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𝐹 denotes an algebraically closed field of characteristic 0. If you like, you can suppose that 𝐹 = C is the field of complex
numbers.

1. Let 𝑉 be a finite dimensional vector space over the field 𝐹 . Suppose that 𝜙, 𝜓 ∶ 𝑉 → 𝑉 are linear maps. Let 𝜆 ∈ 𝐹 be
an eigenvalue of 𝜙 and write 𝑊 for the 𝜆-eigenspace of 𝜙; i.e.

𝑊 = {𝑣 ∈ 𝑉 ∣ 𝜙(𝑣) = 𝜆𝑣}.

If 𝜙𝜓 = 𝜓𝜙 show that 𝑊 is invariant under 𝜓 – i.e. show that 𝜓(𝑊) ⊆ 𝑊 .

SOLUTION:
Solution:
Let 𝑤 ∈ 𝑊 . We must show that 𝑥 = 𝜓(𝑤) ∈ 𝑊 . To do this, we must establish that 𝑥 = 𝜓(𝑤) is a 𝜆-eigenvector for 𝜙.
We have

𝜙(𝑥) = 𝜙(𝜓(𝑥))
= 𝜓(𝜙(𝑤)) since 𝜙 ∘ 𝜓 = 𝜓 ∘ 𝜙
= 𝜓(𝜆𝑤) since 𝑤 is a 𝜆-eigenvector
= 𝜆𝜓(𝑤) since 𝜓 is linear
= 𝜆𝑥

This completes the proof.

2. Let 𝑛 ∈ N be a non-zero natural number, and let 𝑉 be an 𝑛 dimensional 𝐹 -vector space with a given basis 𝑒1, 𝑒2, ⋯ , 𝑒𝑛.
Consider the linear transformation 𝑇 ∶ 𝑉 → 𝑉 given by the rule

𝑇 𝑒𝑖 = 𝑒𝑖+1 (mod 𝑛).

In other words
𝑇 𝑒𝑖 = {𝑒𝑖+1 𝑖 < 𝑛

𝑒1 𝑖 = 𝑛 .

a. Show that 𝑇 is invertible and that 𝑇 𝑛 = id𝑉 .

SOLUTION:
To check that 𝑇 𝑛 = id𝑉 , we check that 𝑇 𝑛(𝑒𝑖) = 𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝑛.
From the definition, it follows by induction on the natural number 𝑚 that

𝑇 𝑚(𝑒𝑖) = 𝑒𝑖+𝑚 (mod 𝑛).

Thus 𝑇 𝑛(𝑒𝑖) = 𝑒𝑖+𝑛 (mod 𝑛) = 𝑒𝑖. Since this holds for every 𝑖, conclude 𝑇 𝑛 = id𝑉 .
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Now 𝑇 is invertible since its inverse is given by 𝑇 𝑛−1.

b. Consider the vector 𝑣0 =
𝑛

∑
𝑖=1

𝑒𝑖. Show that 𝑣0 is a 1-eigenvector for 𝑇 .

SOLUTION:
We compute

𝑇 (𝑣0) = 𝑇 (
𝑛

∑
𝑖=1

𝑒𝑖) =
𝑛

∑
𝑖=1

𝑇 (𝑒𝑖)

=
𝑛

∑
𝑖=1

𝑒𝑖+1 (mod 𝑛)

=
𝑛+1
∑
𝑗=2

𝑒𝑗 (mod 𝑛) (let 𝑗 = 𝑖 + 1)

=
𝑛

∑
𝑗=1

𝑒𝑗 (mod 𝑛) = 𝑣0

Thus 𝑇 (𝑣0) = 𝑣0 so indeed 𝑣0 is a 1-eigenvector.

Let 𝜁 ∈ 𝐹 be a primitive 𝑛-th root of unity. (e.g. if you assume 𝐹 = C, you may as well take 𝜁 = 𝑒2𝜋𝑖/𝑛).

c. Let 𝑣1 =
𝑛

∑
𝑖=1

𝜁𝑖𝑒𝑖. Show that 𝑣1 is a 𝜁−1-eigenvector for 𝑇 .

SOLUTION:
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We compute

𝑇 (𝑣1) = 𝑇 (
𝑛

∑
𝑖=1

𝜁𝑖𝑒𝑖)

=
𝑛

∑
𝑖=1

𝜁𝑖𝑇 (𝑒𝑖)

=
𝑛

∑
𝑖=1

𝜁𝑖𝑒𝑖+1 (mod 𝑛)

=
𝑛+1
∑
𝑗=2

𝜁𝑗−1𝑒𝑗 (mod 𝑛) (let 𝑗 = 𝑖 + 1)

= 𝜁−1
𝑛+1
∑
𝑗=2

𝜁𝑗𝑒𝑗 (mod 𝑛)

= 𝜁−1
𝑛

∑
𝑗=1

𝜁𝑗𝑒𝑗 (mod 𝑛) (since 𝜁𝑗 = 𝜁𝑗 (mod 𝑛) ∀𝑗)

= 𝜁−1𝑣1

Thus 𝑇 (𝑣1) = 𝜁−1𝑣1 so indeed 𝑣0 is a 𝜁−1-eigenvector.

d. More generally, let 0 ≤ 𝑗 < 𝑛 and let

𝑣𝑗 =
𝑛

∑
𝑖=1

𝜁𝑖𝑗𝑒𝑖.

Show that 𝑣𝑗 is a 𝜁−𝑗-eigenvector for 𝑇 .

SOLUTION:
The calcuation in the solution to part (c) is valid for any 𝑛-th root of unity unity 𝜁. Applying this calculation for 𝜁𝑗

shows that 𝑣𝑗 is a 𝜁−𝑗-eigenvector for 𝑇 as required.

e. Conclude that 𝑣0, 𝑣1, ⋯ , 𝑣𝑛−1 is a basis of 𝑉 consisting of eigenvectors for 𝑇 , so that 𝑇 is diagonalizable.
Hint: You need to use the fact that eigenvectors for distinct eigenvalues are linearly independent.
What is the matrix of 𝑇 in this basis?

SOLUTION:
Since eigenvectors for distinct eigenvalues are linearly independent, conclude that the vectorsℬ = {𝑣0, 𝑣1, ⋯ , 𝑣𝑛−1}
are linearly independent. Since there 𝑛 vectors in ℬ and since dim𝑉 = 𝑛, conclude that ℬ is a basis for 𝑉 .
The matrix of 𝑇 in the basis ℬ is given by

[𝑇 ]ℬ =
⎡
⎢⎢⎢
⎣

1 0 0 ⋯ 0
0 𝜁−1 0 ⋯ 0
0 0 𝜁−2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝜁−𝑛+1

⎤
⎥⎥⎥
⎦
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(This form explains why an 𝑛 × 𝑛 matrix 𝑀 is diagonalizable iff 𝐹 𝑛 has a basis of eigenvectors for 𝑀 ).

3. Let 𝐺 = ℤ/3ℤ be the additive group of order 3, and let 𝜁 be a primitive 3rd root of unity in 𝐹 .
To define a representation 𝜌 ∶ 𝐺 → GL𝑛(𝐹), it is enough to find a matrix 𝑀 ∈ GL𝑛(𝐹) with 𝑀3 = 1; in turn, 𝑀
determines a representation 𝜌 by the rule 𝜌(𝑖 + 3ℤ) = 𝑀 𝑖.
Consider the representation 𝜌1 ∶ 𝐺 → GL3(𝐹) given by the matrix

𝜌1(1 + 3ℤ) = 𝑀1 = ⎡⎢
⎣

1 0 0
0 𝜁 0
0 0 𝜁2

⎤⎥
⎦

and consider the representation 𝜌2 ∶ 𝐺 → GL3(𝐹) given by the matrix

𝜌2(1 + 3ℤ) = 𝑀2 = ⎡⎢
⎣

0 0 1
1 0 0
0 1 0

⎤⎥
⎦

.

Show that the representations 𝜌1 and 𝜌2 are equivalent (alternative terminology: are isomorphic). In other words, find a
linear bijection Φ ∶ 𝐹 3 → 𝐹 3 with the property that

Φ(𝜌2(𝑔)𝑣) = 𝜌1(𝑔)Φ(𝑣)

for every 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝐹 3.
Hint: First find a basis of 𝐹 3 consisting of eigenvectors for the matrix 𝑀2.

SOLUTION:

The matrix 𝑀1 is diagonal, which is to say that the standard basis vectors 𝑒1 = ⎡⎢
⎣

1
0
0
⎤⎥
⎦

, 𝑒2 = ⎡⎢
⎣

0
1
0
⎤⎥
⎦

, 𝑒3 = ⎡⎢
⎣

0
0
1
⎤⎥
⎦
are

eigenvectors for 𝑀1 with respective eigenvalues 1, 𝜁, 𝜁2.
By the work in problem 2, we see that

𝑣1 = 𝑒1 + 𝑒2 + 𝑒3, 𝑣2 = 𝑒1 + 𝜁𝑒2 + 𝜁2𝑒3, 𝑣3 = 𝑒1 + 𝜁2𝑒2 + 𝜁𝑒3

are eigenvectors for 𝑀2 with respective eigenvalues 1, 𝜁2, 𝜁.
Now let Φ ∶ 𝐹 3 → 𝐹 3 be the linear transformation for which

Φ(𝑒1) = 𝑣1, Φ(𝑒2) = 𝑣3, Φ(𝑒3) = 𝑣2

.
We claim that Φ defines an isomorphism of 𝐺-representations

(𝜌1, 𝐹 3) ∼−→ (𝜌2, 𝐹 3).

We must check that Φ(𝜌1(𝑔)𝑣) = 𝜌2(𝑔)Φ(𝑣) for all 𝑔 ∈ 𝐺 and all 𝑣 ∈ 𝐹 3.
Since 𝐺 is cyclic it suffices to check that

(♣) Φ(𝑀1𝑣) = 𝑀2Φ(𝑣) ∀𝑣 ∈ 𝐹 3

.
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(Indeed, (♣) amounts to “checking on a generator”. If (♣) holds then for every natural number 𝑖 a straightforward induction
argument shows for every 𝑣 ∈ 𝐹 3 that

Φ(𝜌1(𝑖 + 3ℤ)𝑣) = Φ(𝜌1(1 + 3ℤ)𝑖𝑣)
= Φ(𝑀1

𝑖𝑣)
= 𝑀2

𝑖Φ(𝑣)
= 𝜌2(1 + 3ℤ)𝑖Φ(𝑣)
= 𝜌2(𝑖 + 3ℤ)Φ(𝑣)

)
In turn, it suffices to verify the (♣) holds for the basis vectors 𝑒1, 𝑒2, 𝑒3 for 𝑉 = 𝐹 3.
Since 𝑒1 and 𝑣1 are 1-eigenvectors for 𝑀1 resp. 𝑀2, we have

Φ(𝑀1𝑒1) = Φ(𝑒1) = 𝑣1 = 𝑀2𝑣1.

Since 𝑒2 and 𝑣3 are 𝜁-eigenvectors for 𝑀1 resp. 𝑀2, we have

Φ(𝑀1𝑒2) = Φ(𝜁𝑒2) = 𝜁Φ(𝑒2) = 𝜁𝑣3 = 𝑀2𝑣3.

Since 𝑒3 and 𝑣2 are 𝜁2-eigenvectors for 𝑀1 resp. 𝑀2, we have

Φ(𝑀1𝑒3) = Φ(𝜁2𝑒3) = 𝜁2Φ(𝑒3) = 𝜁2𝑣2 = 𝑀2𝑣2.

Thus (♣) holds and the proof is complete.

Alternatively, note that the matrix of Φ in the standard basis is given by

[Φ] = ⎡⎢
⎣

1 1 1
1 𝜁2 𝜁
1 𝜁 𝜁2

⎤⎥
⎦

Now, to prove that Φ ∘ 𝜌1(𝑔) = 𝜌2(𝑔) ∘ Φ, it suffices to check that 𝑀2[Φ] = [Φ]𝑀1 i.e. that

⎡⎢
⎣

0 0 1
1 0 0
0 1 0

⎤⎥
⎦

⋅ ⎡⎢
⎣

1 1 1
1 𝜁2 𝜁
1 𝜁 𝜁2

⎤⎥
⎦

= ⎡⎢
⎣

1 1 1
1 𝜁2 𝜁
1 𝜁 𝜁2

⎤⎥
⎦

⋅ ⎡⎢
⎣

1 0 0
0 𝜁 0
0 0 𝜁2

⎤⎥
⎦

IN fact, both products yield the matrix

⎡⎢
⎣

1 𝜁 𝜁2

1 1 1
1 𝜁2 𝜁

⎤⎥
⎦

4. Let 𝑉 be a 𝑛 dimensional 𝐹 -vector space for 𝑛 ∈ ℕ.
Let GL(𝑉 ) denote the group

GL(𝑉 ) = {all invertible 𝐹 -linear transformations 𝜙 ∶ 𝑉 → 𝑉 }

where the group operation is composition of linear transformations.
Recall that GL𝑛(𝐹) denotes the group of all invertible 𝑛 × 𝑛 matrices.
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If ℬ = {𝑏1, 𝑏2, ⋯ , 𝑏𝑛} is a choice of basis, show that the assignment 𝜙 ↦ [𝜙]ℬ determines an isomorphism

GL(𝑉 ) ∼−→ GL𝑛(𝐹).

Here [𝜙]ℬ = [𝑀𝑖𝑗] denotes the matrix of 𝜙 in the basis ℬ defined by equations

𝜙(𝑏𝑖) =
𝑛

∑
𝑘=1

𝑀𝑘𝑖𝑏𝑘.

SOLUTION:
Lets write Φ for the mapping

Φ ∶ GL(𝑉 ) → GL𝑛(𝐹)
defined above.
An important property – proved in Linear Algebra – is that for 𝜙, 𝜓 ∶ 𝑉 → 𝑉 we have

(♡) [𝜙 ∘ 𝜓]ℬ = [𝜙]ℬ ⋅ [𝜓]ℬ.

In words: “once you choose a basis, composition of linear transformations corresponds to multiplication of the correspond-
ing matrices”.
Now, since the matrix of the endomorphism 𝜙 ∶ 𝑉 → 𝑉 is equal to the identity matrix I𝑛 if and only if 𝜙 = id𝑉 , (♡)
shows at once that a linear transformation 𝜙 ∶ 𝑉 → 𝑉 is invertible if and only if [𝜙]ℬ is an invertible matrix.
This confirms that Φ is indeed a group homomorphism.
To show that Φ is an isomorphism, we exhibit its inverse. Namely, we defined a group homomorphism

Ψ ∶ GL𝑛(𝐹) → GL(𝑉 )

and check that Ψ is the inverse to Φ.
TO define Ψ, we introduce the linear isomorphism 𝛽 ∶ 𝐹 𝑛 → 𝑉 defined by the rule

𝛽
⎡⎢⎢
⎣

𝑎1
𝑎2
⋮

𝑎𝑛

⎤⎥⎥
⎦

=
𝑛

∑
𝑖=1

𝑎𝑖𝑏𝑖.

For an invertible matrix 𝑀 , we define
Ψ(𝑀) ∶ 𝑉 → 𝑉

by the rule
Ψ(𝑀)(𝑣) = 𝛽𝑀 ⋅ 𝛽−1𝑣

If 𝑀1, 𝑀2 ∈ GL𝑛(𝐹) then for every 𝑣 ∈ 𝑉 we have

Ψ(𝑀1𝑀2)𝑣 = 𝛽𝑀1𝑀2 ⋅ 𝛽−1𝑣
= 𝛽𝑀1𝛽−1𝛽𝑀2 ⋅ 𝛽−1𝑣
= Ψ(𝑀1)Ψ(𝑀2)𝑣

This confirms that Ψ is a group homomorphism.
It remains to observe that for 𝑀 ∈ GL𝑛(𝐹) we have

Φ ∘ Ψ(𝑀) = 𝑀,
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which amounts to the fact that 𝑀 is the matrix of Ψ(𝑀), and we must observe for 𝑔 ∈ GL(𝑉 ) hat

Ψ ∘ Φ(𝑔) = 𝑔

which amounts to the observation that the transformation 𝑔 ∶ 𝑉 → 𝑉 is determined by its effect on the basis vectors 𝑏𝑖
and hence by the matrix Φ(𝑔).
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