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In these exercises,𝐺 always denotes a finite group and all vector spaces are assumed to be finite dimensional over the field 𝐹 = ℂ.
In these exercises, you may use results stated but not yet proved in class about characters of representations of 𝐺.

1. In this problem, we identify the character 𝜒Ω of the permutation representation (𝜌, 𝐹 [Ω]) of a group 𝐺.
a. Let 𝑉 be a vector space and let Φ ∶ 𝑉 → 𝑉 a linear mapping If ℬ is a basis for 𝑉 , recall that the trace of Φ is
defined by

tr(Φ) = tr([Φ]ℬ).

apologies – this is just explanatory; it isn’t actually a question
b. Recall that the dual of 𝑉 is the vector space 𝑉 ∨ = Hom𝐹 (𝑉 , 𝐹) of linear functionals on 𝑉 .

If 𝑏1, … , 𝑏𝑛 is a basis for 𝑉 , let 𝑏𝑗
∨ ∶ 𝑉 → 𝐹 be defined by 𝑏𝑗

∨(𝑏𝑖) = 𝛿𝑖,𝑗. Show that 𝑏1
∨, … , 𝑏𝑛

∨ is a basis for
𝑉 ∨; it is known as the dual basis to 𝑏1, … , 𝑏𝑛.

SOLUTION:
We must show that the vectors {𝑏𝑖

∨} are linearly independent and span 𝑉 ∨.
First, linear independence:
Suppose that 𝛼1, ⋯ , 𝛼𝑛 ∈ 𝐹 and that

0 =
𝑛

∑
𝑖=1

𝛼𝑖𝑏𝑖
∨

(note that this equality “takes place in the vector space 𝑉 ∨”).
We must argue that all coefficients 𝛼𝑗 are zero. Well, fix 𝑗 and consider the vector 𝑏𝑗. We apply the functional
∑𝑛

𝑖=1 𝛼𝑖𝑏𝑖 to 𝑏𝑗:

(
𝑛

∑
𝑖=1

𝛼𝑖𝑏𝑖
∨) (𝑏𝑗) =

𝑛
∑
𝑖=1

𝛼𝑖𝑏𝑖
∨)(𝑏𝑗) = 𝛼𝑗.

Since the functional ∑𝑛
𝑖=1 𝛼𝑖𝑏𝑖

∨ is equal to 0, we know that (∑𝑛
𝑖=1 𝛼𝑖𝑏𝑖

∨) (𝑣) = 0 for every 𝑣 ∈ 𝑉 . In particular,
this holds when 𝑣 = 𝑏𝑗 and we now conclude that 𝛼𝑗 = 0.
This proves linear independence.
Finally, we prove the vectors span 𝑉 ∨.
Let 𝜙 ∈ 𝑉 ∨, and for 1 ≤ 𝑖 ≤ 𝑛 write 𝛼𝑖 = 𝜙(𝑏𝑖). We claim that

(♣) 𝜙 =
𝑛

∑
𝑖=1

𝛼𝑖𝑏𝑖
∨.

TO prove this equality of functions (“functionals”) we must argue that

𝜙(𝑣) = (
𝑛

∑
𝑖=1

𝛼𝑖𝑏𝑖
∨) (𝑣)
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for every 𝑣 ∈ 𝑉 .
And it suffices to prove the latter equality for vectors 𝑣 taken from the basis {𝑏𝑖}.
But now by construction, for each 𝑗 we have

𝜙(𝑏𝑗) = 𝛼𝑗 = (
𝑛

∑
𝑖=1

𝛼𝑖𝑏𝑖
∨) (𝛼𝑗)

This proves (♣) so that the 𝑏𝑖
∨ indeed span 𝑉 ∨.

c. Prove that the trace of the linear mapping Φ ∶ 𝑉 → 𝑉 is given by the expression

tr(Φ) =
𝑛

∑
𝑖=1

𝑏𝑖
∨(Φ(𝑏𝑖)).

SOLUTION:
Recall that tr(Φ) is defined to be the trace of the matrix [Φ]ℬ where ℬ is a basis of 𝑉 . It is a fact that this definition
is independent of the choice of basis.
Also recall that the trace of the 𝑛 × 𝑛 matrix 𝑀 = (𝑀𝑖,𝑗) is given by

tr(𝑀) =
𝑛

∑
𝑖=1

𝑀𝑖,𝑖.

We consider the basis ℬ of 𝑉 , and the dual basis ℬ∨ of 𝑉 ∨, as above.
Recall that the matrix 𝑀 = [𝑀𝑗,𝑖] = [Φ]ℬ of Φ in the basis ℬ is defined by the condition

Φ(𝑏𝑖) =
𝑛

∑
𝑗=1

𝑀𝑗,𝑖𝑏𝑗

(for 1 ≤ 𝑖 ≤ 𝑛).
Thus,

𝑏𝑖
∨(Φ(𝑏𝑖)) = 𝑏𝑖

∨ (
𝑛

∑
𝑗=1

𝑀𝑗,𝑖𝑏𝑗) = 𝑀𝑖,𝑖

.
Summing over 𝑖 we find that

𝑛
∑
𝑖=1

𝑏𝑖
∨(Φ(𝑏𝑖)) =

𝑛
∑
𝑖=1

𝑀𝑖,𝑖 = tr(𝑀) = tr([Φ]ℬ) = tr(Φ),

as required.

d. Suppose that the finite group 𝐺 acts on the finite set Ω, and consider the corresponding permutation representation
(𝜌, 𝐹 [Ω]) of 𝐺. Recall that 𝐹[Ω] is the vector space of all 𝐹 -values functions on Ω, and that for 𝑓 ∈ 𝐹 [Ω] and
𝑔 ∈ 𝐺, we have

𝜌(𝑔)𝑓(𝜔) = 𝑓(𝑔−1𝜔).
In particular, we saw in the lecture that

𝜌(𝑔)𝛿𝜔) = 𝛿𝑔𝜔,
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where 𝛿𝜔 denotes the Dirac function at 𝜔 ∈ Ω.
Show that

tr(𝜌(𝑔)) = #{𝜔 ∈ Ω ∣ 𝑔𝜔 = 𝜔};
i.e. the trace of 𝜌(𝑔) is the number of fixed points of the action of 𝑔 on Ω.

SOLUTION:
Recall that the vector space 𝐹[Ω] has a basis consisting of the vectors 𝛿𝜔 for 𝜔 ∈ Ω.
We write 𝛿∨

𝜔 ∈ 𝐹[Ω]∨ for vectors of the dual basis. The linear functional

𝛿∨
𝜔 ∶ 𝐹 [Ω] → 𝐹

is defined by
𝛿∨

𝜔(𝛿𝜏) = {1 𝜏 = 𝜔
0 𝜏 ≠ 𝜔

Fix 𝑔 ∈ 𝐺. According to our earlier work, we know that

tr(𝜌(𝑔)) = ∑
𝜔∈Ω

𝛿∨
𝜔(𝜌(𝑔)𝛿𝜔) = ∑

𝜔∈Ω
𝛿∨

𝜔(𝛿𝑔𝜔).

Now, 𝛿∨
𝜔(𝛿𝑔𝜔) is 1 when 𝜔 = 𝑔𝜔 and is 0 otherwise. This shows that tr(𝜌(𝑔)) is given by the number of 𝜔 ∈ Ω for

which 𝑔𝜔 = 𝜔, as required.

2. Let 𝑉 be a representation of 𝐺, suppose that 𝑊1, 𝑊2 are invariant subspaces, and that 𝑉 is the internal direct sum

𝑉 = 𝑊1 ⊕ 𝑊2.

Show that the character 𝜒𝑉 of 𝑉 satisfies
𝜒𝑉 = 𝜒𝑊1

+ 𝜒𝑊2

i.e. for 𝑔 ∈ 𝐺 that
𝜒𝑉 (𝑔) = 𝜒𝑊1

(𝑔) + 𝜒𝑊2
(𝑔).

SOLUTION:
Let ℬ = {𝑏1, ⋯ , 𝑏𝑛} be a basis of 𝑊1 and let 𝒞 = {𝑐1, ⋯ , 𝑐𝑚} be a basis of 𝑊2.
Since 𝑉 = 𝑊1 ⊕ 𝑊2, we know that ℬ ∪ 𝒞 = {𝑏1, ⋯ , 𝑏𝑛, 𝑐1, ⋯ , 𝑐𝑚} is a basis for
We consider the dual basis 𝑏∨

1 , 𝑏∨
2 , ⋯ , 𝑏∨

𝑛, 𝑐∨
1 , ⋯ , 𝑐∨

𝑚 of the dual vector space 𝑉 ∨.
(Be careful! 𝑊 ∨

1 is not a subspace of 𝑉 ∨! Instead, it is a quotient of 𝑉 ∨…)
Observe that the functional 𝑏∨

𝑖 ∈ 𝑉 ∨ is determined by the rules

𝑏∨
𝑖 (𝑏𝑗) = 𝛿𝑖,𝑗 and 𝑏∨

𝑖 (𝑐𝑗) = 0.

Similarly, the functional 𝑐∨
𝑗 ∈ 𝑉 ∨ is determined by the rules

𝑐∨
𝑗 (𝑏𝑖) = 0 and 𝑐∨

𝑗 (𝑐𝑖) = 𝛿𝑗,𝑖.

Observe that we can restrict 𝑏∨
𝑖 to 𝑊1, and these restrictions {𝑏∨

𝑖 |𝑊1
} give the basis of 𝑊 ∨

1 dual to the basis {𝑏𝑖} of 𝑊1.
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Similarly the restrictions {𝑐∨
𝑗 |𝑊2

} give the basis of 𝑊 ∨
2 dual to the basis {𝑐𝑗} of 𝑊2.

Now using the results of the previous problem applied to the mapping 𝑔 ∶ 𝑊1 → 𝑊1, 𝑔 ∶ 𝑊2 → 𝑊2 and 𝑔 ∶ 𝑉 → 𝑉 ,
we see that

𝜒𝑊1
(𝑔) = tr(𝑔 ∶ 𝑊1 → 𝑊1) =

𝑛
∑
𝑖=1

𝑏∨
𝑖 (𝑔 ⋅ 𝑏𝑖)

𝜒𝑊2
(𝑔) = tr(𝑔 ∶ 𝑊2 → 𝑊2) =

𝑚
∑
𝑗=1

𝑐∨
𝑗 (𝑔 ⋅ 𝑐𝑗)

𝜒𝑉 (𝑔) = tr(𝑔 ∶ 𝑉 → 𝑉 ) =
𝑛

∑
𝑖=1

𝑏∨
𝑖 (𝑔 ⋅ 𝑏𝑖) +

𝑚
∑
𝑗=1

𝑐∨
𝑗 (𝑔 ⋅ 𝑐𝑗)

Thus indeed 𝜒𝑉 (𝑔) = 𝜒𝑊1
(𝑔) + 𝜒𝑊2

(𝑔) for each 𝑔, as required.

3. Let 𝐺 = 𝐴4 be the alternating group of order
4!
2 = 12.

We are going to find the character table of this group.
a. Confirm that the following list gives a representative for each of the conjugacy classes of 𝐺:

1, (12)(34), (123), (124)

(Note that (123) and (124) are conjugate in 𝑆4, but not in 𝐴4).
What are the sizes of the corresponding conjugacy classes?

SOLUTION:
Note that the centralizer 𝐶𝐴4

((12)(34)) contains the group ⟨(12), (34)⟩, which has 4 elements. On the other
hand, (12)(34) is not central in 𝐴4 (e.g. (23) doesn’t commute with (12)(34)). Since [𝐴4 ∶ ⟨(12)(34)⟩] = 3 (a
prime number), conclude that 𝐶𝐴4

((12)(34)) = ⟨(12), (13)⟩. We conclude that (12)(34) has exactly 12/4 = 3
conjugates in 𝐴4.
Next note that the centralizer 𝐶𝐴4

((123)) contains the subgroup ⟨(123)⟩ of order 3. On the other hand, suppose
that 𝜎 ∈ 𝐶𝐴4

((123)). Then 𝜎(123)𝜎−1 = (123). But we know 𝜎(123)𝜎−1 = (𝜎(1)𝜎(2)𝜎(3)), and now the
condition

(123) = (𝜎(1)𝜎(2)𝜎(3))
implies that 𝜎 ∈ ⟨(123)⟩. Thus𝐶𝐴4

((123)) = ⟨(123)⟩ has order 3, and the conjugacy class of (123) has 12/3 = 4
elements.
Similarly, the centralizer of (124) has order 3, and its conjugacy class has 4 elements.
Finally, we should argue that (123) and (124) are not in fact conjugate in𝐴4. Of course, they are conjugate in 𝑆4 by
the transposition (34). Arguing as above, the centralizer of (123) in 𝑆4 is still just equal to ⟨(123)⟩. So any element
𝜎 of 𝑆4 for which 𝜎(123)𝜎−1 = (124) has the form (123)𝑖(12) for some 𝑖, and none of those elements is in 𝐴4.
We have

class rep 𝑔 𝐶𝐴4
(𝑔) size of conjugacy class of 𝑔

1 12 1
(12)(34) 4 3
(123) 3 4
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class rep 𝑔 𝐶𝐴4
(𝑔) size of conjugacy class of 𝑔

(124) 3 4

Since
1 + 3 + 4 + 4 = 12

we have found all of the conjugacy classes in 𝐴4.

b. Let 𝐾 = ⟨(12)(34), (14)(23)⟩. Show that 𝐾 is a normal subgroup of index 3, so that 𝐺/𝐾 ≃ ℤ/3ℤ.

SOLUTION:
One checks directly that

𝐾 = {1, (12)(34), (14)(23), (13)(24)}
so that 𝐾 has order 4 and index 3 as asserted.
Notice that - as a set - 𝐾 is the union of {1} and the 3-element conjugacy class of (12)(34). This makes clear that
𝜎𝜏𝜎−1 ∈ 𝐾 for all 𝜎 ∈ 𝐴4 and 𝜏 ∈ 𝐾, so that 𝐾 is a normal subgroup.
Since |𝐺/𝐾| = 3, of course 𝐺/𝐾 ≃ ℤ/3ℤ (“groups of prime order are cyclic”).

Let 𝜁3 be a primitive 3rd root of unity in 𝐹 × and for 𝑖 = 0, 1, 2 let 𝜌𝑖 ∶ 𝐺 → 𝐹 × be the unique homomorphism
with the following properties:
i. 𝜌𝑖 ((123)) = 𝜁𝑖

ii. 𝐾 ⊆ ker 𝜌𝑖.
Explain why 𝜌0 = 1, 𝜌1, 𝜌2 determine distinct irreducible (1-dimensional) representations of 𝐺.

SOLUTION:
In fact, let (𝜌1, 𝑉1) and (𝜌2, 𝑉2) be representations of 𝐺 for which 𝑉1 and 𝑉2 are 1 dimensional. In this case,
GL(𝑉𝑖) = GL1(𝐹) = 𝐹 × is a commutative group.
Since 𝑉1 and 𝑉2 have dimension 1, any isomorphism Φ ∶ 𝑉1 → 𝑉2 is just given by multiplication with a scalar
𝛼 ∈ 𝐹 ×. So if the representations are isomorphic, we have for each 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝑉1:

𝜌2(𝑔)Φ(𝑣) = Φ(𝜌1(𝑔)𝑣) ⟹ 𝛼𝜌2(𝑔)𝑣 = 𝛼𝜌1(𝑔)𝑣

Since 𝛼 ≠ 0 and since this holds for all 𝑣 ∈ 𝑉1, we conclude that 𝜌1(𝑔) = 𝜌2(𝑔) for each 𝑔 ∈ 𝐺.
In other words, two 1 dimensional representations are isomorphic iff they are equal (as functions 𝐺 → 𝐹 ×).
Now, the three homomorphisms 𝜌𝑖 (𝑖 = 0, 1, 2) are clearly distinct, because each maps the element (123) to a
different element of 𝐹 ×. Thus they constitute distinct irreducible 1 dimensional representations of 𝐺.

c. Let Ω = {1, 2, 3, 4} on which 𝐺 acts by the embedding 𝐴4 ⊂ 𝑆4.
Compute the character 𝜒Ω of the representation 𝐹[Ω]. (This means: compute and list the values of 𝜒Ω at the
conjugacy class representatives given in a.)
(Use the result of problem 1 above).
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SOLUTION:
According to problem 1, the trace of the action of an element 𝜎 ∈ 𝐴4 on the permutation representation 𝐹[Ω] is
equal to the number of fixed points of 𝜎 on Ω.
Let’s write 𝜒Ω for the character of the representation 𝐹[Ω].
Thus, the trace is given by

𝜎 𝜒Ω
1 4
(12)(34) 0
(123) 1
(124) 1

d. The span of the vector 𝛿1 +𝛿2 +𝛿3 +𝛿4 ∈ 𝐹[Ω] is an invariant subspace isomorphic to the irreducible representation
𝜌0 (the so-called trivial representation).
Thus 𝐹[Ω] = 𝜌0 ⊕ 𝑊 for a 3-dimensional invariant subspace. Explain why problem 2 shows that the character of
𝑊 is given by 𝜒𝑊 = 𝜒Ω − 1.

SOLUTION:
Problem 2 shows that

𝜒Ω = 1 + 𝜒𝑊 .

This is an identity of 𝐹 -valued functions on 𝐺, and it immediately implies that 𝜒𝑊 = 𝜒Ω − 1 as required.

Now prove that ⟨𝜒𝑊 , 𝜒𝑊 ⟩ = 1 and conclude that 𝑊 is an irreducible representation.

SOLUTION:
Write 𝜎1, 𝜎2, 𝜎3, 𝜎4 for class representatives 1, (12)(34), (123), (124). And write 𝑐𝑖 for the order of the centralizer
of 𝜎𝑖.
Notice that the values of 𝜒𝑊 = 𝜒Ω − 1 are given in the following table:

𝜎𝑖 𝑐𝑖 𝜒Ω(𝜎𝑖) 𝜒𝑊 (𝜎𝑖)
1 = 𝜎1 12 4 3
(12)(34) = 𝜎2 4 0 -1
(123) = 𝜎3 3 1 0
(124) = 𝜎4 3 1 0

We calculate

⟨𝜒𝑊 , 𝜒𝑊 ⟩ =
4

∑
𝑖=1

1
𝑐𝑖

𝜒𝑊 (𝜎𝑖)𝜒𝑊 (𝜎𝑖) = 1
123 ⋅ 3 + 1

4(−1) ⋅ (−1) + 1
30 ⋅ 0 + 1

30 ⋅ 0

= 9
12 + 1

4 = 9 + 3
12 = 1
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It follows from the results described in lecture that a representation 𝑉 is irreducible if and only if ⟨𝜒𝑉 , 𝜒𝑉 ⟩ = 1, so
we conclude that 𝑊 is an irreducible representation.

e. Explain why
1, 𝜌1, 𝜌2, 𝑊

is a complete set of non-isomorphic irreducible representations of 𝐺.

SOLUTION:
We know that 𝐺 has 4 conjugacy classes, so up to isomorphism there are exactly 4 irreducible representations of 𝐺.
We’ve already pointed out that 1, 𝜌1, 𝜌2 are non-isomorphic irreducible representations each of dimension 1. Now,
we’ve seen that 𝑊 is an irreducible representation; since 𝑊 is 2 dimensional, it is not isomorphic to any of the
representations 1, 𝜌1, 𝜌2.
Thus we have found 4 non-isomorphic irreducible representations, and we can conclude that any irreducible repre-
sentation is isomorphic to once of these 4.

f. Display the character table of 𝐺 = 𝐴4.

SOLUTION:

1 (12)(34) (123) (124)
12 4 3 3

1 1 1 1 1
𝜌1 1 1 𝜁 𝜁2

𝜌2 1 1 𝜁2 𝜁
𝜒𝑊 3 −1 0 0
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