Levi factors of a linear algebraic group
(special session; New Orleans meeting)

George McNinch

Department of Mathematics
Tufts University

January 2011
Levi factors: definitions

k: field, G: linear algebraic group /k.

- I’ll always require (R): the unipotent radical R of $G_{/k_{	ext{alg}}}$ is defined /k (this condition always holds for perfect k).
- Write $\pi : G \to G/R$ for the quotient map.
- A Levi factor of G is subgp $M \subset G$ s.t. $\pi|_M : M \to G/R$ is an isom. of alg. gps.
- Thus $G \simeq R \rtimes M$.
- Implicit in this terminology: M is “defined over k”.
Main result, in brief

Goal of the talk is to explain the following result for G.

- “Condition (L)” will be discussed in a subsequent slide.

Theorem (M; “Descent of Levi factors”)

> Assume that (L) holds for the unipotent radical R of G. If G/κ_{sep} has a Levi factor (“defined over κ_{sep}”), then already G has a Levi factor (“defined over k”).
Levi factors can fail to exist

Here is a general construction via cohomology

- Let G a linear algebraic group and V a linear G-representation.
- Fix $\alpha \in Z^2(G, V)$, i.e. a regular cocycle $\alpha : G \times G \rightarrow V$.
- α determines an extension

\[
(*) \quad 0 \rightarrow V \rightarrow E_\alpha \rightarrow G \rightarrow 1
\]

- $(*)$ is split $\iff 0 = [\alpha] \in H^2(G, V)$.
Levi factors can fail to exist

- for any semisimple algebraic group G, we have
 $$H^2(G, \text{Lie}(G)^{[1]}) \neq 0.$$

- This leads to a non-split seq of linear alg. gps
 $$0 \rightarrow \text{Lie}(G)^{[1]} \rightarrow H \rightarrow G \rightarrow 1;$$

- thus H has no Levi factor.
To describe an application of the main theorem on descent of Levi factors, I need to discuss parahoric group schemes. Consider the following data:

- A: a complete DVR with fractions K and perfect residues $k = A/\pi A$.
- G: a connected and reductive group over K.
- \mathcal{P}: a parahoric group scheme for G.

Thus \mathcal{P} is a smooth affine group scheme over A with $\mathcal{P}/K = G$.

and the special fiber \mathcal{P}/k is a linear algebraic group over k which is not reductive in general.
Levi factors for parahoric group schemes

Theorem (M)

If G/L is split for some unramified extension $K \subset L$, then the special fiber \mathcal{P}/k has a Levi factor, and any two k-Levi factors are conjugate by an element of $\mathcal{P}(k_{\text{alg}})$.

Here is a fairly simple example

- $G = \text{GL}(n+1)/K = \text{GL}(V_{K,n+1}), \mathcal{L} \subset V_{K,n+1}$ A-lattice
- parahoric \mathcal{P}: stab. of lattice flag $\pi\mathcal{L} \subset \mathcal{M} \subset \mathcal{L}$
- assume $\dim_k \mathcal{L}/\mathcal{M} = 1$
- \mathcal{P}/k is the trivial extension

\[
0 \to (V_{k,n} \boxtimes k_{-1}) \oplus (V_{k,n}^\vee \boxtimes k_1) \to \mathcal{P}/k \to \text{GL}(V_{k,n}) \times \mathbb{G}_m \to 1
\]
Assume G absolutely quasisimple and simply connected. If G/L is split for a tamely ramified extension $K \subset L$, then P/k has a Levi factor.

The proof of this theorem (i.e. the tamely ramified case) depends on the theorem on “descent of Levi factors”.

Indeed, using a theorem of Rousseau and of G. Prasad, I first proved this result when the residue field k is alg closed, following a suggestion of Prasad.

in general, conjugacy of Levi factors is false if G doesn’t split over an unramif. extension of K.
Consider extension

\[(*) \quad 0 \to V \to E \to G \to 1 \]

for linear alg group \(G \), where \(V \) is a linear rep of \(G \).

- for each field ext \(k \subset \ell \), consider the group \(A(\ell) \) of all automorphisms \(\phi \) of \(E/\ell \) s.t.
 - \(\phi|_{V/\ell} = 1 \), and
 - \(\phi \) induces 1 on \(G/\ell \)

- \(A(\ell) \) may be ident. with the (in general, infinite dim’l) \(\ell \)-vector space \(Z^1(G, V/\ell) \)
Idea of proof of “descent of Levi factors” theorem

thus \(H^1(k, A) = H^1(\text{Gal}(k_{\text{sep}}/k), A) \) is trivial, by additive version of Hilbert 90.

- suppose given an isom. defined over \(k_{\text{sep}} \) between the extension
 \[
 (*) \quad 0 \rightarrow V \rightarrow E \rightarrow G \rightarrow 1
 \]
 and the trivial extension (**) of \(G \)

- since the set of isomorphisms between the extensions (*) and (**) forms a torsor for \(A \), the vanishing of \(H^1(k, A) \) shows there is such an isom. already over \(k \).
Let k_{sep} be a separable closure of k, and let G be a linear algebraic group over k for which \((R)\) holds. Consider the condition

\[(L)\text{ } R \text{ has a filtration by closed } k\text{-subgroups which are normal in } G \text{ for which the successive quotients are vector groups each with a linear action of } G/R.\]

- when G is absolutely quasisimple and simply connected, condition \((L)\) holds for the special fiber $\mathcal{P}_{/k}$ by a result of Prasad-Raghunathan.

- \((L)\) not true in general. When $p = 3$, there is a 2 dimensional vector group V with non-linear action of $M = \text{SL}_2$ for which $\text{Lie}(V)$ is a simple M-module.
Thanks for listening.

- pre-prints pending...
- some results found in “Levi decompositions of a linear algebraic group” on arXiv (to appear: Transf. Groups)
- I’ll post these notes at www.tufts.edu/~gmcnin01