Nilpotent orbits of a reductive group over a local field
(seminar talk at UMich)

George McNinch

Department of Mathematics
Tufts University

Dec 8, 2008
Overview

1. The landscape, quickly
2. Optimal SL_2-mappings
3. Nilpotent centralizers
4. Parahoric subgroups
Reductive groups: basic examples

G connected, reductive group over the (arbitrary) field K.

Examples:

- $G = \text{GL}(V)$ for a K-vector space V
- $G = \text{Sp}(V)$ if V has a non degenerate alternating form

I want to suppose G is D-standard.

- if G is semisimple, D-standard just means the char is “very good for G.
- Any K-form of GL_n is also D-standard.
- $\text{Sp}(V)$ is D-standard just when $p \neq 2$.
- (the actual defn: let H_1 be semisimple in very good characteristic and $H = H_1 \times S$ for a K-torus S. Then G is D-standard if it is separably isogenous to the centralizer in H of a subgroup M of multiplicative type for some H_1, S, and M).
Let H be a linear algebraic group over K.

- Assume that $R_u H$ is defined over K.
- A Levi factor of H (over K) is a K-subgroup $M \subset H$ for which H is the semidirect product $R_u H \cdot M$.
- If K has char. 0, then H has a Levi factor (Mostow).
Levi factors: problems in positive char.

- In general, $R_u H$ need not be defined over K.
 - e.g. this fails for $H = R_{K_1/K}G_m$ when K_1/K is purely inseparable.
- there may be reductive $M \subset H$ with $M(K_{alg}) \cdot R_u H(K_{alg}) = H(K_{alg})$ but for which $\text{Lie } M + \text{Lie } R_u H \neq \text{Lie } H$.
 - for an example, let H a maximal parabolic of GL_3 in char. 2, and let M be the image of the adjoint rep $SL_2 \to GL(\mathfrak{sl}_2) = GL_3$
- H need not have a Levi factor.
 - $H = R_{K_1/K}G_m$ has no Levi factor over K
 - if $W_2 = \text{Witt vectors over alg. closed } k$, let $H = SL_2(W_2)$. H is a 6 dimensional k-group, $R_u H$ is defined over k, and H and has no Levi factor.
Let G a D-standard reductive gp, and $X \in \mathfrak{g}(K)$ nilpotent.

- Let S a maximal K-torus of $C = C_G(X)$.

- **Theorem (Premet, M)**

 There is a (K-)cochar. $\phi : G_m \to [C_G(S), C_G(S)]$ for which $X \in \mathfrak{g}(\phi; 2)$.

 If S' is a second max torus of C, and if $\phi' : G_m \to [C_G(S'), C_G(S')]$ satisfies $X \in \mathfrak{g}(\phi'; 2)$, then ϕ and ϕ' are conjugate by a unique element of $R_u(C)(K)$.

 the parabolic subgroup $P = P(\phi)$ depends only on X.

- I’ll say that ϕ is **associated to** X.

- if K has char. 0, the elements X and $H = d\phi(1)$ may be completed to a unique \mathfrak{sl}_2-triple.
Now suppose the nilpotent $X \in \mathfrak{g}(K)$ satisfies $X^{[p]} = 0$.

- Fix a cocharacter λ associated to X.

Theorem (Seitz,M)

There is a unique homomorphism $\psi: \text{SL}_2 \to G$ for which

$$\psi \begin{pmatrix} t & 0 \\ 0 & \frac{1}{t-1} \end{pmatrix} = \phi(t) \quad \forall t \in K_{\text{alg}} \quad \text{and} \quad d\psi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = X.$$

*Moreover, the representation $\text{Ad} \circ \psi$ of SL_2 on \mathfrak{g} is a tilting module for which all weights μ satisfy $-2p + 2 \leq \mu \leq 2p - 2$.***
Good filtrations

Let G be a reductive group, and suppose $K = K_{\text{alg}}$. Fix a maximal torus T and a Borel subgroup $T \subset B$.

- The characters $\lambda \in X^*(T)$ parametrize the G-linearized line bundles $\mathcal{L}(\lambda)$ on G/B.
- λ is dominant $\iff H^0(\lambda) = H^0(G/B, \mathcal{L}(\lambda)) \neq 0$.
- The simple G-modules are precisely the $L(\lambda) = \text{soc} \, H^0(\lambda)$ for dominant λ.
- A (finite dimensional) G-module M is said to have a good filtration if there are submodules $0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$ for which $M_i/M_{i-1} \simeq H^0(\lambda_i)$ for dominant weights λ_i.
Tilting modules

- A G-module M is said to be a \textit{tilting module} if both M and M^\vee have a good filtration.
- Any tilting mod M is a \bigoplus of \textit{indecomposable} tilting mods.
- The indec tilting modules $T(\lambda)$ are param by dominant λ.

\textbf{Theorem (Donkin, Mathieu)}

\textit{For all dominant weights λ, μ, $H^0(\lambda) \otimes H^0(\mu)$ has a good filtration.}

- This essentially amounts to the assertion that there is a Frobenius splitting of $G/B \times G/B$ which “B-compatibly Frobenius splits” the diagonal.

\textbf{Corollary}

\textit{If T_1 and T_2 are tilting modules, so is $T_1 \otimes T_2$.}
Let K have char. $p > 0$, Let $\lambda \in \mathbb{Z}$ with $0 \leq \lambda \leq 2p - 2$, and view λ as a character of the standard max torus of SL_2.

- I’d like to describe the indec. tilting mod $T(\lambda)$.
- The standard module $H^0(\lambda)$ has dimension $\lambda + 1$ and coincides with $\text{Sym}^\lambda V$ where $V = K^2 = H^0(1)$ is natural rep.
- $H^0(\lambda) = L(\lambda)$ is simple $\iff \lambda < p$. In this case $T(\lambda) = L(\lambda)$.
Now assume $\lambda = p + \mu$ for $0 \leq \mu \leq p - 2$.

Then $L(\lambda) \simeq V^{[1]} \otimes L(\mu) = L(1)^{[1]} \otimes L(\mu)$, where $[1]$ denotes a Frob. twist.

There is a non-split exact sequence of SL_2-modules

$$0 \to L(\lambda) \to H^0(\lambda) \to L(p - 2 - \mu) \to 0;$$

note that $L(p - 2 - \mu) = H^0(p - 2 - \mu)$.

There is a non-split exact sequence of SL_2-modules

$$0 \to H^0(p - 2 - \mu) \to T(\lambda) \to H^0(\lambda) \to 0.$$

In particular, $\dim T(\lambda) = (p - 2 - \mu + 1) + (\lambda + 1) = 2p$.

$T(\lambda)$ may be “constructed” as an indecomposable summand of $L(p - 1) \otimes L(\mu + 1)$.
Tilting modules for SL$_2$, conclusion

Let A a discrete valuation ring with fractions K and residues $k = A/\pi A$.

- Let L be a free A-mod of finite rank.
- Let $\rho : \text{SL}_2/A \to \text{GL}(L)$ be an A-representation – i.e. a morphism of A-group schemes.
- Write $X_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathfrak{sl}_2(A)$, $X_0(k)$ the image in $\mathfrak{sl}_2(k)$ and $X_0(K)$ the image in $\mathfrak{sl}_2(K)$.
- Assume each weight λ of the representation L satisfies $-2p + 2 \leq \lambda \leq 2p - 2$.

Proposition

If $L/\pi L$ is a tilting module for SL_2/k, then $\dim_k \ker \rho(X_0(k))$ coincides with $\dim_K \ker \rho(X_0(K))$.
Let G be D-standard and $X \in \mathfrak{g}(K)$ nilpotent.

Recall G-orbits in nilp variety \mathcal{N} are classified geometrically by Bala-Carter data (L, Q): L is the Levi subgroup of a parabolic of G, and $Q \subset L$ is a distinguished parabolic.

In particular, the geometric nilpotent orbits depend only on the root datum of G.

I want to comment on the structure of the centralizer $C = C_G(X)$.

If ϕ is a cocharacter associated with X, one knows that $M = C \cap C_G(\text{im } \phi)$ is a Levi factor of C (over K).
The centralizer $C = C_G(X)$ has a Levi decomposition defined over K. Moreover, the following are independent of p (under our standard hyp):

- the (geometric) root datum of a Levi factor of C,
- the (geometric) component group $C(K_{\text{alg}})/C^0(K_{\text{alg}})$

Method of proof: may suppose $K = K_{\text{alg}}$.

- let \mathcal{A} be a DVR with residues K and fractions of char 0.
- let \mathcal{G}/\mathcal{A} be split reductive with root datum of G
- find a nilpotent section $X_1 \in \mathfrak{g}(\mathcal{A})$ specializing to X for which the \mathcal{A} group scheme $C_\mathcal{G}(X_1)$ is smooth over \mathcal{A}.
- Find the Levi factor “over \mathcal{A}”.
Motivating question(s)

Consider more general smooth group schemes over a DVR with reductive generic fiber, but which are not necessarily reductive. Can one:

- find nilpotent sections with smooth centralizer lifting classes on the special fiber?
- use such nilpotent sections to understand (something about) DeBacker’s parametrization of rational nilpotent orbits?
“Local” fields – notation etc.

- Let \mathcal{A} be a discrete valuation ring with maximal ideal $\pi \mathcal{A}$; assume \mathcal{A} is π-adically complete, assume $k = \mathcal{A}/\pi \mathcal{A}$ is \textit{perfect}, and let $K = \text{Frac}(\mathcal{A})$.

- Examples:
 - $K = k((\pi))$, $\mathcal{A} = k[[\pi]]$.
 - K a finite extension of \mathbb{Q}_p, \mathcal{A} int. closure of \mathbb{Z}_p in K
Let G be D-standard reductive over the “local” field K.

- Bruhat and Tits: parahoric “subgroups” – certain smooth A-group schemes \mathcal{P} with $\mathcal{P}/K = G$
- determined by facets in the affine building of G.
- there is an A-split torus S in \mathcal{P} for which S/K is a maximal K-split torus in G.

Theorem (Bruhat-Tits, I think)

The special fiber \mathcal{P}/k has a unique Levi factor containing S/k.

- the case of SU_3 with L/K totally ramified shows this not to be *too* trivial.
Let \mathcal{P} a parahoric, write $\mathfrak{p} = \text{Lie}(\mathcal{P})$.

- Let $X \in \mathfrak{p}(A)$ nilpotent for which $X(k)$ lies in the Lie algebra of a Levi factor of \mathcal{P}/k.
- Up to conjugacy on the special fiber we may suppose that a cocharacter ϕ associated with $X(k) \in \mathfrak{p}$ (in a Levi factor) takes values in the fixed split maximal torus S – thus ϕ may be viewed as an A-cocharacter of \mathcal{P}.
Desired condition: Let $C \subset \mathfrak{p}$ an \mathcal{A}-submodule. Write $C/\mathbb{K} = C \otimes K$ and C/\mathbb{k} for the image of C in $\mathfrak{p}/\pi\mathfrak{p}$. Suppose that:

(C1) C is stable under $\phi(\mathcal{A}^\times)$.
(C2) as an \mathcal{A}-module, $\mathfrak{p} = \mathfrak{p}(\mathcal{A})$ is the direct sum of C and $[X, \mathfrak{p}(\mathcal{A})]$
(C3) $C/\mathbb{k} \cap \operatorname{Lie}(R_u \mathcal{P}/\mathbb{k})$ is a complement to $[X, \operatorname{Lie}(R_u \mathcal{P}/\mathbb{k})]$.

If there is C satisfying (C1)–(C3), the centralizer $C_{\mathcal{P}}(X)$ is a smooth group scheme over \mathcal{A}.

If $\mathfrak{p} \gg 0$ one may use $C = \operatorname{Lie}(C_G(Y))$ determined by a suitable \mathfrak{sl}_2-triple (X, H, Y) for which $H = d\phi(1)$.

Write p^+ for the pre-image of $\text{Lie}(R_u P_{/k})$ under the mapping $p \rightarrow p_{/k} = \text{Lie}(P_{/k})$. Assume C satisfies (C1)–(C3).

Proposition (adaptation of DeBacker/Waldspurger)

The $G(K)$-orbit of X is the nilpotent orbit of minimal dimension having non-empty intersection with $X + p^+$.

The proof depends on viewing $P(\mathcal{A}/\pi^2 \mathcal{A})$ as the k-points of a linear group over $k = \mathcal{A}/\pi \mathcal{A}$ (à la Greenberg), and knowing that the centralizer of X is *smooth*.
A map in Galois cohomology, continued

Corollary

For X as above, there is a natural mapping

$$H^1(k, C_{P/k}(X)) \to H^1(K, C_G(X)).$$

- Note the H^1 of $C_{P/k}(X)$ identifies with that of its reductive quotient.
- This natural mapping is *realized* by DeBacker’s mapping.
Let \mathcal{P} be a parahoric of G, and let $M \subset \mathcal{P}/k$ be a Levi factor.

Let X_0 be a distinguished nilp element of M s.t. $X_0^{[p]} = 0$.

Suppose that M is D-standard (?!?), and let $\psi : \text{SL}_2/k \to M$ an optimal SL_2-mapping for X_0.

Hope

The representation $(\text{Ad} \circ \psi, \text{Lie}(\mathcal{P}/k))$ is a tilting module for SL_2 for which all weights μ satisfy $-2p + 2 \leq \mu \leq 2p - 2$.

Equivalently: the Lie algebra of the unipotent radical of \mathcal{P}/k is a tilting module for SL_2 under the action determined by $\text{Ad} \circ \psi$ (with the indicated condition on the weights).
With notation as on the previous slide, assume that the hope holds for $X_0 \in \text{Lie}(M)(k)$.

Proposition

Then there is an A-submodule $C \subset p$ for which (C1)–(C3) hold.

An important point is the following: if ϕ is a cocharacter of M associated with X_0, and if (as before) we arrange that ϕ is “defined over A”, one needs to know that ϕ is associated with X for some nilpotent element $X \in p$ whose image in p/k is X_0.
The hope holds for GL_n.

It also holds for $G = \text{Sp}(V)$.

- Indeed, it is clear for the reductive parahoric.
- If \mathcal{P} is a non-reductive parahoric, a Levi factor M of the special fiber $\mathcal{P}_/k$ has the form $\text{Sp}(W_1) \times \text{Sp}(W_2)$.
- And as a module for M, $\text{Lie}(R_u \mathcal{P}_/k)$ is isomorphic to $(W_1 \otimes W_2) \oplus (W_1 \otimes W_2)$.