑀 ∩ 𝐾 = {0} which must hold by (∗). This contradiction proves the result.

c. If 𝐿1, 𝐿2, ⋯ , 𝐿𝑚 is a complete set of non-isomorphic irreducible representations for 𝐺, prove that 𝑉 is the internal
direct sum

𝑉 =
𝑚

⨁
𝑖=1

𝑉(𝐿𝑖).

SOLUTION:
We first note that 𝑉 is equal to the sum

𝑚
∑
𝑖=1

𝑉(𝐿𝑖);

indeed, if 𝑊 = ∑𝑚
𝑖=1 𝑉(𝐿𝑖), then by complete reducibility 𝑉 = 𝑊 ⊕ 𝑊 ′ for an invariant subspace 𝑊 ′. But

if 𝑊 ′ ≠ 0 then 𝑊 ′ contains an irreducible invariant subspace, so that 𝑊 ′ ∩ 𝑉(𝐿𝑖) ≠ 0 for some 𝑖 and hence
𝑊 ′ ∩ 𝑊 ≠ 0; this is impossible since the internal sum 𝑉 = 𝑊 ⊕ 𝑊 ′ is direct. This argument shows that 𝑊 ′ = 0
and hence that 𝑉 = 𝑊 .
Finally, we show that the sum

𝑚
∑
𝑖=1

𝑉(𝐿𝑖)

is direct, i.e. that for each 𝑗 we have

(♣) 𝑉(𝐿𝑗) ∩ (∑
𝑖≠𝑗

𝑉(𝐿𝑖)) = 0.

Wrote 𝐼 for the intersection appearing in (♣); thus, 𝐼 is an invariant subspace of 𝑉 . If 𝐼 is non-zero, it has an
irreducible invariant subspace 𝑆. Since 𝐼 ⊂ 𝑉(𝐿𝑗) and since 𝑉(𝐿𝑗) is 𝐿𝑗-isotypic, we conclude that

𝑆 ≃ 𝐿𝑗.

But then 𝑆 ∩ 𝑉(𝐿𝑖) = 0 for every 𝑖 ≠ 𝑗 so that

𝑆 ∩ (∑
𝑖≠𝑗

𝑉(𝐿𝑖)) = 0.

Since 𝐼 ⊂ (∑
𝑖≠𝑗

𝑉(𝐿𝑖)), we conclude that 𝐼 = 0.

This completes the proof that 𝑉 is the direct sum of the 𝑉(𝐿𝑖), as required.

3. Let 𝜒 be the character of a representation 𝑉 of 𝐺. For 𝑔 ∈ 𝐺 prove that 𝜒(𝑔) = 𝜒(𝑔−1).
Is it true for any arbitrary class function 𝑓 ∶ 𝐺 → ℂ that 𝑓(𝑔) = 𝑓(𝑔−1) for every 𝑔? (Give a proof or a counterexample…)

SOLUTION:
Let 𝜌(𝑔) ∶ 𝑉 → 𝑉 denote the linear automorphism of 𝑉 determined by the action of 𝑔 ∈ 𝐺. Then 𝜒(𝑔) = tr(𝜌(𝑔)).
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Now, since 𝜌(𝑔) has finite order, say 𝑛, its minimal polynomial divides 𝑇 𝑛 − 1 ∈ ℂ[𝑇 ], and hence every eigenvalue of
𝜌(𝑔) is an 𝑛-th root of unity.
For any 𝑛-th root of unity 𝜁, note that 𝜁 = 𝜁−1.
Write 𝛼1, ⋯ , 𝛼𝑑 for the eigenvalues of 𝜌(𝑔), with multiplicity (so that 𝑑 = dim𝑉 ). Notice that 𝜌(𝑔−1) has eigenvalues
𝛼−1

1 , ⋯ , 𝛼−1
𝑑 .

Thus

𝜒(𝑔) =
𝑑

∑
𝑖=1

𝛼𝑖 and 𝜒(𝑔−1) =
𝑑

∑
𝑖=1

𝛼−1
𝑖 .

Now, we see that

𝜒(𝑔) =
𝑑

∑
𝑖=1

𝛼𝑖 =
𝑑

∑
𝑖=1

𝛼−1
𝑖 = 𝜒(𝑔−1)

as required.

It is not true that 𝑓(𝑔) = 𝑓(𝑔−1) for every class function 𝑓 and every 𝑔 ∈ 𝐺. Indeed, let 𝑓 = 𝛼𝛿1 be a multiple of the
characterisitic function 𝛿1 of the trivial conjugacy class {1}.
Then 𝑓(1) = 𝛼 while 𝑓(1−1) = 𝑓(1) = 𝛼, so that if 𝛼 ∉ ℝ, we have 𝑓(1) ≠ 𝑓(1−1).

4. For a prime number 𝑝, let 𝑘 = 𝔽𝑝 = ℤ/𝑝ℤ be the field with 𝑝 elements. Let 𝑉 be an 𝑛-dimensional vector space over
𝔽𝑝 for some natural number 𝑛, and let

⟨⋅, ⋅⟩ ∶ 𝑉 × 𝑉 → 𝑘
be a non-degenerate bilinear form on 𝑉 .
(A common example would be to take 𝑉 = 𝔽𝑝𝑛 the field of order 𝑝𝑛, and ⟨𝛼, 𝛽⟩ = tr𝔽𝑝𝑛 /𝔽𝑝

(𝛼𝛽) the trace pairing).

Let us fix a non-trivial group homomorphism 𝜓 ∶ 𝑘 → ℂ× (recall that 𝑘 = ℤ/𝑝ℤ is an additive group, while ℂ× is
multiplicative). Thus

𝜓(𝛼 + 𝛽) = 𝜓(𝛼)𝜓(𝛽) for all 𝛼, 𝛽 ∈ 𝑘.
If you want an explicit choice, set 𝜓(𝑗 + 𝑝ℤ) = exp(𝑗 ⋅ 2𝜋𝑖/𝑝) = exp(2𝜋𝑖/𝑝)𝑗.
For a vector 𝑣 ∈ 𝑉 , consider the mapping Ψ𝑣 ∶ 𝑉 → ℂ× given by the rule

Ψ𝑣(𝑤) = 𝜓(⟨𝑤, 𝑣⟩).

a. Show that Ψ𝑣 is a group homomorphism 𝑉 → ℂ×.

SOLUTION:
For 𝑤, 𝑤′ ∈ 𝑉 notice that

Ψ𝑣(𝑤 + 𝑤′) = 𝜓(⟨𝑤 + 𝑤′, 𝑣⟩)
= 𝜓(⟨𝑤, 𝑣⟩ + ⟨𝑤′, 𝑣⟩) since the form is bilinear
= 𝜓(⟨𝑤, 𝑣⟩) ⋅ 𝜓(⟨𝑤′, 𝑣⟩) since 𝜓 is a group homom
= Ψ𝑣(𝑤) ⋅ Ψ𝑣(𝑤′) by definition.

This confirms that Ψ𝑣 is a group homomorphism.
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b. Show that the assignment 𝑣 ↦ Ψ𝑣 is injective (one-to-one).
(This assignment is a function 𝑉 → Hom(𝑉 , ℂ×). In fact, it is a group homomorphism. Do you see why? How do
you make Hom(𝑉 , ℂ×) into a group?)

SOLUTION:
One checks that Hom(𝑉 , ℂ×) is a multiplicitive group (this is the dual group 𝑉 of 𝑉 , mentioned in the lectures); the
product of 𝜙, 𝜓 ∈ 𝑉 is given by the rule 𝑔 ↦ 𝜙(𝑔) ⋅ 𝜓(𝑔).
We note that the assignment 𝑣 ↦ Ψ𝑣 is a group homomorphism. For 𝑣, 𝑣′ ∈ 𝑉 wemust argue thatΨ𝑣+𝑣′ = Ψ𝑣Ψ𝑣′ .
For 𝑤 ∈ 𝑊 we have

Ψ𝑣+𝑣′(𝑤) =𝜓(⟨𝑣 + 𝑣′, 𝑤⟩)
=𝜓(⟨𝑣, 𝑤⟩ + ⟨𝑣′, 𝑤⟩) since the form is bilinear
=𝜓(⟨𝑣, 𝑤⟩) ⋅ 𝜓(⟨𝑣′, 𝑤⟩) since 𝜓 is a group homom
=Ψ𝑣(𝑤) ⋅ Ψ𝑣′(𝑤) by defn

Now to show that 𝑣 ↦ Ψ𝑣 is injective, it is enough to argue that the kernel of this mapping is {0}.
So, suppose that Ψ𝑣 is the identity element of 𝑉 . In other words, suppose that Ψ𝑣(𝑤) = 1 for every 𝑤 ∈ 𝑉 . This
shows that 𝜓(⟨𝑣, 𝑤⟩) = 1 for every 𝑤 ∈ 𝑉 . Since 𝜓 is a non-trivial homomorphism 𝔽𝑝 → ℂ×, we know that
ker𝜓 = {0} (remember that 𝑘 has prime order…) and we conclude that ⟨𝑣, 𝑤⟩ = 0 for every 𝑤 ∈ 𝑊 .
(Note that ⟨𝑣, 𝑤⟩ = 0 is an equality in 𝑘 = 𝔽𝑝 = ℤ/𝑝ℤ).
Since the form ⟨⋅, ⋅⟩ is non-degenerate, so we may now conclude that 𝑣 = 0.
This proves that the kernel of the mapping 𝑣 ↦ Ψ𝑣 is {0}, hence the mapping is injective.

c. Show that any group homomorphism Ψ ∶ 𝑉 → ℂ× has the form Ψ = Ψ𝑣 for some 𝑣 ∈ 𝑉 .
Conclude that there are exactly |𝑉 | = 𝑞𝑛 group homomorphisms 𝑉 → ℂ×.

SOLUTION:
We observed in class that for any finite abelian group 𝐴, there is an isomorphism 𝐴 ≃ 𝐴.
In particular, |𝐴| = |𝐴|.
Applying this in the case 𝐴 = 𝑉 , we conclude that

|𝑉 | = |𝑉 | = |Hom(𝑉 , ℂ×)|.

Now, we have define an injective mapping
𝑣 ↦ Ψ𝑣 ∶ 𝑉 → ̂(𝑉 ).

Since the domain and co-domain of this mapping are finite of the same order, the mapping 𝑣 ↦ Ψ𝑣 is also surjective.
Thus the pigeonhole principal shows that every homomorphismΨ ∶ 𝑉 → ℂ× has the formΨ = Ψ𝑣 for some 𝑣 ∈ 𝑉 ,
as required.
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